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Abstract

We propose a hybrid smoothing-nonsmooth Newton-type algorithm for solving the P0

linear complementarity problem (P0-LCP) based on the techniques used in the non-smooth
Newton method and smoothing Newton method. Under some assumptions, the proposed
algorithm can find an exact solution of P0-LCP in finite steps. Preliminary numerical
results indicate that the proposed algorithm is promising.
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1. Introduction

It is well-known that many mathematical programming problems can be reformulated as
a non-smooth equation. By using general Jacobian in the sense of Clarke [4], one can treat
directly the non-smooth equation and design a few iterative Newton-type algorithms to solve
the problem. This is known as the non-smooth Newton method [6, 15]. Moreover, to overcome
the difficulties arising from non-differentiability of the non-smooth equation, one can smooth the
non-smooth equation by using some smoothing functions. Instead of the non-smooth equation,
one investigates a system of the parameterized smoothing equations. Furthermore, one can
design a few iterative Newton-type algorithms to solve the problem. This is just the non-
interior continuation method / smoothing Newton method, which has been used extensively to
solve a few mathematical programming problems [1, 2, 8, 16].

It is also known that the iterative method only generates generally an approximation solution
of the problem concerned. In order to obtain an exact solution of the problem, many algorithms
with the finite termination property have been proposed to solve some linear optimization prob-
lems including the linear programming [14, 18], the linear complementarity problem [6, 17], the
box constrained variational inequality problem [3, 13], and the vertical linear complementar-
ity problem [5]. It is shown in each above-mentioned algorithm that an exact solution of the
problem can be found in one step when an iterate is sufficiently close to this solution.
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In this paper, we consider the P0 linear complementarity problem (P0-LCP) of finding a
vector (x, y) ∈ Rn × Rn such that

x ≥ 0, y ≥ 0, xT y = 0, Mx + q − y = 0, (1.1)

where the matrix M ∈ Rn×n is a P0-matrix and the vector q ∈ Rn. By exploiting the techniques
of non-smooth Newton methods [6] and smoothing Newton methods [9, 16], we give a hybrid
smoothing-nonsmooth Newton-type algorithm for the P0-LCP (1.1) where we use a smoothing
function introduced by Huang-Han-Chen [9] in the smoothing Newton step. It is shown that our
algorithm can find an exact solution of the P0-LCP (1.1) in finite steps under some assumptions.
We implement the proposed algorithm for several standard test problems by a MATLAB code.
The preliminary numerical results indicate that the algorithm is promising.

The rest of this paper is organized as follows. We give some properties of the smoothing
function introduced in [9] and some basic concepts in the next section. Then we propose a
hybrid smoothing-nonsmooth Newton-type algorithm for the P0-LCP (1.1). In section 3, we
show the finite termination property of the proposed algorithm. Some numerical results are
given in section 4.

The following notions will be used throughout this paper. All vector are column vectors,
the subscript T denotes transpose, Rn (respectively, R) denotes the space of n-dimensional real
column vectors (respectively, real numbers), Rn

+ and Rn
++ denote the nonnegative and positive

orthants of Rn, R+ (respectively, R++) denotes the nonnegative (respectively, positive) orthant
in R. We define N := {1, 2, · · · , n}. For any vector u ∈ Rn, we denote by diag{ui : i ∈ N}
the diagonal matrix whose ith diagonal element is ui and vec{ui : i ∈ N} the vector u. For
simplicity, we use (u, v) for the column vector (uT , vT )T . The matrix I represents the identity
matrix of arbitrary dimension. The symbol ‖ · ‖ stands for the 2-norm. We denote by S the
solution set of the P0-LCP (1.1).

2. Algorithm Description

It is easy to see that the problem (1.1) is equivalent to the following non-smooth equations

F (w) := F (x, y) :=
(

y − Mx − q
min{x, y}

)
= 0, (2.1)

that is, (x, y) ∈ S if and only if F (w) = 0. Since F (w) is a locally Lipschitz-continuous operator,
we can define its generalized Jacobian (see [6])

∂F (w) = {Va|ai = 1 if xi < yi, ai = 0 if xi > yi, ai ∈ [0, 1] if xi = yi, i ∈ N},

where

Va :=
( −M I

Da I − Da

)
, Da := diag(a1, · · · , an).

Moreover, the non-smooth function min{x, y} in (2.1) can be smoothed by using the smooth-
ing function φ : R3 → R defined by

φ(µ, a, b) = (1 + µ)(a + b) −
√

(1 − µ)2(a − b)2 + 4µ2, (2.2)

which was introduced by Huang-Han-Chen [9]. We need the following properties of smoothing
function (2.2) which can be found in [9].

Lemma 2.1. Let (µ, a, b) ∈ R3 and φ(µ, a, b) be defined by (2.2). Then φ(µ, a, b) is continuously
differentiable in R++ × R2. Moreover, φ(0, a, b) = 0 if and only if a, b ≥ 0, ab = 0.
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Let z := (µ, w) := (µ, x, y) ∈ R2n+1 and

H(z) :=

⎛
⎝ µ

y − Mx − q
Φ(z)

⎞
⎠ , where Φ(z) :=

⎛
⎜⎝

φ(µ, x1, y1)
...

φ(µ, xn, yn)

⎞
⎟⎠ . (2.3)

By Lemma 2.1, we know that the P0-LCP (1.1) is equivalent to the equation H(z) = 0 in the
sense that their solution sets are coincident.

The following lemma will be used in our analysis later. We omit its proof (for details, see
Lemma 2.5 and Theorem 3.1 in [9]).

Lemma 2.2. Let z = (µ, x, y) ∈ R++ × R2n and H(z) be defined by (2.3). Then

(i) H(z) is continuously differentiable with its Jacobian

H ′(z) =

⎛
⎝ 1 0 0

0 −M I
x + y − v(z) (1 + µ)I − D1(z) (1 + µ)I − D2(z)

⎞
⎠ ,

where

v(z) := vec

{
−(1 − µ)(xi − yi)2 + 4µ√
(1 − µ)2(xi − yi)2 + 4µ2

: i ∈ N

}
,

D1(z) := diag

{
(1 − µ)2(xi − yi)√

(1 − µ)2(xi − yi)2 + 4µ2
: i ∈ N

}
,

D2(z) := diag

{
−(1 − µ)2(xi − yi)√

(1 − µ)2(xi − yi)2 + 4µ2
: i ∈ N

}
.

If M is a P0-matrix, then the matrix H ′(z) is nonsingular on R++ × R2n.

(ii) H(z) is coercive on R++ × R2n, i.e., lim‖w‖→∞ ‖H(z)‖ = ∞ holds for each µ > 0.

We are now giving a formal description of our algorithm.
Algorithm 2.1. (A hybrid smoothing-nonsmooth Newton-type method)

Step 0. (Initalization)

Choose δ, σ, η, η1 ∈ (0, 1) and µ0 ∈ R++. Let ū := (µ0, 0) ∈ R++ × R2n and x0 ∈ Rn

be an arbitrary point. Let y0 := Mx0 + q, w0 := (x0, y0) and z0 := (µ0, w
0). Choose

γ ∈ (0, 1) such that γ‖H(z0)‖ < 1. Take α0 := ‖F (w0)‖. Set k := 0.

Step 1. ( One of the Termination Criteria)

If H(zk) = 0, stop. Otherwise, define a function ρ : R2n+1 → R+ by

ρ(zk) = ρ(µk, wk) := γ‖H(zk)‖min{1, ‖H(zk)‖}.

Step 2. (Non-smooth Newton Step)

Choose Vk ∈ ∂F (wk). If Vk is singular, then go to Step 3; otherwise, compute ∆ŵk from

Vk∆ŵk = −F (wk). (2.4)

If
F (wk + ∆ŵk) = 0, (2.5)

stop. If the following three inequalities are satisfied

‖F (wk + ∆ŵk)‖ ≤ ηαk, (2.6)
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µ0ρ(µk, wk + ∆ŵk) ≤ µk, (2.7)

‖H(µk, wk + ∆ŵk)‖ ≤ η1‖H(zk)‖, (2.8)

then set

µk+1 := µk, wk+1 := wk + ∆ŵk, αk+1 := ‖F (wk + ∆ŵk)‖, k := k + 1

and go to Step 2; otherwise, go to Step 3.

Step 3. (Smoothing Newton Step)

Compute ∆zk := (∆µk, ∆wk) ∈ R2n+1 by

H(zk) + H ′(zk)∆zk = ρ(zk)ū. (2.9)

Let mk be the smallest nonnegative integer such that

‖H(zk + δmk∆zk)‖ ≤ [1 − σ(1 − γµ0)δmk ]‖H(zk)‖. (2.10)

Let λk := δmk . Set

zk+1 := zk + λk∆zk, αk+1 := ‖F (wk + λk∆wk)‖,
and k := k + 1. Go to Step 1.

Remark 2.1. (i) To solve the general Newton equation (2.4) is a key step in the nonsmooth
Newton method; whereas to solve the smoothing Newton equation (such as, (2.9)) is a main
step in the smoothing Newton method. Thus, Algorithm 2.1 combines the techniques used in
the non-smooth Newton method and the smoothing Newton method. We call Step 2 as the
non-smooth Newton step and Step 3 as the smoothing Newton step.

(ii) Generally, the algorithm needs to solve two linear system of equations at each iteration.
However, if Vk is singular or Vk is nonsingular but either the condition (2.5) or condition (2.6)–
(2.8) is accepted, then the algorithm only needs to solve one linear system of equations at kth
iteration.

(iii) By Lemma 2.2 (i), it is not difficult to see that Algorithm 2.1 is well-defined.
(iv) If F (wk) �= 0 for all k ≥ 0, then Algorithm 2.1 will not stop at Step 2 for all k ≥ 0.
(v) It is not difficult to see from (2.1), (2.3), and Lemma 2.1 that if H(zk) = 0 for some

k ≥ 0, then F (wk) = 0 for the same k ≥ 0; and that if F (wk) �= 0 for all k ≥ 0, then H(zk) �= 0
for all k ≥ 0.

If a point w ∈ R2n such that F (w) = 0, then w is an exact solution of (1.1). Thus, from the
condition (2.5) in Algorithm 2.1 it is not difficult to see the following result holds.

Theorem 2.3. If Algorithm 2.1 terminates at Step 2 for some k ≥ 0, then wk + ∆ŵk is an
exact solution of (1.1).

3. Finite Termination Analysis

In this section, we show that the stopping criteria given in either Step 1 or Step 2 of
Algorithm 2.1 must be met when k is sufficiently large under some assumptions, that is, F (wk) =
0 holds for some k ≥ 0, and hence an exact solution is obtained in a finite number of the iteration.

We use the following assumption, which is weaker than many conditions used in previous
literatures to ensure the boundedness of iteration sequences (see [10, 7]).

Assumption 3.1. The solution set S of (1.1) is nonempty and bounded.

To show our main result, we need to use the following two theorems.
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Theorem 3.2. Suppose that M is a P0 matrix. Let the sequence {zk = (µk, wk)} be generated
by Algorithm 2.1. If F (wk) �= 0 for all k ≥ 0, then {zk} is an infinite sequence where µk ∈ R++

is monotonically decreasing and satisfies µk ≥ ρ(zk)µ0 for all k ≥ 0.

Proof. Similar to the proofs given in [16, 9], by the inequalities (2.6)–(2.8), it is not difficult
to show the theorem is true. We omit the proof.

In order to show the boundedness of the sequence {zk = (µk, wk)} generated by Algorithm
2.1, we need the following lemma.

Lemma 3.3. Let {tk} and {sk} be two infinite sequences and satisfy tk > 0, sk ≥ 0 for all
k ≥ 0, and limk→∞ tk = 0, limk→∞ sk = 0. Let H be defined by (2.3) and {(xk, yk)} ⊂ R2n be
the sequence with ‖H(tk, xk, yk)‖ ≤ sk. If M is a P0-matrix and Assumption 3.1 holds, then
{(xk, yk)} is bounded.

Proof. Similar to the proof of Theorem 2.1 in [10], it is not difficult to show the lemma is
true.

Theorem 3.4. Suppose that M is a P0 matrix. Let {zk = (µk, wk)} be the iteration sequence
generated by Algorithm 2.1. If F (wk) �= 0 for all k ≥ 0. Then

(i) there has at least one of {‖F (wk)‖} and {‖H(zk)‖} converges to zero as k tends to +∞;
(ii) if Assumption 3.1 is satisfied, {zk} is bounded and each accumulation point of the

sequence {wk} is a solution of (1.1).

Proof. If F (wk) �= 0 for all k ≥ 0, then ‖H(zk)‖ �= 0 for all k ≥ 0. Therefore, Algorithm
2.1 generates an infinite sequence {zk} = {zk̂} + {zk̄}, where zk̂ is generated by Step 2 and zk̄

is generated by Step 3. Then it is not difficult to see that one of the following two cases must
occur.

Case (A): the sequence {zk̄} is finite. Case (B): the sequence {zk̄} is infinite.

We first prove (i). If Case (A) occurs, then the sequence {zk̂} is infinite. Hence, there must
exist a sufficiently large integer k0 > 0 such that zk = zk̂ for all k > k0. Thus, it follows from
the inequality (2.6) that

‖F (wk)‖ ≤ ηk−k0αk0 , ∀k > k0,

which, together with η ∈ (0, 1), implies that {‖F (wk)‖} tends to zero as k tends to +∞. If Case
(B) occurs, then (2.10) and (2.8) imply that the entire sequence {‖H(zk)‖} is monotonically
decreasing, which together with ‖H(zk)‖ ≥ 0 implies that the limit of {‖H(zk)‖} exists, denoted
by θ∗. Suppose that {‖H(zk)‖} does not converge to zero, i.e., θ∗ > 0. Then {‖H(zk̄)‖} also
converges to θ∗ > 0 as k̄ → ∞ and from Theorem 3.2 and the definition of ρ(·) we have

0 < ρ(zk̄+1)µ0 ≤ µk̄+1 ≤ µk̄,

which, together with Lemma 2.2(ii), implies that {zk̄} is bounded. Let z∗ = (µ∗, w∗) be
an accumulation point of {zk̄ = (µk̄, wk̄)}. Without loss of generality, we assume that {zk̄}
converges to z∗. Then, it follows from the continuity of H and the definition of ρ(·) that {µk̄}
and {ρ(zk̄)} converge to µ∗ and ρ∗, respectively; and that

θ∗ = ‖H(z∗)‖ > 0, ρ∗ = γθ∗ min{1, θ∗} > 0, 0 < ρ∗µ0 ≤ µ∗ ≤ µ0. (3.1)

Hence, by (2.10), we have limk̄→∞ λk̄ = 0. On one hand, from the fact that λk̄/δ = δmk̄−1 can
not satisfy the condition (2.10), we obtain that

‖H(zk̄ + δmk̄−1∆zk̄)‖ > [1 − σ(1 − γµ0)δmk̄−1]‖H(zk̄)‖,
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which implies

[‖H(zk̄ + δmk̄−1∆zk̄)‖ − ‖H(zk̄)‖]/δmk̄−1 > −σ(1 − γµ0)‖H(zk̄)‖.
Furthermore, by Theorem 3.1 in [15], we have ∆zk̄ is bounded and then

[H(z∗)/‖H(z∗)‖]T H ′(z∗)∆z∗ ≥ −σ(1 − γµ0)‖H(z∗)‖. (3.2)

On the other hand, by (2.9), we have

H(z∗)T H ′(z∗)∆z∗ = −‖H(z∗)‖2 + ρ∗H(z∗)T ū. (3.3)

It follows from (3.2) and (3.3) that

ρ∗µ0‖H(z∗)‖ ≥ ρ∗H(z∗)T ū ≥ [1 − σ(1 − γµ0)]‖H(z∗)‖2. (3.4)

(3.1) and (3.4) imply that γµ0 ≥ 1 − σ(1 − γµ0), i.e.,

(1 − σ)(1 − γµ0) ≤ 0,

which contradicts with the fact σ < 1, γµ0 ≤ γ‖H(z0)‖ < 1. Therefore, we have θ∗ = 0. Hence
the above argument proved (i).

Next we prove (ii). If Case (A) occurs, then the sequence {zk̂} is infinite. Hence, there must
exist a sufficiently large integer k0 > 0 such that zk is generated by Step 2 in Algorithm 2.1
for all k > k0. Then it is not difficult to see that limk→∞ µk = µk0 > 0. Thus, it follows from
the inequality (2.7) that {‖H(zk)‖} is bounded. Furthermore, by Lemma 2.2(ii) we obtain that
{zk} is bounded. If Case (B) occurs, then from the proof of (i) that ‖H(zk)‖ → 0 as k → ∞.
Hence, by the definition of H (2.3), we have

lim
k→∞

µk = 0. (3.5)

It follows from (2.8) and (2.3) that there exists ck ≥ 0 with

ck = max{ηk
1‖H(z0)‖, µk + ‖F (wk)‖},

which, together with the proof of (i), implies that

lim
k→∞

ck = 0, ‖H(µk, wk)‖ ≤ ck. (3.6)

Since M is a P0 matrix and Assumption 3.1 holds, Lemma 3.3 and (3.5)–(3.6) imply that {wk}
is bounded. Hence, by (3.5) we obtain that {zk} is bounded. This completes the proof of the
boundedness of the iteration sequence. In addition, since the iteration sequence is bounded,
{wk} has at least one accumulation point w∗. Furthermore, by (i) we have F (w∗) = 0, and
hence w∗ ∈ S. This completes the proof of (ii).

In the analysis of our main result, we need the following lemma which is proposed in [6].

Lemma 3.5. Let w∗ ∈ R2n denote a solution of the problem (1.1) and Bε := {w ∈ R2n | ‖w −
w∗‖ < ε} (ε > 0). Then there exists a positive number ε(w∗) such that

F (w) − Va(w − w∗) = 0 (3.7)

for all w ∈ Bε(w∗) and all matrices Va ∈ ∂F (w).

Now we present the main result of this section.

Theorem 3.6. Suppose that M is a P0 matrix. For any solution w∗ ∈ R2n of the problem
(1.1), assume that every matrix in ∂F (w∗) is nonsingular and Assumption 3.1 holds. Then
Algorithm 2.1 terminates at an exact solution of (1.1) in finite steps.
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Proof. Suppose that Algorithm 2.1 does not stop in finite steps. Then we know F (wk) �= 0
for all k ≥ 0 and the stopping criteria in Step 2 are inactive all the time. By Theorem 3.2,
an infinite sequence {zk = (µk, wk)} is generated by Algorithm 2.1. Since Assumption 3.1 is
satisfied, it follows from Theorem 3.4 that {zk} is bounded and each accumulation point of the
sequence {wk} is a solution of (1.1). Without loss of generality, we assume that {wk} converges
to w∗. Thus w∗ is a solution of (1.1) and every matrix in ∂F (w∗) is nonsingular. It follows from
Proposition 3.1 in [15] that all matrices Vk ∈ ∂F (wk) are nonsingular for all sufficient large k.
By the fact limk→∞ wk = w∗ and Lemma 3.5, there exists k̄ ≥ 0 such that the equation (2.4)
is solvable and

(wk̄ + ∆wk̄) − w∗ = wk̄ − V −1
k̄

F (wk̄) − w∗ = −V −1
k̄

(F (wk̄) − Vk̄(wk̄ − w∗) = 0.

That is,
wk̄ + ∆wk̄ = w∗.

Since F (w∗) = 0, we have F (wk̄ + ∆wk̄) = 0. Step 2 in Algorithm 2.1 and (2.1) imply that
wk̄ + ∆wk̄ is a solution of (1.1) and Algorithm 2.1 terminates at the k̄th iteration. This is a
contradiction. Hence, F (wk̄) = 0 for some k̄ ≥ 0. That is, Algorithm 2.1 can find an exact
solution of (1.1) in finite steps.

4. Numerical Results

In this section we present some numerical experiments of Algorithm 2.1 by using a MATLAB
code. Throughout the computational experiments, the parameters used in the algorithm were
σ = 0.25, δ = 0.75, η = 0.8, η1 = 0.99, µ0 = 0.75. Take γ = min{1/‖H(z0)‖, 0.99}. The
starting point (x0, y0) ∈ R2n has been chosen as follows: let x0 ∈ Rn as in the examples and
set y0 := Mx0 + q. In Step 1, we used ‖H(zk)‖ ≤ 10−8 as the stopping rule; and in Step 2, we
used ‖F (wk)‖ ≤ 10−8 as the stopping rule. The numerical results are summarized in Tables 1
and 2 for different problems. In Tables 1 and 2, EXAM denotes the number of test examples,
DIM denotes the number of the variables in the problems, x0 denotes the starting point, TIT
denotes the total number of iterations, NSLSE2 denotes the number of solving linear system of
equations in Step 2, NSLSE3 denotes the number of solving linear system of equations in Step
3, and TERM denotes that the algorithm will terminate at which step. In the following, we
give a brief description of the tested problems.
Example 4.1. This is the first example of Kanzow [11] in Section 5 with five variables,
which has several solutions including two degenerate ones, namely, x∗1 = (0.2, 0.4, 0, 0.5, 0)T ,
y∗1 = (0, 0, 0, 0, 0.6)T and x∗2 = (0, 1, 0, 0.5, 0)T , y∗2 = (0, 0, 1, 0, 2)T . We used the same
starting points as in [11]. The tested results are listed in Table 1.
Example 4.2. This is the second example of Kanzow [11] in Section 5 with four variables, in
which the matrix M is degenerate. The solution is x∗ = (4/3, 7/9, 4/9, 2/9)T, y∗ = (0, 0, 0, 0)T

and x∗2 = (0, 1, 0, 0.5, 0)T , y∗2 = (0, 0, 1, 0, 2)T . We used the same starting points as in [11].
The tested results are listed in Table 1.
Example 4.3. This is the third example of Kanzow [11] in Section 5 with seven variables, in
which the matrix M is degenerate. x∗ = (0.27, 2.09, 0, 0.54, 0.45, 0, 0)T, y∗1 = (0, 0, 1.72, 0, 0,
1.63, 0.59)T is the nondegenerate solution of the problem. We used the same starting points as
in [11]. The tested results are listed in Table 1.
Example 4.4. This is the fourth example of Kanzow [11] in Section 5 with five variables, which
has a nondegenerate solution, namely, x∗ = (1, 0, 1, 1.2, 0.4)T , y∗ = (0, 1, 0, 0, 0)T . We used the
same starting points as in [11]. The tested results are listed in Table 1.
Example 4.5. This is the fifth example of Kanzow [11] in Section 5 with n variables. The
solution is x∗ = (0, . . . , 0, 1)T , y∗ = (1, . . . , 1, 0)T . For this example, Lemke’s complementarity
pivot algorithm and Cottle and Danzig’s principal pivoting method are known to run in expo-
nential time. As in [11], we used (0, . . . , 0) as a starting point. This example was also tested by
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Table 1: The numerical results of Examples 4.1-4.4

EXAM DIM x0 ‖F (x0, y0)‖ TIT NSLSE2 NSLSE3 TERM

(0, . . . , 0) 12.2361 2 1 1 Step 2
(1, . . . , 1) 2.2361 2 2 1 Step 2

4.1 5 (10, . . . , 10) 22.3607 3 2 1 Step 2
(100, . . . , 100) 223.6068 3 2 1 Step 2

(1000, . . . , 1000) 2236.1 3 2 1 Step 2

(0, . . . , 0) 10.7703 2 2 0 Step 2
(1, . . . , 1) 2 2 2 1 Step 2

4.2 4 (10, . . . , 10) 40.8534 2 2 1 Step 2
(100, . . . , 1000) 433.1385 2 2 1 Step 2
(1000, . . . , 1000) 4356.1 2 2 1 Step 2

(0, . . . , 0) 3.6401 4 4 2 Step 2
(1, . . . , 1) 2.2361 2 2 1 Step 2

4.3 7 (10, . . . , 10) 68.1249 3 2 1 Step 2
(100, . . . , 100) 735.5549 3 2 1 Step 2

(1000, . . . , 1000) 7410.1 3 2 1 Step 2

(0, . . . , 0) 1 2 2 0 Step 2
(1, . . . , 1) 8.1854 1 1 0 Step 2

4.4 5 (10, . . . , 10) 76.6877 1 1 0 Step 2
(100, . . . , 100) 762.103 1 1 0 Step 2

(1000, . . . , 1000) 7616.3 1 1 0 Step 2

Table 2: The numerical results of Examples 4.5 and 4.6

EXAM x0 DIM ‖F (x0, y0)‖ TIT NSLSE3 NSLSE3 TERM

8 2.8284 3 3 1 Step 2
16 4 3 3 1 Step 2

(0, . . . , 0) 32 5.6569 3 3 1 Step 2
64 8 3 3 1 Step 2
128 11.3137 3 3 1 Step 2

4.5 256 16 3 3 1 Step2
8 2.6458 1 1 0 Step 2
16 3.873 1 1 0 Step 2

(1, . . . , 1) 32 5.5678 1 1 0 Step 2
64 7.9373 1 1 0 Step 2
128 11.2649 1 1 0 Step 2
256 15.9687 1 1 0 Step 2

8 2.8284 2 2 1 Step 2
16 4 2 2 1 Step 2

(0, . . . , 0) 32 5.6569 2 2 1 Step 2
64 8 2 2 1 Step 2
128 11.3137 2 2 1 Step 2

4.6 256 16 2 2 1 Step 2
8 2.8284 2 2 1 Step 2
16 4 2 2 1 Step 2

(1, . . . , 1) 32 5.6569 3 3 2 Step 2
64 8 3 3 2 Step 2
128 11.3137 3 3 2 Step 2
256 16 3 3 2 Step 2
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Kanzow [12] and Burker and Xu [1] by using the starting point x0 = (1, . . . , 1), y0 := Mx0 + q.
We also tested this problem by using this starting point. The tested results are listed in Table
2.
Example 4.6. This is the sixth example of Kanzow [11] in Section 5 with n variables. The
solution is x∗ = (1, 0, . . . , 0)T , y∗ = (0, 1, . . . , 1)T . As in Example 4.5, both Lemke’s complemen-
tarity pivot algorithm and Cottle and Danzig’s principal pivoting method run in exponential
time. As in [11], we used (0, . . . , 0) as a starting point. This example was also tested by Kanzow
[12] and Burker and Xu [1] by using the starting point x0 = (1, . . . , 1), y0 := Mx0 + q. We also
tested this problem by using this starting point. The tested results are listed in Table 2.

From Tables 1 and 2, we can obtain the following observations:

• All problems tested have been solved using only a small number of iterations, which is
significantly better than those appearing in [1, Section 5], [11, Section 7], and [12, Section
5].

• For each problems tested, our algorithm terminated at Step 2, and hence an exact solution
of the problem was obtained by Theorem 2.3.

• For each problems tested, we tested it by using different starting point or different dimen-
sions of the problem. However, vary of the number of iterations is very small.

Our computational results indicate that the proposed hybrid smoothing-nonsmooth Newton-
type algorithm works very well for all tested problems in this paper. We expect that the method
can be used to solve practical large-scale problems efficiently.
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