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Abstract

Convergence properties of a class of multi-directional parallel quasi-Newton algorithms
for the solution of unconstrained minimization problems are studied in this paper. At each
iteration these algorithms generate several different quasi-Newton directions, and then
apply line searches to determine step lengths along each direction, simultaneously. The
next iterate is obtained among these trail points by choosing the lowest point in the sense of
function reductions. Different quasi-Newton updating formulas from the Broyden family
are used to generate a main sequence of Hessian matrix approximations. Based on the
BFGS and the modified BFGS updating formulas, the global and superlinear convergence
results are proved. It is observed that all the quasi-Newton directions asymptotically
approach the Newton direction in both direction and length when the iterate sequence
converges to a local minimum of the objective function, and hence the result of superlinear
convergence follows.
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1. Introduction

This paper concerns with quasi-Newton methods for unconstrained nonlinear minimization

min f(x), (1.1)

where f : Rn → R is assumed to be twice continuously differentiable. Starting from an initial
point x1 and an initial symmetric positive definite matrix B1, a quasi-Newton method generates
sequences {xk} and {Bk} by the iteration

xk+1 = xk + αkdk, (1.2)

and an updating formula for Bk, where αk is a step length and dk is a descent search direction
that is generated by solving the following system of equations

Bkdk = −gk,

gk = ∇f(xk) is the gradient of f(x) at xk. Bk is an n×n symmetric matrix that approximates
the Hessian G(x) = ∇2f(x) of f(x) at xk, and satisfies the so-called quasi-Newton equation

Bksk−1 = yk−1 (1.3)

with sk−1 = xk − xk−1 and yk−1 = gk − gk−1.
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Various updating formulae that satisfy equation (1.3) exist, and one of the most widely used
class of updates was the Broyden family (see [3])

Bk+1(φ) = Bk −
Bksks

T
kBk

sT
kBksk

+
yky

T
k

sT
k yk

+ φ(sT
kBksk)uku

T
k , (1.4)

where φ is a scale parameter and

uk =
yk

sT
k yk

−
Bksk

sT
kBksk

.

The computational characters and convergence properties of quasi-Newton methods in Broyden
family have been widely studied (see [6], [7], [9], [10], [11], [12], [13], [14], [16], [24], [25] ).

One of the most widely used quasi-Newton update is the BFGS update

BBFGS
k+1 = Bk −

Bksks
T
kBk

sT
kBksk

+
yky

T
k

sT
k yk

, (1.5)

that is obtained by setting φ = 0 in (1.4), denoted by Bk+1(0). Broyden, Dennis and More in
[5] proved that the BFGS method with unit step length for all k is superlinearly convergent
provided that the initial point x1 and the initial Hessian approximation B1 are sufficiently
accurate. Powell in [24] proved the global convergence for the BFGS method when it is applied
to convex functions and the step length αk satisfies the Wolfe conditions for all k. Furthermore,
if the function f(x) is strictly convex and the step length αk = 1 is taken whenever it satisfies
the Wolfe conditions, the result of Broyden, Dennis and More in [5] applies, i.e., the convergence
rate is superlinear. These convergence properties of the BFGS method have been extended to
the convex Broyden class, except for the DFP method, (0 ≤ φ < 1) by Ritter [26], Byrd,
Nocedal and Yuan [7], and to the preconvex Broyden class (φk0 < φ < 1) by Byrd, Liu and
Nocedal [8] where

φk0 = (sT
k yk)2/[(sT

k yk)2 − sT
kBksky

T
k B

−1

k yk] < 0. (1.6)

The easiest update in (1.4) is the symmetric rank one (SR1) update

BSR1
k+1 = Bk +

(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

,

that is obtained by setting

φ = sT
k yk/(yk −Bksk)T sk

4
= φ̂k (1.7)

in (1.4), denoted by Bk+1(φ̂k). The drawback of the SR1 update is that the matrix BSR1
k+1

may not be positive definite or it may even not well defined when the denominator approaches
zero. However, some recent works on the SR1 method have sparked renewed interesting in this
updating formula ( see [9], [21], [18] and [1]). It is proved in [9] that the sequence {Bk} generated
by the SR1 update converges to the actual Hessian G(x∗) at the solution x∗, provided that the
search directions {dk} are uniformly linearly independent, and that the denominators in the
SR1 update are always sufficiently different from zero, and that the iterates {xk} converges
to x∗. Moreover, numerical tests (see [9] and [29]) show that in comparison with the BFGS
update, the SR1 update generates more accurate Hessian approximations. Khalfan, Byrd and
Schnabel in [18] provided a proof of (n + 1)-step super-linear convergence result for the SR1
method under an assumption that the updating matrices {Bk} are positive definite for all k
and bounded asymptotically.

Based on the idea of obtaining more accurate Hessian approximation in the direction sk−1

through using more available function value information in updating formulae, Zhang and Xu
in [32] proposed a modification to quasi-Newton equation (1.3)

Bksk−1 = (1 +
θk−1

sT
k−1

yk−1

)yk−1

def
= ŷk−1,
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where
θk−1 = 6(fk−1 − fk) + 3(gk−1 + gk)T sk−1. (1.8)

The resulting modified BFGS update has the form

BMBFGS
k+1 = Bk −

Bksks
T
kBk

sT
kBksk

+
ŷkŷ

T
k

sT
k ŷk

, (1.9)

and is denoted by Bk+1(θk), which belongs to the class of non-quasi-Newton updates derived
by Yuan and Byrd (see [31]). And a similar update as (1.9) was first derived by Yuan (see [30]).
When inverse updating formula is used, the corresponding formula is just the modified inverse
BFGS updating suggested by Biggs (see [2])

HMBFGS
k+1 = Hk +

1

sT
k yk

[(
1

πk

+
yT

k Hkyk

sT
k yk

)sks
T
k − sky

T
k Hk −Hkyks

T
k ],

where πk = 1/θk. It is proved that with a safeguard strategy to keep positive definite updating,
the modified BFGS method maintains the global convergence property (see [19]), and the super-
linear convergence property (see [32]) of the BFGS method. Comparisons between the BFGS
method and the modified BFGS method show a favorite to the modified BFGS method either
on computational costs or on the Hessian approximation accuracy (see [32]).

It has been observed (see [20], [22] and [21]) that in practical applications, a particular
quasi-Newton method may be “good” in solving certain types of minimization problems, but
its efficiency degenerates when it is applied to solve other categories of problems. For instance,
when the SR1 method (without any modification) is applied to solve a practical problem, two
possible cases are likely to occur. If it solves the problem, its efficiency is usually better than
other quasi-Newton methods, such as the BFGS method. However, it may fail to solve the
problem due to the problems mentioned above. Any subsequent modifications made to the SR1
update may force it to solve the problem, but its efficiency degenerates.

Based on these observations, multi-directional parallel quasi-Newton (PQN) algorithms are
proposed by Phua in [20] to explore different quasi-Newton directions simultaneously. Phua,
Fan and Zeng in [22] proposed multi-step, multi-directional PQN algorithms for solving large-
scale nonlinear optimization problems. When three parallel processors are used for computing
parallel search directions, a reduction of 200% or more in terms of the number of iterations and
function/gradient evaluations has been achieved by these PQN algorithms over a wide range of
63 test problems (see [22]). Self-scaling PQN methods are also considered by Phua, Fan and
Zeng in [23] based on a new class of three parameter quasi-Newton updates. They reported
that the average speedup factors obtained by these new self-scaling PQN algorithms over the
conventional QN methods are more than 300%, both in terms of the total number of iterations
and the total number of function/gradient evaluations, when three parallel processors are used
to compute search directions, simultaneously. However, whether the multi-directional parallel
quasi-Newton algorithms converge globally is an open question. It is the purpose of this paper
that we explore the global and super-linear convergence properties of these multi-directional
parallel quasi-Newton algorithms. The paper is organized as follows. In the next section
we describe the multi-directional parallel quasi-Newton algorithms. The global convergence
properties of these algorithms will be proved in sections 3 and 4. In section 5, we study the
super-linear convergence property of these algorithms. Conclusions are presented in section 6.
Throughout the paper, ‖ · ‖ denotes the Euclidean vector norm or its induced matrix norm.

2. The Algorithms

In this section we describe the multi-directional parallel quasi-Newton algorithms for the
solution of problem (1.1). Assume that p processors are available for calculating p search direc-
tions simultaneously, and the sequel N is used to denote the set of integers N = {1, 2, · · · , p}.
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Algorithm 2.1.

Step 1 Initialization : Give ε > 0, initial point x1, and B1(= I); Calculate f1 = f(x1) and
g1 = g(x1) and set k = 1;

Step 2 Convergence test : If ‖gk‖ ≤ ε then terminate else go to step 3;

Step 3 Calculate parallel search directions : Calculate

dki = −Bk(φk−1,i)
−1gk, i = 1, 2, · · · , p; (2.1)

Step 4 Perform parallel line searches : Along each of these p directions calculate step
lengths αki in parallel to satisfy the Wolfe descent conditions

f(xk + αkidki) ≤ f(xk) + ραkig
T
k dki, (2.2)

g(xk + αkidki)
T dki ≥ σgT

k dki, (2.3)

with ρ ∈ (0, 1/2) and σ ∈ (ρ, 1);

Step 5 Calculate the new point : Determine a subset Ik ⊂ N and calculate

f(xk + αkldkl) = min {f(xk + αkidki) | i ∈ Ik },

and set xk+1 = xk + αkldkl;

Step 6 Calculate new Hessian approximations :
Calculate sk = xk+1−xk and yk = gk+1−gk; Choose one value of φ, φkj say, and update
Bk to obtain Bk+1(φkj); Set k := k + 1 and go to step 2;

The value of φk−1,i in step 3 can be chosen as 0, φk0 given by (1.6), and φ̂k given by (1.7)
in equation (1.4); or θk−1 in (1.8) and (1.9).

Methods are available to calculate the parallel search directions effectively. It follows from
(1.4), (1.9) and the formula

(A+ uuT )−1 = A−1 −
A−1uuTA−1

1 + uTA−1u
(1 + uTA−1u 6= 0) (2.4)

that once a search direction, say dkj , is calculated from the matrix Bk(φk−1j) that is updated
in step 6, the other search directions are just combinations of the direction dkj and a vector vk,
and only difference is the combination coefficients. For instance, if the BFGS update (1.5) is
used to get the matrix Bk+1(0) in step 6, then dk+1,j = −Bk+1(0)−1gk+1 is the BFGS direction.
The SR1 direction is

dk+1,i = dk+1,j +
φ̂ks

T
kBksku

T
kBk+1(0)−1gk+1

1 + φ̂ksT
kBkskuT

kBk+1(0)−1uk

Bk+1(0)−1uk,

and the modified BFGS direction is

dk+1,i = dk+1,j +
θky

T
k Bk+1(0)−1gk+1

(sT
k yk)2 + θkyT

k Bk+1(0)−1yk

Bk+1(0)−1yk.

For other choices of the updating formula in the Broyden class, the search directions can be
similarly calculated.

Other line search conditions such as the Goldstein condition and the Curry-Altman condition
can also be used in step 4. For convergence analysis of quasi-Newton algorithms, the Wolfe
conditions are usually considered. It is known that when dki is a descent direction, intervals
of acceptable α values for (2.2) and (2.3) exist (see [14]). If a step length satisfying (2.2) and
(2.3) does not exist for some ascent direction dki, αki is set to zero.
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The subset Ik in step 5 can be determined according to different criterions. In this paper
we consider the following criteria for the selection of the subset Ik. Let Bk(φk−1,j) be the
updating formula selected in step 6, and dkj be the search direction generated from (2.1) with
Bk(φk−1,j). The subset Ik is determined as follows

Ik1 = { i |
dki

TBk(φk−1,i)dki

‖Bk(φk−1,i)dki‖‖dki‖
≥ β

dki
TBk(φk−1,j)dki

‖Bk(φk−1,j)dki‖‖dki‖
, i ∈ N}, (2.5)

Ik2 = { i |
dkj

TBk(φk−1,j)dkj

‖Bk(φk−1,j)dkj‖‖dkj‖
≥ β

dki
TBk(φk−1,j)dki

‖Bk(φk−1,j)dki‖‖dki‖
, i ∈ N}, (2.6)

where β ∈ (0, 1) is a small positive number. Both sets Ik1 and Ik2 are not empty, since there
is at least one element j in each set. It can be expected that for small enough β, both sets Ik1

and Ik2 contains all or most indices in N .
Any updating formula can be selected in step 6, for example, Bk(φk−1,l) where the index

l is determined in step 5 (see [20]). Alternatively, the same updating formula that generates
positive definite matrices can be employed in step 6, for example the BFGS update or the
modified BFGS update. As for the modified BFGS update (1.9), the following result holds.

Lemma 2.1. Assume that f(x) is twice continuously differentiable. If the sequence {xk}
converges to a local minimizer x∗ of f(x) with g(x∗) = 0 and G(x∗) positive definite, then

lim
k→∞

θk

sT
k yk

= 0.

Proof. It follows from Taylor expansions of f(x) and g(x) at the point xk that

θk = O(‖sk‖
3).

Since G(x∗) is positive definite and {xk} converges to x∗, there exist m1 > 0 and an integer K
such that

sT
k yk = sT

k

∫ 1

0

G(xk + tsk)dtsk ≥ m1‖sk‖
2

holds for all k ≥ K. Then the conclusion of the lemma follows from the convergence of the
sequence {xk} to x∗.

The lemma shows that when the iteration sequence {xk} converges to a strong local mini-
mizer x∗, the condition

sT
k ŷk = (1 +

θk

sT
k yk

)sT
k yk > 0

which is required to keep positive definite updates, will be satisfied for sufficiently large k.
However, the case sT

k ŷk ≤ 0 can occur whether line searches are exact or inexact when xk is
remote from x∗, though it is rare in practical calculations (see [32]). Strategies are required to
maintain the positive definite updates for the modified BFGS update. Here we put a restriction
on the value of θk to ensure positive definite updates, that is,

θk = max{(ω − 1)sT
k yk, 6(fk − fk+1) + 3(gk + gk+1)

T sk}, (2.7)

where ω ∈ (0, 1). This strategy ensure sT
k ŷk ≥ ωsT

k yk and θk takes the value in (1.8) for
sufficiently large k.

In the next two sections, we will consider convergence properties of the following particular
multi-directional parallel quasi-Newton algorithms:
Algorithm B1.

Ik = Ik1 in step 5 and φkj = 0, i.e., the BFGS update, for all k in step 6.
Algorithm B2.

Ik = Ik2 in step 5, and the BFGS update, for all k in step 6.
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Algorithm C1.

Ik = Ik1 in step 5, and φkj = θk, i.e., the modified BFGS update, for all k in step 6.
Algorithm C2.

Ik = Ik2 in step 5, and the modified BFGS update, for all k in step 6.

3. Convergence of Algorithms B1 and B2

In this section we will study the global convergence properties of Algorithms B1 and B2
using the way that is presented by Byrd and Nocedal in [6]. It is assumed that the function
f(x) is twice continuously differentiable.
Assumption 3.1. The level set D = { x ∈ Rn : f(x) ≤ f(x1) } is convex, and there exist
positive constants M ≥ m > 0 such that

m‖z‖2 ≤ zTG(x)z ≤M‖z‖2

holds for all z ∈ Rn and all x ∈ D.
Assumption 3.1 implies that f has a unique minimizer x∗ in D, and that the following

inequalities

m‖sk‖
2 ≤ sT

k yk ≤M‖sk‖
2, (3.1)

‖yk‖2

sT
k yk

≤M, (3.2)

1

2
m‖xk − x∗‖2 ≤ f(xk) − f(x∗) ≤

1

m
‖gk‖

2 (3.3)

hold for all xk, xk+1 ∈ D, xk 6= xk+1. Under assumption 3.1, the Wolfe line search conditions
(2.2) and (2.3) imply that there is a constant η > 0 such that

f(xk + αkidki) − f(xk) ≤ −η
(gT

k dki)
2

‖dki‖2
(3.4)

holds for all descent direction dki (see [28]). Thus, we have

f(xk) − f(xk+1) ≥ η
(sT

k gk)2

‖sk‖2‖gk‖2
‖gk‖

2.

Let

cosγk =
−gT

k sk

‖gk‖‖sk‖
,

then using (3.3) we obtain

f(xk+1) − f(x∗) ≤ (1 − ηmcos2γk)[f(xk) − f(x∗)],

where γk is the angle between the steepest descent direction −gk and the step sk, and the
decreasing property of the sequence {f(xk)} implies 0 ≤ 1− ηmcos2γk ≤ 1. Therefore, if there
is a subsequence of the iterates {xk} for which cosγk are bounded away from zero, called good
iterates, then the conclusion that the sequence {xk} converges to x∗ follows.

In the general BFGS method, the step sk is generated in the BFGS search direction dk =
−B−1

k gk (sk = αkdk), and

cosγk =
−gT

k sk

‖gk‖‖sk‖
=

sT
kBksk

‖Bksk‖‖sk‖
.

Byrd and Nocedal in Theorem 2.1 of [6] employ the function

ψ(Bk) = tr(Bk) − ln det(Bk),
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to get the result that the most of the iterates in the general BFGS method are good iterates,
where tr(Bk) and det(Bk) are the trace and determinant of the matrix Bk. Moreover

ψ(Bk) =
n∑

i=1

[λi(Bk) − ln(λi(Bk))], (3.5)

where λi(Bk) are eigenvalues of the matrix Bk. So ψ(Bk) > 0 if Bk is positive definite. For the
BFGS updating formula, we have

ψ(Bk+1) = ψ(Bk) +
‖yk‖2

sT
k yk

− 1 − ln
sT

k yk

sT
k sk

+ lnr2k + ϕ(tk), (3.6)

(3.7)

where

ϕ(t) = 1 − t+ lnt, tk =
qk
r2k
,

rk =
sT

kBksk

‖Bksk‖‖sk‖
, qk =

sT
kBksk

sT
k sk

.

Note that the function ϕ(t) is non-positive for all t > 0 and ϕ(t) → 0 as t→ 1.
In fact, Under conditions (3.1) and (3.2), Theorem 2.1 in [6] also holds for the sequences

{xk} and {Bk} generated in algorithms B1 and B2.

Lemma 3.1. Let assumption 3.1 hold, B1 be symmetric positive definite and gk 6= 0 for all
k ≥ 1. Then the sequence {Bk} generated in algorithms B1 and B2 is well-defined, and for any
δ ∈ (0, 1) there exist positive constants c1, c2, and c3 > 0 such that for any k > 1, the following
inequalities

sT
j Bjsj

‖Bjsj‖‖sj‖
≥ c1, (3.8)

c2 ≤
sT

j Bjsj

sT
j sj

≤ c3, (3.9)

c2 ≤
‖Bjsj‖

‖sj‖
≤ c3/c1 (3.10)

hold for at least [δk] values of j ∈ [1, k].

Note that rj = sT
j Bjsj/(‖Bjsj‖‖sj‖) is no longer the cosine of the angle between the

steepest descent direction −gj and the step sj , since the step sj may be generated from a
search direction different from the BFGS search direction.

With Lemma 3.1 the convergence results for algorithms B1 and B2 follow.

Theorem 3.2. Let x1 be a starting point for which assumption 3.1 is satisfied. Then for any
symmetric positive definite matrix B1, the sequence {xk} generated in algorithm B1 converges
to x∗ at a linear rate. Moreover,

∞∑
k=1

‖xk − x∗‖ <∞, (3.11)

and there is a constant 0 ≤ r1 < 1 such that

f(xk+1) − f(x∗) ≤ rk
1 [f(x1) − f(x∗)] (3.12)

holds for all k ≥ 1.
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Proof. Let J be the set of indices for which (3.8), (3.9) and (3.10) are satisfied. Then for
iteration j ∈ J , from (3.4), (3.8) and the definition (2.5) of the subset Ik1, we have

f(xj) − f(xj+1) = f(xj) − f(xj + αjldjl)

≥ η
(gT

j djl)
2

‖gj‖2‖djl‖2
‖gj‖

2

= η
(djl

TBj(φj−1,l)djl)
2

‖Bj(φj−1,l)djl‖2‖djl‖2
‖gj‖

2

≥ ηβ
(djl

TBjdjl)
2

‖Bjdjl‖2‖djl‖2
‖gj‖

2

= ηβ
(sT

j Bjsj)
2

‖Bjsj‖2‖sj‖2
‖gj‖

2

≥ ηβc21‖gj‖
2 = ξ‖gj‖

2, (3.13)

where sj = αjldjl is determined in step 5 of the algorithm, and Bj(φj−1,l) is the matrix that
generates the direction djl. From (3.13) and (3.3) we obtain that for all j ∈ J

f(xj+1) − f(x∗) ≤ r
1

δ

1 [f(xj) − f(x∗)],

where r
1

δ

1 = (1 − ξm) ≥ 0, because {f(xj)} is a decreasing sequence. Since there exist at least
[δk] indices in J ∩ [1, k], it follows from the decreasing of the sequence {f(xj)} that

f(xk+1) − f(x∗) ≤ rk
1 [f(x1) − f(x∗)]

holds for all k ≥ 1. This gives (3.12). Then from (3.3) we have

∞∑
k=1

‖xk − x∗‖ ≤ (
2

m
)

1

2

∞∑
k=1

[f(xk) − f(x∗)]
1

2

≤ [
2(f(x1) − f(x∗))

m
]
1

2

∞∑
k=0

(r
1

2

1 )k <∞,

which gives (3.11) and shows the convergence of the sequence {xk} to the point x∗. The linear
convergence rate comes from (3.12).

As for the convergence of Algorithm B2, we have the following result.

Theorem 3.3. Let x1 be a starting point for which assumption 3.1 is satisfied. Then for any
symmetric positive definite matrix B1, the sequence {xk} generated in algorithm B2 converges
to x∗ at a linear rate. Moreover, the formula (3.11) holds and (3.12) with 0 ≤ r1 < 1 is satisfied
for all k ≥ 1.

Proof. Let J be the set defined in the proof of Theorem 3.2, and {x̂k} be an auxiliary
sequence that is generated from the BFGS direction in algorithm B2, that is,

x̂k+1 = xk + αk1dk1,

where dk1 = −B−1

k gk denotes the BFGS search direction in algorithm B2. Then it follows from
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f(xj+1) − f(xj) ≤ f(x̂j+1) − f(xj), (2.6), (3.4) and (3.8) that for iteration j ∈ J we have

f(xj) − f(xj+1) ≥ f(xj) − f(x̂j+1) = f(xj) − f(xj + αj1dj1)

≥ η
(gT

j dj1)
2

‖dj1‖2‖gj‖2
‖gj‖

2

= η
(dT

j1Bjdj1)
2

‖Bjdj1‖2‖dj1‖2
‖gj‖

2

≥ ηβ
(dT

jlBjdjl)
2

‖Bjdjl‖2‖djl‖2
‖gj‖

2

= ηβ
(sT

j Bjsj)
2

‖Bjsj‖2‖sj‖2
‖gj‖

2

≥ ηβc21‖gj‖
2.

The reset of the proof is the same as those in Theorem 3.2.

4. Convergence of Algorithms C1 and C2

In this section we will present the global convergence results for algorithms C1 and C2. The
processes of proving these results are the same as those in section 3. All we need is to show that
the results of lemma 3.1 still hold when the vector (1+ θk

sT

k
yk

)yk with safeguard strategy (2.7) is

used to replace the vector yk in the BFGS updating formula. Since Lemma 3.1 can be proved
under inequalities (3.1) and (3.2), we give similar inequalities for the vector ŷk = (1 + θk

sT

k
yk

)yk.

Lemma 4.1. Under assumption 3.1 and strategy (2.7), there exist positive constants M̂ ≥ m̂ >
0 such that

m̂‖sk‖
2 ≤ sT

k ŷk ≤ M̂‖sk‖
2,

‖ŷk‖2

sT
k ŷk

≤ M̂,

hold for all xk, xk+1 ∈ D and xk 6= xk+1.

Proof. Using the Taylor expansions of f(x) and g(x) at the point xk

f(xk+1) = f(xk) + gT
k sk +

1

2
sT

kG(xk + ζsk)sk, ζ ∈ (0, 1),

gT
k+1sk = gT

k sk + sT
k

∫ 1

0

G(xk + tsk)dtsk,

we obtain

θk ≥ 3[sT
k

∫ 1

0

G(xk + tsk)dtsk − sT
kG(xk + ζsk)sk]. (4.1)

The definition (2.7) of θk implies

1 +
θk

sT
k yk

≥ ω. (4.2)

The definition of ŷk gives

sT
k ŷk

sT
k sk

=
(1 + θk

sT

k
yk

)sT
k yk

sT
k sk

,
‖ŷk‖2

sT
k ŷk

=
(1 + θk

sT

k
yk

)‖yk‖2

sT
k yk

.
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Then from (3.1), (3.2), (4.1) and (4.2) we obtain

mω ≤
sT

k ŷk

sT
k sk

≤M(1 + 6
M

m
),

‖ŷk‖
2

sT
k ŷk

≤M(1 + 6
M

m
).

Therefore the conclusion of the lemma hold with m̂ = mω and M̂ = M(1 + 6M/m).
With Lemma 4.1, global convergence results for algorithms C1 and C2 immediately follow.

We give these results, but ignore their proofs.

Lemma 4.2. Let B1 be symmetric positive definite and gk 6= 0 for all k ≥ 1. Then the sequence
{Bk = Bk(θk)} generated in algorithms C1 and C2 with strategy (2.7) is well-defined, and for
any δ ∈ (0, 1) there exist positive constants ĉ1, ĉ2, and ĉ3 > 0 such that for any k > 1, the
following inequalities

sT
j Bjsj

‖Bjsj‖‖sj‖
≥ ĉ1,

ĉ2 ≤
sT

j Bjsj

sT
j sj

≤ ĉ3,

ĉ2 ≤
‖Bjsj‖

‖sj‖
≤ ĉ3/ĉ1

hold for at least [δk] values of j ∈ [1, k].

Theorem 4.3. Let x1 be an initial point for which assumption 3.1 is satisfied. Then for any
symmetric positive definite matrix B1, the sequence {xk} generated by algorithm C1 (or C2)
with strategy (2.7) converges to x∗ at a linear rate. Moreover, the formula (3.11) holds and
there is a constant 0 ≤ r̂1 < 1 such that (3.12) with r̂1 replacing r1 holds for all k ≥ 1.

5. The Super-linear Convergence Property

In this section we study the super-linear convergence property of the multi-directional par-
allel quasi-Newton algorithms. The super-linear convergence result of quasi-Newton methods
is usually proved by showing that the search directions approach the Newton directions in both
direction and length so that the step length of one is eventually taken for all iterates. This is
characterized by the following theorem (see Theorem 6.4 of [13]).

Theorem 5.1. Let f(x) be twice continuously differentiable in an open set E and {xk} ⊂ E be
a sequence that is generated by an iteration in form (1.2) with dk a descent direction of f(x) at
xk, and the step length αk satisfies conditions (2.2) and (2.3). If the sequence {xk} converges
to a point x∗ ∈ E at which G(x∗) is positive definite, and if

lim
k→∞

‖gk +Gkdk‖

‖dk‖
= 0, (5.1)

then there is an integer K such that αk = 1 is acceptable to conditions (2.2) and (2.3) for all
k ≥ K. Moreover, g(x∗) = 0, and {xk} converges superlinearly to x∗ if αk = 1 is taken for all
suficiently large k.

For a general quasi-Newton method with a positive definite update, condition (5.1) is equiv-
alent to the condition

lim
k→∞

‖(Bk −Gk)sk‖

‖sk‖
= 0. (5.2)
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since Bkdk = −gk and sk = αkdk. Moreover, if the Hessian matrix G(x) of the function f(x)
is Lipschitz continuous at x∗, i.e., there exists a positive constant L such that

‖G(x) −G(x∗)‖ ≤ L‖x− x∗‖ (5.3)

holds for all x in a neighborhood of x∗, then following the convergence of the sequence {xk} to
x∗, condition (5.2) is further equivalent to the condition

lim
k→∞

‖[Bk −G(x∗)]sk‖

‖sk‖
= 0. (5.4)

For the multi-directional parallel quasi-Newton methods, we define the sequence {Bk} gen-
erated in step 6 of the algorithms as the main matrix sequence. Since the step sk = αkldkl may
not be generated by the matrix Bk in the main sequence {Bk}, Bkdkl = −gk may not hold.
We consider an auxiliary sequence of matrices {B̂k} which generates the direction dkl in step 5
of the algorithms, that is,

B̂k = Bk(φk−1,l), and B̂kdkl = −gk.

Then it is clear that if

lim
k→∞

‖[B̂k −G(x∗)]sk‖

‖sk‖
= 0, (5.5)

the super-linear convergence result follows if the initial step length is one in all line searches
and is accepted whenever it satisfies Wolfe conditions.

Based on these analysis, the following further assumption on the function f(x) and restric-
tions on the algorithms are made.
Assumption 5.1. The Hessian G(x) of f(x) is Lipschitz continuous at x∗ ∈ D, that is,
condition (5.3) holds with a constant L.
Restriction 5.1. The values of φki, i = 1, 2, · · · , p in step 3 are chosen for only positive
definite updates, that is, φki > φk0 (see section 1 for the expression of φk0). Since for a super-
linearly convergent sequence {xk} with the sequence {‖B−1

k ‖} bounded, φk0 → −∞ (see [8]),
we give the values of φki the following restriction

φki ∈ [νk, %1], with νk = max{φk0 + %2,−%3},

where %1 ≥ 1, %2 and %3 are some positive constants. The modified BFGS update with strategy
(2.7) is also included in step 3. As for the SR1 update, since φ̂k > φk0 is not guaranteed, we
place the following modification to this update

φ̂k = max{
sT

k yk

sT
k (yk −Bksk)

, νk}

so that Bk+1(φ̂k) keeps positive definite update.
Restriction 5.2. The initial step length is one in all line searches and is accepted whenever it
satisfies conditions (2.2) and (2.3).

Using Theorem 3.2 of [6], we directly obtain the following result for the main sequences
{Bk} and {xk} generated in the multi-directional parallel quasi-Newton Algorithm B1 (or B2).

Theorem 5.2. Let assumption 3.1 hold and B1 be symmetric positive definite. Consider the
main sequences {Bk} and {xk} generated in algorithm B1 (or B2). If there is a positive sequence
{εk} with

∞∑
k=1

εk <∞ (5.6)

such that
‖yk −G(x∗)sk‖

‖sk‖
≤ εk (5.7)
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holds for all k ≥ 1, then

lim
k→∞

‖[Bk −G(x∗)]sk‖

‖sk‖
= 0, (5.8)

and the sequences {‖Bk‖} and {‖B−1

k ‖} are bounded.

Proof. Define

s̄k = G∗
1

2 sk, ȳk = G∗−
1

2 yk, B̄k = G∗−
1

2BkG
∗−

1

2 ,

r̄k =
s̄T

k B̄ks̄k

‖B̄ks̄k‖‖s̄k‖
, q̄k =

s̄T
k B̄ks̄k

s̄T
k s̄k

.

Then from (1.4) we have

B̄k+1(φ) = B̄k −
B̄ks̄ks̄

T
k B̄k

s̄T
k B̄ks̄k

+
ȳkȳ

T
k

s̄T
k ȳk

+ φ(s̄T
k B̄ks̄k)ūkū

T
k ,

ūk =
ȳk

s̄T
k ȳk

−
B̄ks̄k

s̄T
k B̄ks̄k

.

For the BFGS update (φ = 0) it follows from (3.6) that

ψ(B̄k+1) = ψ(B̄k) +
‖ȳk‖2

s̄T
k ȳk

− 1 − ln
s̄T

k ȳk

s̄T
k s̄k

+ lnr̄2k + ϕ(t̄k), (5.9)

where t̄k = q̄k/r̄
2
k. Using condition (5.7) we can obtain

s̄T
k ȳk

s̄T
k s̄k

≥ 1 − c4εk, (5.10)

‖ȳk‖
2

s̄T
k ȳk

≤ 1 + c5εk, (5.11)

where c4 = ‖G∗−
1

2 ‖2 and c5 > c4 are constants. It follows from these two inequalities and (5.9)
that

0 < ψ(B̄k+1) ≤ ψ(B̄1) + c6 +

k∑
j=1

[3c5εj + lnr̄2j + ϕ(t̄j)],

where c6 > 0 is a positive constant. Then condition (5.6) and non-positive properties of lnr̄2j
and ϕ(t̄j) imply the boundedness of {ψ(B̄k)}, and

lnr̄2j → 0, ϕ(t̄j) → 0. (5.12)

The boundedness of {ψ(B̄k)} and (3.5) imply that both sequences {‖Bk‖} and {‖B−1

k ‖} are
bounded. It follows from (5.12) and the properties of the function ϕ(t) = 1− t+lnt, t > 0 that

lim
k→∞

r̄k = lim
k→∞

q̄k = 1. (5.13)

Since

‖G∗−
1

2 (Bk −G∗)sk‖2

‖G∗
1

2 sk‖2
=

‖B̄ks̄k‖2 − 2s̄T
k B̄ks̄k + s̄T

k s̄k

s̄T
k s̄k

=
q̄2k
r̄2k

− 2q̄k + 1,

conclusion (5.8) immediately follows from (5.13).

Now we present the super-linear convergence results for both algorithms B1 and B2.



Multi-directional Quasi-Newton Algorithms 369

Theorem 5.3. Let assumptions 3.1 and 5.1 hold with a given initial point x1 and the sequence
{xk} be generated by algorithm B1 (or B2) with restrictions 5.1 and 5.2, and a given symmetric
positive definite matrix B1. Then the sequence {xk} converges super-linearly to x∗, and the
sequences {‖B̂k‖} and {‖B̂−1

k ‖} are bounded.

Proof. We only need to show that limit (5.5) hold for both algorithms B1 and B2. It is clear
that the global convergence results of Theorems 3.2 and 3.3 hold for both algorithms. Since
the Hessian G(x) is Lipschitz continuous at x∗, we have

‖yk −G(x∗)sk‖

‖sk‖
=

‖[
∫ 1

0
G(xk + tsk)dt−G(x∗)]sk‖

‖sk‖

≤ Lmax{‖xk+1 − x∗‖, ‖xk − x∗‖}.

Let εk = Lmax{‖xk+1 − x∗‖, ‖xk − x∗‖}. Then it follows from (3.11) that conditions (5.6)
and (5.7) in Theorem 5.2 hold, and hence conclusion (5.8) follows for the main matrix sequence
{Bk}.

Since
‖[B̂k −G(x∗)]sk‖

‖sk‖
≤

‖[Bk −G(x∗)]sk‖

‖sk‖
+

‖[B̂k −Bk]sk‖

‖sk‖
, (5.14)

consider the second term in the right-hand side. If B̂k is obtained from Bk−1 with the modified
BFGS updating formula, then

‖[B̂k −Bk]sk‖

‖sk‖
≤

|θk−1|

sT
k−1

yk−1

‖yk−1‖2

sT
k−1

yk−1

.

It follows from Lemma 2.1, (3.2) and the convergence of the sequence {xk} to x∗ that there is
a positive constant c7 such that

‖[B̂k −Bk]sk‖

‖sk‖
≤ c7εk (5.15)

hold. If B̂k is obtained from an updating formula in the Broyden family with φk−1,l ∈ [νk, %1],
then

‖[B̂k −Bk]sk‖

‖sk‖
≤ |φk−1,l(s

T
k−1Bk−1sk−1)|‖uk−1‖

2. (5.16)

From the definition of ūk we have

‖ūk‖
2 =

1

‖s̄k‖2
[
‖ȳk‖2

s̄T
k ȳk

‖s̄k‖2

s̄T
k ȳk

− 2
1

q̄k

s̄T
k B̄kȳk

s̄T
k ȳk

+
1

r̄2k
].

Since

yk = G(x∗)sk +

∫ 1

0

[G(xk + tsk) −G(x∗)]dtsk,

we have

ȳk = s̄k + Ēks̄k,

where

‖Ēk‖ = ‖G(x∗)−
1

2

∫ 1

0

[G(xk + tsk) −G(x∗)]dtG(x∗)−
1

2 ‖ ≤ c24εk.

Thus we have

s̄T
k B̄kȳk

s̄T
k ȳk

=
s̄T

k s̄k

s̄T
k ȳk

s̄T
k B̄ks̄k + s̄T

k B̄kĒks̄k

s̄T
k s̄k

.
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Then from (5.10), (5.11), and the boundedness of the sequence {‖Bk‖}, there is a constant
c8 > 0 such that

‖ūk‖
2 ≤

1

‖s̄k‖2
(1 −

1

r̄2k
+ c8εk). (5.17)

Then from (5.14), (5.15), (5.16) and (5.17) we obtain

‖[B̂k −G(x∗)]sk‖

‖sk‖
≤

‖[Bk −G(x∗)]sk‖

‖sk‖
+ max{c7εk−1,

|φk−1,l|‖G(x∗)
1

2 ‖2
s̄T

k−1
B̄k−1s̄k−1

s̄T
k−1

s̄k−1

[1 −
1

r̄2k−1

+ c8εk−1]}

It then follows from (5.8), (5.13), the boundedness of the value φk−1,l and the sequence {‖Bk‖}

that limit (5.5) holds for the matrix sequence {B̂k}, and hence the superlinear convergence
result holds for both algorithms.

Finally, since

‖B̂k‖ ≤ ‖Bk‖ + max{
|θk−1|‖yk−1‖2

(sT
k−1

yk−1)2
, |φk−1,l|s

T
k−1Bk−1sk−1‖uk−1‖

2}

≤ ‖Bk‖ + max{c7εk−1, |φk−1,l|‖G(x∗)
1

2 ‖2
s̄T

k−1B̄k−1s̄k−1

s̄T
k−1

s̄k−1

(1 −
1

r̄2k−1

+ c8εk−1)},

the boundedness of the sequence {‖B̂k‖} follows from the boundedness of the sequence {‖Bk‖}
and the convergence of r̄k to one and εk to zero. The boundedness of the sequence {‖B̂−1

k ‖}
can be similarly proved using equation (2.4), the boundedness of the sequence {‖B−1

k ‖} and
the convergence of the sequences {r̄k} and {εk} to one and zero, respectively.

As for algorithms C1 and C2, it follows from (3.1), (4.1) and (5.3) that

‖ŷk −G(x∗)sk‖

‖sk‖
≤

‖yk −G(x∗)sk‖

‖sk‖
+

|θk|‖yk‖

sT
k yk‖sk‖

≤ (1 +
6M

m
)Lmax{‖xk+1 − x∗‖, ‖xk − x∗‖}.

Thus, conditions (5.6) and (5.7) hold with εk = (1+6M/m)Lmax{‖xk+1−x∗‖, ‖xk−x∗‖}, which
derives the limit (5.8) for the main sequence {Bk} in algorithms C1 and C2, i.e., the results
of Theorem 5.2 also hold for both algorithms C1 and C2. Then the superlinear convergence
results for both these algorithms can be obtained using the same dementration as that used in
the proof of Theorem 5.3.

Theorem 5.4. Let assumptions 3.1 and 5.1 hold with a given initial point x1 and the sequences
{xk}, {Bk} and {B̂k} be generated by algorithm either C1 or C2 with strategy (2.7), restrictions
5.1 and 5.2, and a symmetric positive definite matrix B1. Then limits (5.4) and (5.5) hold,
and the sequence {xk} converges superlinearly to the unique local minimizer x∗ of f(x) in D,
and the sequences {‖B̂k‖} and {‖B̂−1

k ‖} are bounded.

Theorems 5.3 and 5.4 indicate that when the sequence {xk} converges to x∗, all the search
directions generated in step 3 by different quasi-Newton updates with φki ∈ [νk, %1] approach
simultaneously the Newton direction in both direction and length. This coincides with the
numerical performance of these algorithms. Though these algorithms often take either the
BFGS steps or the SR1 steps for final iterations, the differences between the steps obtained in
different search directions are very small at these final iterations.
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6. Conclusions

A class of multi-directional parallel quasi-Newton algorithms for the solution of uncon-
strained minimization problems is presented in the paper. At each iteration, these algorithms
generate several parallel quasi-Newton directions, and then apply line searches along each di-
rection, simultaneously. The next iterate is obtained as the “best” point from the results of
parallel searches. Different quasi-Newton updating formulas in Broyden family can be used to
generate a main sequence of Hessian matrix approximations. Based on the BFGS and the mod-
ified BFGS updating formulae, the global and superlinear convergence properties are proved. It
can be observed from the proof of these convergence results that all the quasi-Newton directions
approach the Newton direction in both direction and length when the sequence {xk} converges
to the local minimum x∗ of the function f(x).

Numerical results (see [22]) for a broad class of middle and large scale test problems show
that these algorithms are efficient and robust in solving practical optimization problems, par-
ticularly for large scale problems, and that a benefit of 300% reduction, or more, in terms of the
number of iterations and function/gradient evaluations can be obtained over the serial BFGS
method. It has been observed that compared with the serial BFGS method, a spedup factor of
up to 28 times can be achieved by these algorithms in solving certain large scale optimization
problems.
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