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Abstract

In this paper we study perturbations of the stiffly weighted pseudoinverse (W
1

2 A)†W
1

2

and the related stiffly weighted least squares problem, where both the matrices A and W

are given with W positive diagonal and severely stiff. We show that the perturbations to
the stiffly weighted pseudoinverse and the related stiffly weighted least squares problem are
stable, if and only if the perturbed matrices Â = A+δA satisfy several row rank preserving
conditions.
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1. Introduction

Consider the following stiffly weighted least squares (stiffly WLS) problem

min
x∈Cn

‖W 1

2 (Ax − b)‖ = min
x∈Cn

‖D(Ax − b)‖ (1)

and related weighted pseudoinverse [12]

A†
W ≡ (W

1

2 A)†W
1

2 with AW = WA(WA)†A, (2)

where A ∈ Cm×n with rank(A) = r, b ∈ Cm are known coefficient matrix and observation
vector, respectively, ‖ · ‖ ≡ ‖ · ‖2 is the Euclidian vector norm or subordinate matrix norm,

D = diag(d1, d2, · · · , dm) = diag(w
1

2

1 , w
1

2

2 , · · · , w
1

2

m) = W
1

2 (3)

is the weight matrix. The stiffly WLS problem Eq. (1) with extremely ill-conditioned weight
matrix W , where the scalar factors w1, · · · , wm vary widely in size, arises from many areas
of applied science, such as in electronic network, certain classes of finite element problems,
interior point methods for constrained optimization (e.g., see [8]), and for solving the equality
constrained least squares problem by the method of weighting [9, 1, 11], etc.

The stability conditions of the stiffly weighted pseudoinverse and the stiffly WLS problem
are important subjects in both theoretical and computational point of view. Wei [11, 12, 13]
studied the stability of weighted pseudoinverses and constrained weighted pseudoinverses when
the weight matrix W ranges over a set D of positive diagonal matrices, and obtained necessary
and sufficient stability conditions:

if and only if any r rows of the matrix A are linearly independent. (4)
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Based on these results, Wei and De Pieero [16] obtained stability conditions and upper
perturbation bounds of WLS and equality constrained least squares problems when weight
matrices W range over D.

In practical scientific computations, however, the above condition is too restrictive, and the
weight matrix W is usually fixed and severely stiff. In [14], the author found that in this case,

the stiffly weighted pseudoinverse is close to a related multi-level constrained pseudoinverse A†
C

and the solution set of Eq. (1) is close to a related multi-level constrained least squares (MCLS)
problem. Based on the findings in [14], in this paper we will derive the stability conditions of
the stiffly weighted pseudoinverse and the stiffly WLS problem.

Without loss of generality, we make the following notation and assumptions for the matrices
A and W .
Assumption 1.1. The matrices A and W in Eq. (1) satisfy the following conditions: ‖A(i, :)‖
have the same order for i = 1, · · · , m, w1 > w2 > · · · > wk > 0, m1 + m2 + · · · + mk = m, and
we denote

A =




A1

...
Ak




m1

...
mk

, Cj =




A1

...
Aj


 , j = 1, · · · , k, (5)

W = diag(w1Im1
, w2Im2

, · · · , wkImk
),

0 < εij ≡ wi

wj
� 1, for 1 ≤ j < i ≤ k so ε = max

1≤j<k
{εj+1,j} � 1.

(6)

We also set
P0 = In, Pj = I − C†

j Cj , rank(Cj) = rj , j = 1, · · · , k. (7)

The paper is organized as follows. In §2 we will review some preliminary results related
to the weighted pseudoinverse; in §3 we will study stability conditions for the stiffly weighted
pseudoinverse; in §4 we will deduce perturbation bounds for the solutions of the stiffly WLS
problem Eq. (1); in §5 we will provide several numerical examples to verify our findings; finally
in §6 we will conclude the paper with some remarks.

2. Preliminaries

In this section we provide some preliminary results which are necessary for our further
discussion.
Lemma 2.1. [4] Suppose that D, E ∈ Cm×n and rank(D) = rank(E). Then

‖DD† − EE†‖ ≤ min{‖(D − E)D†‖, ‖(D − E)E†‖, 1},
‖D†D − E†E‖ ≤ min{‖D†(D − E)‖, ‖E†(D − E)‖, 1}.

(8)

Lemma 2.2. [14] Under the notation of Assumption 1.1,

(AjPj−1)
†AjPj−1 = C†

j Cj − C†
j−1Cj−1,

rank(AjPj−1) = rank(Cj) − rank(Cj−1) = rj − rj−1
(9)

for j = 2, · · · , k. Denote (AjPj−1)
H = QjRj the unitary decomposition of (AjPj−1)

H (AH
j is

the conjugate transpose of the matrix Aj ), where QH
j Qj = Irj−rj−1

and Rj has full row rank
rj − rj−1. Then for j = 1, · · · , k,

(Q1, · · · , Qj)
H(Q1, · · · , Qj) = Irj

, C†
j Cj =

j∑

l=1

QlQ
H
l , (10)

AjPj−1 = AjQjQ
H
j , (AjPj−1)

† = Qj(AjQj)
†. (11)



On Stable Perturbations of the Stiffly Weighted Pseudoinverse and Weighted Least Squares Problem 529

Lemma 2.3. [14] Under the notation in Assumption 1.1,

AW = BεB
†
εA = AεA

†
εA = (B†

ε )
HBH

ε B1Q
H ,

A†
W = (W

1

2 A)†W
1

2 = Q(BH
ε B1)

−1BH
ε ,

Bε =




A1Q1 0 · · · 0
ε21A2Q1 A2Q2 · · · 0

...
...

...
...

εk1AkQ1 εk2AkQ2 · · · AkQk


 ,

(12)

in which Bε has full column rank rk = rank(A) and B1 is obtained from Bε by replacing all εij

in Bε with ones.
Lemma 2.4. [6, 10] Let A ∈ Cm×n

r and Â = A + δA ∈ Cm×n. Then we have the following
results.

1. If ‖δA‖ · ‖A†‖ < 1, then rank(Â) ≥rank(A).

2. If ‖δA‖ · ‖A†‖ < 1 and rank(Â) >rank(A), then ‖Â†‖ ≥ 1
‖δA‖ .

3. If ‖δA‖ · ‖A†‖ < 1 and rank(Â) =rank(A), then

‖A†‖
1 + ‖δA‖ · ‖A†‖ ≤ ‖Â†‖ ≤ ‖A†‖

1 − ‖δA‖ · ‖A†‖ .

So ‖Â†‖ is bounded for all small perturbations δA with

‖δA‖ · ‖A†‖ ≤ η < 1, if and only if rank(Â) = rank(A),

where 0 ≤ η < 1 is a constant.

3. Stability Conditions for the Stiffly Weighted Pseudoinverse

In this section we will study the stability conditions of perturbations of the stiffly weighted
pseudoinverse A†

W . For j = 1, 2, · · · , k, let

Âj = Aj + δAj , Ĉj = Cj + δCj ,

P̂j = I − Ĉ†
j Ĉj , ŵj = wj + δwj ,

(13)

be perturbed versions of Aj , Cj , Pj , wj , respectively, and denote

η = max
1≤j<i≤k

|ε̂ij − εij |
εij

, ε̂ = max
1≤j<k

{ε̂j+1,j}. (14)

We first define the stability of the stiffly weighted pseudoinverse.
Definition 3.1. We say that the perturbations to the stiffly weighted pseudoinverse A†

W are
stable, if when η → 0, εij → 0 for 1 ≤ j < i ≤ k, and perturbation δAj → 0 for j = 1, · · · , k,

all perturbed stiffly weighted pseudoinverses ‖Â†
Ŵ
‖ are uniformly bounded, and Â†

Ŵ
→ A†

W

uniformly.
In the remaining of this section we will study the stability conditions of the stiffly weighted

pseudoinverse. We will show that the perturbed stiffly weighted pseudoinverse is stable, if and
only if the perturbation for the matrix A satisfies the following assumption.
Assumption 3.1.

rank(Ĉj) = rank(Cj) = rj , j = 1, 2, · · · , k, (15)

or equivalently,

rank(ÂjP̂j−1) = rank(AjPj−1) = rj − rj−1, j = 1, 2, · · · , k. (16)
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Theorem 3.1. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1, the perturbed matrices Ĉj for j = 1, · · · , k satisfy Assumption 3.1, and

E · ‖A†
W ‖ < 1 with

E ≡ ‖δA‖ + ‖A‖ · ‖B†
ε‖ · ( ηε

1−ε max
1≤j<i≤k

‖AiQj‖
+ 1

1−ε(1+η) max
1≤j≤i≤k

(‖δAi‖ + 2
√

2‖Ai‖ · ‖C†
j δCj‖)).

(17)

Then we have the following estimates

‖Â†
Ŵ
‖ ≤ ‖A†

W
‖

1−E·‖A†

W
‖ , ‖Â†

Ŵ
− A†

W ‖ ≤
√

5+1
2 · E · ‖A†

W
‖2

1−E·‖A†

W
‖ . (18)

Proof. Let Â
Ŵ

= B̂ε̂B̂
†
ε̂ Â and Q̂j be perturbed versions of AW = BεB

†
εA and Qj , respec-

tively. According to Lemma 2.1 of [17], there exist unitary matrices Uj of order rj − rj−1, such
that

‖Qj − Q̂jUj‖ ≤
√

2‖QjQ
H
j − Q̂jQ̂

H
j ‖ for j = 1, · · ·k.

Without loss of generality we can set Q̂j := Q̂jUj and so

‖Qj − Q̂j‖ ≤
√

2‖QjQ
H
j − Q̂jQ̂

H
j ‖ for j = 1, · · ·k. (19)

From the conditions of the theorem we have by applying Lemma 2.1,

‖Â
Ŵ

− AW ‖ = ‖B̂ε̂B̂
†
ε̂ Â − BεB

†
εA‖

≤ ‖B̂ε̂B̂ε̂δA‖ + ‖(B̂ε̂B̂
†
ε̂ − BεB

†
ε )A‖

≤ ‖δA‖ + ‖B̂ε̂ − Bε‖ · ‖B†
ε‖ · ‖A‖.

(20)

Now
‖B̂ε̂ − Bε‖ ≤ E1 + E2,

in which

E1 =

∥∥∥∥∥∥∥∥∥




0 0 · · · 0 0
(ε̂21 − ε21)A2Q1 0 · · · 0 0

...
...

...
...

(ε̂k1 − εk1)AkQ1 (ε̂k2 − εk2)AkQ2 · · · (ε̂k,k−1 − εk,k−1)AkQk−1 0




∥∥∥∥∥∥∥∥∥

≤ ‖diag((ε̂21 − ε21)A2Q1, · · · , (ε̂k,k−1 − εk,k−1)AkQk−1)‖
+‖diag((ε̂31 − ε31)A3Q1, · · · , (ε̂k,k−2 − εk,k−2)AkQk−2)‖ + · · · + ‖(ε̂k1 − εk1)AkQ1‖
≤ η(ε max

1≤j<k
‖Aj+1Qj‖ + ε2 max

1≤j<k−1
‖Aj+2Qj‖ + · · · + εk−1‖AkQ1‖)

≤ η(ε + ε2 + · · · + εk−1) max
1≤j<i≤k

‖AiQj‖ ≤ ηε
1−ε max

1≤j<i≤k
‖AiQj‖,

and

E2 =

∥∥∥∥∥∥∥∥∥∥




Â1Q̂1 − A1Q1 0 · · · 0

ε̂21(Â2Q̂1 − A2Q1) Â2Q̂2 − A2Q2 · · · 0
...

...
...

ε̂k1(ÂkQ̂1 − AkQ1) ε̂k2(ÂkQ̂2 − AkQ2) · · · ÂkQ̂k − AkQk




∥∥∥∥∥∥∥∥∥∥

≤ ‖diag(Â1Q̂1 − A1Q1, · · · , ÂkQ̂k − AkQk)‖

+‖diag(ε̂21(Â2Q̂1 − A2Q1), · · · , ε̂k,k−1(ÂkQ̂k−1 − AkQk−1))‖ + · · · + ‖ε̂k1(ÂkQ̂1 − AkQ1)‖

≤ max
1≤j≤k

‖ÂjQ̂j − AjQj‖ + ε̂ max
1≤j<k

‖Âj+1Q̂j − Aj+1Qj‖ + · · · + ε̂k−1‖ÂkQ̂1 − AkQ1‖

≤ (1 + ε̂ + · · · + ε̂k1) max
1≤j≤i≤k

‖ÂiQ̂j − AiQj‖ ≤ 1
1−ε̂

max
1≤j≤i≤k

‖ÂiQ̂j − AiQj‖.
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Now by applying Eq. (19) we have

‖ÂiQ̂j − AiQj‖ ≤ ‖δAiQ̂j‖ + ‖Ai(Q̂j − Qj)‖
≤ ‖δAiQ̂j‖ +

√
2‖Ai‖‖Q̂jQ̂

H
j − QjQ

H
j ‖

for 1 ≤ j ≤ i ≤ k, and then by applying Lemmas 2.1–2.2 we obtain

‖Q̂jQ̂
H
j − QjQ

H
j ‖ = ‖(Ĉ†

j Ĉj − Ĉ†
j−1Ĉj−1) − (C†

j Cj − C†
j−1Cj−1)‖

≤ ‖Ĉ†
j Ĉj − C†

j Cj‖ + ‖Ĉ†
j−1Ĉj−1 − C†

j−1Cj−1‖
≤ ‖C†

j δCj‖ + ‖C†
j−1δCj−1‖.

By substituting the above inequalities into that for E2, and then substituting the bounds for
E1 and E2 into Eq. (20), we deduce that ‖Â

Ŵ
− AW ‖ ≤ E, and by applying Lemma 2.4 we

prove the first inequality of Eq. (18).
From the following decomposition

Â†
Ŵ

− A†
W = −Â†

Ŵ
(Â

Ŵ
− AW )A†

W + Â†
Ŵ

(I − AW A†
W )

−(I − Â†
Ŵ

Â
Ŵ

)A†
W AW A†

W ,

we have for any 0 6= x ∈ Cn ( similar to the derivation in [10]),

‖(Â†
Ŵ

− A†
W )x‖2 ≤ (‖Â†

Ŵ
‖‖Â

Ŵ
− AW ‖‖A†

W ‖)2
×((‖AW A†

W x‖ + ‖(I − AW A†
W )x‖)2 + ‖AW A†

W x‖2)

≤ (E · ‖Â†
Ŵ
‖ · ‖A†

W ‖)2‖x‖2(
√

5+1
2 )2,

so we have

‖Â†
Ŵ

− A†
W ‖ ≤

√
5 + 1

2
· E · ‖Â†

Ŵ
‖ · ‖A†

W ‖,

obtaining the second inequality of Eq. (18).
We now consider some special cases that can guarantee the conditions in Assumption 3.1

and so the stability of the perturbations. To simplify the notation we set C0 = ∅, r0 = m0 = 0
and Mi =

∑i
l=0 ml for i = 0, 1, · · · , k.

Corollary 3.1. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1, and A satisfies

rank(Ci) = min{Mi, n} for i = 1, · · · , k. (21)

If the perturbations satisfy Eq. (17) of Theorem 3.1, then the estimate in Eq. (18) holds.
Proof. If the conditions of the corollary hold, then by applying Lemma 2.4 we observe that,

for sufficiently small perturbations δCi , Ĉi and Ci should have the same rank min{Mi, n} for
i = 1, · · · , k, so the perturbations satisfy Assumption 3.1 and the perturbations are stable.
Corollary 3.2. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1, and A satisfies

rank(A) < min{Mk, n} and rank(Ck−1) = Mk−1. (22)

When the perturbations satisfy
rank(Â) = rank(A), (23)

and the inequality in Eq. (17), then the estimates in Eq. (18) hold.
Proof. Because Ck−1 has full row rank Mk−1, so all C1, · · · , Ck−1 have full row ranks.

Therefore, when the perturbations are sufficiently small, Ĉ1, · · · , Ĉk satisfy Assumption 3.1
and Theorem 3.1 is applicable.

We now study the situation when the perturbations to the stiff weighted pseudoinverse are
unstable. In terms of Corollaries 3.1-3.2, we can exclude the cases mentioned in Eqs. (21)–(23).

Case 1. rank(A) < min{m, n}, and we allow rank(Â) > rank(A).
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Theorem 3.2. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1, rank(A) < min{m, n}. Then for any value 0 < ξ � 1, there exists a

perturbed matrix Â = A + δA satisfying ‖δA‖ = ξ,

rank(Â) > rank(A), (24)

‖Â†
W ‖ ≥ 1

ξ
and ‖Â†

W − A†
W ‖ ≥ 1

ξ
. (25)

Proof. From the condition of the theorem, N (A) 6= {0}, N (AHW ) 6= {0}. Therefore we
can pick vectors q ∈ N (A), f ∈ N (AHW ) with ‖q‖ = 1, ‖f‖ = 1. Define

Â = A + δA, δA = ξfqH ,

then rank(Â) = r + 1, and from the facts A†
W f = 0, Aq = 0,

Â†
W = (ÂHWÂ)†ÂHW

= (AHWA + ξ2(fHWf)qqH)†(AHW + ξqfHW )

= A†
W + (ξfHWf)−1qfHW,

‖Â†
W ‖ ≥ ‖Â†

W f‖ = ‖(ξfHWf)−1qfHWf‖ = 1
ξ ,

‖Â†
W − A†

W ‖ ≥ ‖(Â†
W − A†

W )f‖ = ‖(ξfHWf)−1qfHWf‖ = 1
ξ ,

proving the assertions of the theorem.
Case 2. The condition rankÂ =rank(A) = r holds, but other conditions in Assumption 3.1

do not hold. Then we need the following result.
Lemma 3.1. Suppose that L ∈ Cm×m, K ∈ Cm×n, M ∈ Cn×m, N ∈ Cn×n, and D =(

L K
M N

)
such that L and D are nonsingular. Then N − ML−1K is also nonsingular, and

D−1 =

(
L−1 + L−1K(N − ML−1K)−1ML−1 −L−1K(N − ML−1K)−1

−(N − ML−1K)−1ML−1 (N − ML−1K)−1

)
. (26)

Theorem 3.3. Suppose that A and W are given matrices satisfying the notation and conditions
in Assumption 1.1, and rank(A) = r. Suppose that there exists an integer i with 1 ≤ i < k,
such that

rank(Ci−1) = Mi−1, rank(Ci) < min{Mi, n} ≤ n. (27)

Let l be the largest integer satisfying k ≥ l > i and

rank(Cl−1) < r, rank(Cl) = r. (28)

Then for any value 0 < ξ � 1, there exists a perturbed matrix Â = A+ δA satisfying ‖δA‖ = ξ,

rank(Ĉi) > rank(Ci), rank(Â) = rank(A) = r, (29)

‖Â†
W ‖ ≥ ξ

ξ2+aεli
, ‖Â†

W − A†
W ‖ ≥ ξ

ξ2+aεli
, (30)

in which a > 0 is a constant which is independent of the parameter ξ.
Proof. Let Q1, · · · , Qk be as in Lemma 2.2. We observe that r − rank(Cl−1) > 0 and Ql

is an n by r − rank(Cl−1) matrix. Define Ql ≡ (Ql1 , ql2) where ql2 is the last column of Ql.
There exists a unit vector fi ∈ CMi such that fH

i WiCi = 0. Then fi(Mi−1 + 1 : Mi) 6= 0. (If
fi(Mi−1 + 1 : Mi) = 0, then we have fi(1 : Mi−1)

HWi−1Ci−1 = 0, so fi(1 : Mi−1) = 0 because
Wi−1Ci−1 has full row rank, a contradiction.) Define

f =

(
fi

0

)
∈ Cm, Q̃ = (Q1, · · · , Ql−1, Ql1 , · · ·Qk), δA = ξfqH

l2
. (31)
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Notice that W
1

2 AQ has full column rank r, W
1

2 AQ̃ has full column rank r−1, and W
1

2 Aql2

is a column of W
1

2 AQ. Now suppose θ is the angle between R(W
1

2 AQ̃) and R(W
1

2 Aql2), then
0 < θ ≤ π/2 and

sin2 θ‖W 1

2 Aql2‖2 = qH
l2

AHW
1

2 (I − W
1

2 AQ̃(W
1

2 AQ̃)†)W
1

2 Aql2

≤ wl sin
2 θ‖Aql2‖2 ≡ awl,

(32)

because A1ql2 = 0, · · · , Al−1ql2 = 0 from Lemma 2.2. By choosing Â = A + δA and noticing
fHWA = 0, we observe

‖δA‖ = ξ, rank(Ĉi) = rank(Ci) + 1, rank(Â) = rank(A).

From the identities Â†
W = (ÂHWÂ)†ÂHW and

(ÂHWÂ)† = (QQHAHWAQQH + ξ2(fHWf)ql2q
H
l2

)†

= (Q̃, ql2)

(
Q̃HAHWAQ̃ Q̃HAHWAql2

qH
l2

AHWAQ̃ qH
l2

AHWAq12 + ξ2(fH
i Wifi)

)−1

(Q̃, ql2)
H ,

(33)

we deduce by applying Lemma 3.1 and Eqs. (32)–(33),

‖Â†
W ‖ ≥ ‖qH

l2
Â†

W f‖
=

ξ(fH
i Wifi)

ξ2(fH
i

Wifi)+qH
l2

AHW
1

2 (I−W
1

2 AQ̃(W
1

2 AQ̃)†)W
1

2 Aql2

≥ ξ(fH
i Wifi)

ξ2(fH
i Wifi)+awl

= ξ
ξ2+(awl/fH

i Wifi)
≥ ξ

ξ2+aεli
,

‖Â†
W − A†

W ‖ ≥ ‖qH
l2

(Â†
W − A†

W )f‖ = ‖qH
l2

Â†
W f‖ ≥ ξ

ξ2+aεli
,

because fH
i W 2

i fi ≥ wif
H
i fi = wi.

We now summarize the results of this section in the following theorem.
Theorem 3.4. Suppose that A and W are given matrices satisfying the notation and

conditions in Assumption 1.1. Then perturbed stiffly weighted pseudoinverse Â†
Ŵ

is stable, if

and only if the perturbations satisfy

rank(Ĉj) = rank(Cj) for j = 1, · · · , k. (34)

4. Perturbation Bounds for the Stiffly Weighted Least Squares

Problem

Having analyzing the stability conditions for the perturbations of the stiffly weighted pseu-
doinverse, in this section we will provide a perturbation analysis for the stiffly WLS problem
Eq. (1). We have
Theorem 4.1. Consider the stiffly WLS problem Eq. (1), in which the matrices A and W

satisfy the conditions and notation of Assumption 1.1. Let Âj = Aj +δAj , Ĉj = Cj +δCj , ŵj =

wj +δwj , for j = 1, · · · , k, and b̂ = b+δb are perturbed version of Aj , Cj , wj and b, respectively.
Suppose that the perturbations satisfy Assumption 3.1, and E defined in Theorem 3.1 satisfies
E‖A†

W ‖ < 1. Consider the following perturbed WLS problem

min
x∈Cn

{‖Ŵ 1

2 (Âx − b̂)‖}. (35)

Then for the minimum norm solutions xWLS of Eq. (1) and x̂WLS of Eq. (35) with δxWLS =
x̂WLS − xWLS,

‖δxWLS‖ ≤ ‖A†

W
‖

1−E‖A†

W
‖ (‖δb‖ + ‖δA‖‖xWLS‖ + E‖A†

W ‖‖r(xWLS)‖)
+δrn‖δA‖‖A†‖‖xWLS‖,

(36)
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in which r(xWLS) = b − AxWLS is the residual vector, δrn = 0 for r = n and δrn = 1 for
r < n.

Proof. We can use the following decomposition of Â†
Ŵ

− A†
W [16],

Â†
Ŵ

− A†
W = −Â†

Ŵ
δAA†

W + Â†
Ŵ

(I − AA†
W ) − (I − Â†Â)A†AA†

W , (37)

and apply the identity (I − AW A†
W )(I − AA†

W ) = (I − AA†
W ), to obtain

δxWLS = Â†
Ŵ

b̂ − A†
W b = Â†

Ŵ
δb + (Â†

Ŵ
− A†

W )b

= Â†
Ŵ

(δb − δAxWLS) + Â†
Ŵ

(I − AW A†
W )r(xWLS)

−(I − Â†Â)A†AxWLS .

(38)

Furthermore, by applying Lemma 2.1 and Theorem 3.1 we have

‖Â
Ŵ

Â†
Ŵ

(I − AW A†
W )‖ ≤ ‖Â

Ŵ
− AW ‖‖A†

W ‖ ≤ E‖A†
W ‖,

‖(I − Â†Â)A†A‖ = 0 for r = n,

‖(I − Â†Â)A†A‖ ≤ ‖δA‖‖A†‖ for r < n.

By taking norms in both sides of Eq. (38) and substituting the above inequalities, we obtain
the desired estimate in Eq. (36).
Theorem 4.2. If in Theorem 4.1, r < n, and the perturbations satisfy Assumption 3.1, then
for any WLS solution x of the WLS problem Eq. (1) of the form

x = A†
W b + (I − A†A)z, (39)

there exists a solution x̂ of the perturbed WLS problem in Eq. (35), such that with δx = x̂− x,

‖δx‖ ≤ ‖A†

W
‖

1−E‖A†
W

‖ (‖δb‖ + ‖δA‖‖xWLS‖ + E‖A†
W ‖‖r(xWLS)‖)

+‖δA‖‖A†‖‖x − xWLS‖.
(40)

and vice versa.
Proof. For any WLS solution x of Eq. (1) of the form in Eq. (39), let x̂ be of the form

x̂ = Â†
Ŵ

b̂ + (I − Â†Â)(xWLS + (I − A†A)z). (41)

Then x̂ is a WLS solution of Eq. (35). By applying Eq. (38) we have that

δx = Â†
Ŵ

(δb − δAxWLSE) + Â†
Ŵ

(I − AW A†
W )r(xWLS)

−Â†Â(I − A†A)z.
(42)

From this identity we obtain the desired estimate in Eq. (40). By interchanging the roles of x
and x̂ the reverse is also true.

5. Numerical Examples

We now provide a numerical example to verify our analysis of this paper. For stiffly weighted
LS problems, Powell and Reid [5] proposed the column pivoting and row interchanging House-
holder QRD method to make row-wise roundoff errors small; Björck [2] conjectured, and Cox
and Higham [3] proved that the column pivoting and row sorting Householder QRD method
can also make row-wise roundoff errors small.

However, from our analysis in the previous sections, small row-wise roundoff errors do not
imply the computational solutions accurate. In [15], we propose a row block column pivoting
and row interchanging/sorting Householder QRD algorithm, which can correctly determine the
numerical ranks of Cj , and make row-wise roundoff errors small as well. We now provide a
numerical example. We perform the numerical computations using MATLAB software so the
machine precision is u ∼ 10−16. We denote
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• M1: Column pivoting and row sorting Householder QRD [5].
• M2: Column pivoting and row interchanging Householder QRD [2, 3].
• M3: Row block column pivoting and row interchanging Householder QRD [15].

Let

A =




−4 2 −3
4 2 2
2 1 1
1 −1 1


 , b =




−9
4
1
4


 ,

D = diag(d1, d1, d2, d3) = W
1

2 ,

so

xWLS =




−3
0
7


+ 1

4+d2

3




−4
4
8




rank(A(1 : 2, :)) = rank(A(1 : 3, :)) = 2, rank(A) = 3.

Choice 5.1. d1 = d2 = 1 ≥ d3. In this case, we set A = C1 = A1 if d2/d3 < 102; otherwise
C1 = A(1 : 3, :), A = C2. We list the computational results in Table 5.1. Notice that the matrix
A satisfies the condition in Theorem 3.3, with εli = d2

3 and ξ ∼ u. From Table 5.1 it is obvious
that M1 and M2 are numerically unstable, M3 is numerically stable, and the numerical results
are consistent with our analysis.

Table 5.1 ‖δx‖ for Choice 5.1

d3 1 e-2 e-4 e-6 e-8 e-12

M1 1.16e-14 2.29e-11 7.50e-8 2.22e-3 5.69e-1 5.69e-1

M2 9.57e-15 2.29e-11 7.50e-8 2.22e-3 5.69e-1 5.69e-1

M3 4.45e-15 6.75e-15 1.84e-15 1.11e-15 2.01e-15 4.44e-16

Choice 5.2. d1 > d2 = 1 ≥ d3. In this case, we set A1 = A(1 : 2, :) A2 = A(3 : 4, :) if
d2/d3 < 102; otherwise we set A1 = A(1 : 2, :) A2 = A(3, :), A3 = A(4, :).

We list the computational results in Table 5.2. Notice that the matrix A satisfies the

condition in Theorem 3.3, with εli =
(

d3

d2

)2

and ξ ∼ u. From Table 5.2 it is obvious that

M1 and M2 are numerically unstable, M3 is numerically stable, and the numerical results are
consistent with our analysis.

d1 = 1 > d2 ≥ d3.

Table 5.2 ‖δx‖ for Choice 5.2

d2 e-2 e-4 e-4 e-8 e-8 e-4

d3 e-4 e-4 e-8 e-8 e-12 e-12

M1 2.81e-11 8.95e-16 1.04e-6 1.13e-14 3.19e-7 1.05e+2

M2 2.81e-11 8.95e-16 1.04e-6 1.13e-14 3.19e-7 1.05e+2

M3 1.16e-14 1.59e-14 1.77e-14 1.53e-14 1.33e-14 2.00e-14

6. Conclusion

In this paper we have analyzed the stability conditions for the perturbations of the stiffly
weighted pseudoinverse and stiffly WLS problem. We have shown that, the perturbations of the
stiff weighted pseudoinverse and stiffly WLS problem are stable, if and only if the perturbations
satisfy Assumption 3.1. Numerical experiments also confirm our analysis.
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