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Abstract

We study the dependence of qualitative behavior of the numerical solutions (obtained
by a projective and upwind finite difference scheme) on the ignition temperature for a
combustion model problem with general initial condition. Convergence to weak solution
is proved under the Courant-Friedrichs-Lewy condition. Some condition on the ignition
temperature is given to guarantee the solution containing a strong detonation wave or a
weak detonation wave. Finally, we give some numerical examples which show that a strong
detonation wave can be transformed to a weak detonation wave under some well-chosen
ignition temperature.
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1. Introduction

Fractional step method is frequently applied to the numerical simulation of combustion
problems, where the combustion mechanism is split away from the convection process in each
time step. Since the rate of chemical reaction is usually much higher than the rate of con-
vection, the combustion step is reduced to a projection, where the rate of chemical reaction is
approximated to infinity, that is, the Champmon-Jouguest model.

It is often observed that the results are sensitive to the ignition temperature in the projection
method. Sometimes a spurious wave profile, i.e., a weak detonation wave, is generated under a
low ignition temperature in the numerical simulation, which is non-physical in many cases (see
for example [2], [3], [5]). Therefore a higher ignition temperature is suggested to generate a
strong detonation wave. Thus, to determine the ignition temperature becomes a subtle problem.

In [4], A. Majda proposed a qualitative model (so-called Majda’s model) to study shock-wave
chemistry interactions in combustion theory. This is the starting point for many researches.
Then in [2], P. Colella, A. Majda and V. Roytburd studied Euler equations and Majda’s model.
In particular, for Majda’s model, they proved that if one wants to obtain a strong detonation
wave, the ignition temperature should be larger than the burnt temperature behind a weak
detonation wave traveling at the same speed. In [5], R. B. Pember obtained the same criterion
for the Euler equations. A similar behavior was discovered by R. J. Le Veque and H. C. Yee
([3]) for the scalar conservation law with stiff source term.

In [8], the second named author studied this problem for the Riemann problem of the
Majda’s model. Some sufficient conditions on the ignition temperature were given for the
qualitative behavior of the numerical solutions. Some numerical experiments were done in [11].
Recently the second named author obtained some further results in [9].
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In this paper, we extend the results to more general initial data. Moreover, for some technical
difficulty reason, we have studied the weak detonation wave only in a weaker sense in [8]. Here
we overcome this difficulty and study the weak detonation wave in the natural sense.

Let us briefly give a more precise statement of the problem studied here. The Majda’s model
for combustion is the following:

∂(u+ qz)

∂t
+
∂f(u)

∂x
= 0, (1.1)

∂z

∂t
= −Kφ(u)z, (1.2)

where u is a “lumped variable”, representing density, velocity and temperature, z ∈ [0, 1],
representing the fraction of unburnt gas, the constant q > 0, representing the binding energy,
the constant K > 0, representing the rate of chemical reaction, f ∈ C2, f ′ > 0, f ′′ ≥ α0 > 0,
and

φ(u) =

{

1, u > Ui,

0, u < Ui,
(1.3)

where Ui is the ignition temperature.
Let K → ∞ formally, then we get ∂z

∂t
≤ 0, φ(u)z = 0 , and if u < Ui , then ∂z

∂t
= 0 ,

therefore (1.2) is replaced by

z(x, t) =











0, sup
0≤τ≤t

u(x, τ) > Ui,

z(x, 0), sup
0≤τ≤t

u(x, τ) < Ui.
(1.4)

∂z

∂t
≤ 0 (1.5)

We will study the projective and finite difference method to (1), (4), (5) and the following
initial condition:

u(x, 0) =

{

u0l(x), x ≤ 0,

u0r(x), x > 0
z(x, t) =

{

0, x ≤ 0,

1, x > 0
(1.6)

where u0l and u0r are bounded functions and infxu0l(x) − q > Ui > supxu0r(x).
Notice that (1) can be written as

ut + f(u)x = Kqφ(u)z,

which falls into the general topic on hyperbolic conservation laws with stiff source terms studied
by several authors, among others, including [1] and [7]. It would be interesting to see to what
extent our results and methods can be applied there.

Here is an outline of this paper:
In section 2, we prove the convergence of the scheme to a weak solution under the CFL

condition. The proof follows in the same line as that in [8]. However there is a major difference
(c.f. Lemma 2.3).

In section 3, we prove the existence of a strong detonation wave under a condition on Ui.
However this is not a necessary condition for the existence of a strong detonation wave, as
demonstrated by the numerical examples in section 5.

In section 4 we prove the existence of a weak detonation wave under another condition on
Ui. The key point is to prove that the limit to the discontinuous curve l(t) of u exists.

Finally in section 5, we give some interesting numerical examples. We observe that a strong
detonation wave can be transformed to a weak detonation wave.
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2. Difference Scheme and Convergence to Weak Solutions

We will use the following fractional step method for the system of equations (1.1), (1.4) and
(1.5) with the initial condition (1.6), where the convection and the chemical reaction are split
by a three steps procedure, and the solver of the convection part is an upwind scheme.
Step 1.

ũn
j − un

j

4t +
f(un

j ) − f(un
j−1)

4x = 0. (2.1)

Step 2.

zn+1
j =

{

0, ũn
j ≥ Ui

zn
j , ũn

j < Ui.
(2.2)

Step 3.
un+1

j = ũn
j − q(zn+1

j − zn
j ), (2.3)

where un
j = u(j4x, n4t), zn

j = z(j4x, n4t), 4x,4t are step sizes, and ũn
j is an intermediate

variable.
We first give some estimates for the scheme. We omit most proofs, since they are similar

to those in [8]. We assume that u0r is of bounded variation. Let M = supx≤0 u0l(x) and
m = infx>0 u0r(x).

Lemma 2.1. Assume the following CFL-type condition is satisfied,

∆t

∆x
≤ q

max[m,M+2q] f
′ · (M + 2q −m)

, (2.4)

Then (a). zn
j ∈ [0, 1] and un

j ∈ [m,M + 2q];
(b). there is an integer jn

0 for each n such that zn
j = 0, un

j ≥ Ui for j ≤ jn
0 ,and zn

j = 1, un
j <

Ui for j > jn
0 .

Thus we obtain a sequence 0 = j00 ≤ j10 ≤ · · · ≤ jn
0 ≤ jn+1

0 ≤ · · · . Now we define a
subsequence j00 , j

n1

0 , jn2

0 , · · · , such that j00 = j10 = · · · = jn1−1
0 and jn1

0 > jn1−1
0 . Connecting

points (jnk

0 ∆x, nk∆t) and (jnk+1
0 ∆x, nk+1∆t) by line segments for k = 0, 1, · · · , we obtain a

curve, denoted by x = l∆x(t).

Lemma 2.2. The curve x = l∆x(t) is increasing with respect to t, i.e., l
′

∆x(t) > 0. Moreover,
l∆x(t) is bounded for all ∆x and finite t.

Let ∆x,∆t → 0, then there is a subsequence of l∆x(t) converging pointwisely to a curve
Γ : x = l(t) with l

′

(t) ≥ 0 and l ∈ BV (0, T ). Let Ω+ = {(x, t);x > l(t)} and Ω− = {(x, t);x <
l(t)}. We extend un

j by constant on (j∆x, (j + 1)∆x] × (n∆t, (n+ 1)∆t], detonated by u4x.

Lemma 2.3. u4x is of bounded variation on Ω+.

Proof. Define V ar+un =
∞
∑

j=jn

0

max(un
j+1 − un

j , 0), V ar−un =
∞
∑

j=jn

0

min(un
j+1 − un

j , 0)m and

V ar(un) =
∑∞

j=jn

0
|un

j+1 − un
j |. Since un

j0+1 − un
j0

≤ 0, we have V ar+un =
∞
∑

j=jn

0
+1

max(un
j+1 −

un
j , 0). Notice that for j ≥ jn

0 + 1, ũn−1
j = un

j , now by the difference scheme we have

un
j+1 − un

j = un−1
j+1 − un−1

j − r(f(un−1
j+1 ) − f(un−1

j )) + r(f(un−1
j ) − f(un−1

j−1 )), (2.5)

where r = ∆t
∆x
. We set V n

j = un
j+1 − un

j , Ln
j = f(un

j+1) − f(un
j ), then (2.5) is equal to

V n
j = V n−1

j − r(Ln−1
j − Ln−1

j−1 ). (2.6)
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Let

δj =

{

0, un
j+1 − un

j < 0;

1, un
j+1 − un

j ≥ 0,

and multiply it to the equation (2.6), then sum them up to obtain:

V ar+un =

∞
∑

j=jn

0
+1

δjV
n
j =

∞
∑

j=jn

0
+1

δjV
n−1
j − r(

∞
∑

j=jn

0
+1

δjL
n−1
j −

∞
∑

j=jn

0
+1

δjL
n−1
j−1 )

=

∞
∑

j=jn

0
+1

(δjV
n−1
j + r(δj+1 − δj)L

n−1
j ) + rδjn

0
+1L

n−1
jn

0
.

(2.7)

Let a = δjV
n−1
j + r(δj+1 − δj)L

n−1
j , then there are four cases:

i). δj = δj+1 = 1, then a = V n−1
j .

ii). δj = δj+1 = 0, then a = 0 ≤ max(V n−1
j , 0).

iii). δj = 1, δj+1 = 0, then a = (1 − r(f
′

(ξj))V
n−1
j ≤ V n−1

j .

iv). δj = 0, δj+1 = 1, then a = rLn−1
j = r(f

′

(ξj))V
n−1

j ≤ V n−1
j , where ξj is a mean value.

We get V ar+un ≤
∞
∑

j=j0

max(V n−1
j , 0)+ rδjn

0
+1L

n−1
jn

0
. Notice that Ln−1

jn

0
< 0, thus V ar+un ≤

∞
∑

j=j0

max(V n−1
j , 0) ≤ V ar+un−1.

Repeat this procedure, we get V ar+un ≤ V ar+un−1 ≤ · · · ≤ V ar+u0. Since u0r(x) is of
bounded variation, there exists a constant C such that V ar+u0 ≤ C. Then V ar+un ≤ C.
By V ar+un + V ar−un =

∑

j=jn

0

(un
j+1 − un

j ) = u(+∞) − u(jn
0 ), V ar−un is bounded. Since

V ar(un) = V ar+un − V ar−un, thus V ar(un) is bounded. On the other hand, by the estimate
of V ar(un) and the equation (2.1), we can estimate the variation of u∆x with respect to t. The
proof for that u∆x being of bounded variation on Ω+ is thus complete.

By the precedent lemma, u∆x is bounded in BV on Ω+. There is a subsequence converging
in L1 and the limit is of bounded variation. Let the limit be u(x, t). On Ω−, u∆x is bounded
in L∞. There is a subsequence weakly converging in Lp, p > 1. However for j < jn

0 , un
j is the

discrete solution of the conservation law:

∂u

∂t
+
∂f(u)

∂x
= 0

Applying the result of compensated compactness we know it also converges to u strongly in L1.

Theorem 2.1. The limit u, z is the weak solution to (1), (4), (5) and (6).

3. Convergence to Strong Detonation Waves

This section is parallel to section 3 of [8]. Most proofs there work here with slight modifi-
cations, so we will omit most details, but just give some outlines.

Set u1 = infx≤0 u0l(x),u2 = supx>0 u0r(x). We define

s1 =
f(u1) − f(u2)

u1 − u2 − q
.

By the assumption of f ,there exist some UCJ with uCJ > u2 + q such that

f ′(uCJ) =
f(uCJ) − f(u2)

uCJ − u2 − q
.
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For any s ∈ (f ′(uCJ),∞), there are two values of u corresponding to s. Let them be u∗l ≥ ul∗

and we will always assume that s1 ≥ f ′(uCJ) and u1 = u∗l later on. Obviously, u2+q < ul∗ < u1.
In this section , we will assume Ui ∈ [ul∗ − q, u∗l ).

First we will consider Ω+. For a point (x0, t0), we denote the downward characteristic line
starting from (x0, t0) by C(x0, t0), whose equation is given by x = g(t;x0, t0).

Lemma 3.1. For any (x0, t0) ∈ Ω+, we have l(t) ≤ g(t;x0, t0) for all 0 ≤ t ≤ t0, i.e. the
characteristic line C(x0, t0) does not intersect Γ transversely.

Proof. There are two cases:
(i) C(x0, t0) has no intersection with the curve x = l(t). In this case, the conclusion is

obvious.
(ii) C(x0, t0) intersects with x = l(t). Denoted by (l(t1), t1) which is an intersection point with
t1 maximal. Let g(t) = max{l(t); g(t;x0, t0), g(t; l(τ), τ), ∀τ ≤ t1} and v(t) = u(g(t) + 0, t). We
first show that v(t) ≡ u(g(0) + 0, 0). Let S = {t ∈ (0, t0)|g(t) = l(t)}. We need the following
two affirmations:

Claim 1: Meas(S) = 0.
Claim 2: v is continuous and has bounded variation.
With these, we can conclude the proof as follows: v(t) =

∫ t

0 v
′(s)ds + u(g(0) + 0, 0). Note

that if t /∈ S, then g(t) is the equation of a characteristic line, so v(t) is constant, i.e. v′(t) = 0.
This gives that v(t) =

∫

S
v′(s)ds+u(g(0)+0, 0) = u(g(0)+0, 0) since Meas(S) = 0. Therefore

the equation x = g(t) defines a characteristic line, which intersects with line x > 0, t = 0, so
l(t) ≤ g(t;x0, t0).

The proof of Claim 1 is the same as the proof of Lemma 3.1 [Yin].
Proof of Claim 2: We define a curve Γε : x = l(t)+ε , Γε ∈ Ω+. From each point on it we can

construct C(x, t). Similar to g(t), v(t) we have gε(t) and vε(t). For each point (gε(t), t), we have
a download characteristic line C(gε(t), t) .(gε(t), t) ∈ Ω+ , then u ≡ u(gε(t), t) on C(gε(t), t).
For u(gε(t), t) is bounded variation, we have two not decreasing monotone functions wε

1, w
ε
2

such that vε(t) = wε
1(g

ε(t), t) − wε
2(g

ε(t), t). gε(t) is monotone increasing by (gε)′(t) > 0,
⇒ wε

1(g
ε(t), t), wε

2(g
ε(t), t) are monotone increasing respect to x. By the construction of vε(t)

and gε(t) ,vε(t) → v(t) , gε(t) → g(t). So we have v(t) = w1(g(t), t) − w2(g(t), t) as ε → 0.For
w1, w2 are also not decreasing monotone functions , v(t) is bounded variation , then dv

dt
exists.

For the continuity of v(t), we have

v(t) =

∫ t

0

v′(τ)dτ + u(g(0) + 0, 0)

=

∫

S

v′(τ)dτ + u(g(0)+), 0) ≡ u(g(0) + 0, 0),

which finishes the proof of our claim 2. This completes the proof of Lemma 3.1.
Now we turn to consider Ω−. Let

f∗(v) =
f(v) − f(u2)

v − u2 − q
.

First we prove the following simple lemma.

Lemma 3.2. For any u ∈ [ul∗, v] with v ≥ u∗l , we have f∗(u) ≤ f∗(v).

Proof. The derivative of f∗ is (f∗)
′

(v) = f
′

(v)(v−u2−q)−(f(v)−f(u2))
(v−u2−q)2 . Set F (v) = f

′

(v)(v −
u2−q)−(f(v)−f(u2)), then we have F ′(v) = f ′′(v)(v−u2−q), so F (v) is an increasing function
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if and only if v ≥ u2 + q. By the definition of uCJ , we know that F (uCJ) = 0. Then F (v) ≥ 0
for v > uCJ and F (v) < 0 for v ∈ [u2 + q, uCJ), i.e. f∗(v) is increasing (resp. decreasing) for
v ∈ [uCJ , u

∗
l ] (resp. v ∈ [u2 + q, uCJ)). So maxv∈[ul∗ ,uCJ ] f

∗(v) = f∗(ul∗) (for ul∗ > u2 + q),
and maxv∈[uCJ ,u∗

l
] f

∗(v) = f∗(u∗l ). Thus if v ≥ u∗l , then f∗(v) ≥ f∗(u) for u ∈ [uCJ , v] and
f∗(v) ≥ f∗(u∗l ) = f∗(ul∗) ≥ f(u) for u ∈ [ul∗ , uCJ ], which concludes the proof.

Theorem 3.1. If ∆x,∆t satisfy the CFL condition (10) and Ui ∈ [ul∗ − q, u∗l ), then as
∆x,∆t → 0, the difference scheme converges to a weak solution to (1), (4), (5) and (6) with a
strong detonation wave.

Proof. By using the precedent lemma, an argument in [8] (Lemma 3.2) shows that if u ∈
[ul∗ , v] on a neighborhood of Γ, where v ≥ u∗l , then l′(t) ≤ f∗(v) for all t. Now we define ū
such that f ′(ū) = f∗(u∗l ), then uCJ < ū < u∗l . Let L be the half-line {t = 0, x < 0}. Then
above observation implies (see Lemma 3.3 [Yin]) that the downward characteristic line C(x, t)
intersects L (resp. Γ) if and only if u(x, t) > ū (resp. u(x, t) ≤ ū).

Since f ′ > 0 , C(x0, t0) intersects {t = 0, x < 0} for all x0 < 0, t0 > 0 , which implies
g(t;x0, t0) < l(t). Let s(t) = sup{x;x = g(t;x0, t0) < l(t), ∀t}, then s(0) = 0. Now a similar
argument as that in the proof of Lemma 3.4 [8] gives s(t) = l(t) for all t. Thus for any
(x, t) ∈ Ω−, the characteristic line C(x, t) intersects the half-line L. So for all t ∈ [0, t0],
we have g(t;x0, t0) < l(t). By Lemma 3.1, this implies that the solution contains a strong
detonation wave.

4. Convergence to Weak Detonation Waves

In this section, we define s2 =
f(M) − f(u2)

M − u2 + q
, then similarly we get ūCJ , ūl∗ and ū∗l . We

will assume M = ū∗l and Ui < ūl∗ − q. Furthermore, we will always assume the following CFL
condition:

∆x

∆t
≥ max

(

f ′(M),
f(M) − f(ūl∗ − q)

M − ūl∗

)

. (4.1)

Following the proof of Lemma 2.4[Yin],we get Ui +q ≤ un
j ≤M for j ≤ jn

0 and m ≤ un
j < Ui

for j > jn
0 .

Lemma 4.1. If

u2 < Ui ≤ m+ qf
′

(m) ·
{

∆t
∆x
, for ∆t

∆x
≥ 1

2f∗
,

1
f∗

− ∆t
∆x
, for ∆t

∆x
< 1

2f∗
,

(4.2)

then
l
′

4x(t) ≥ f∗, (4.3)

where f∗ > f ′(M). Furthermore, we have l
′

(t) ≥ f∗ for all t > 0.

The proof can be found in [Yin] (see Lemma 4.1 and 4.2 loc. cit.). First we consider the
region Ω+. Notice that u(x, t) ≤ Ui in Ω+, and f ′(Ui) < f∗ ≤ l′(t), f ′(u) < l′, thus C(x, t)
intersects t = 0, x > 0 in Ω+.

Now we consider Ω−. We define w(t), such that

f(w(t)) − f(u(l(t) + 0, t)

w(t) − u(l(t) + 0, t) − q
= l

′

(t), and w(t) ∈ (m+ q, ūl∗). (4.4)

and we defineH(u, t) = ul
′

(t)−f(u). Notice that u is of bounded variation on Ω+, so u(l(t)+0, t)
exists. Our utmost aim (also the main difficulty) is to prove the existence of u(l(t) − 0, t). We
will prove some properties of the solution given by Theorem 2.1.

Let Γε = Γ − ε := {x = l(t) − ε} with ε > 0, Γ1 = Γ ∪ {t = 0, x ≤ 0}, Ωε
− = {(x, t);x <

l(t) − ε, t > 0}.



Dependence of Qualitative Behavior of the Numerical Solutions on . . . 343

Lemma 4.2. On Ω−, the solution u given by Theorem 2.1 satisfies
∫∫

Ω−

(uψt + f(u)ψx)dxdt +

∫

t=0

u0l(x)ψ(x, 0)dx +

∫

Γ

ψH(w, t)dt = 0, (4.5)

for any function ψ ∈ C1
0 (Ω− ∪ Γ1). Furthermore the solution satisfies the following Oleinik

entropy condition: there exists a constant E > 0, such that for any a > 0 and for any (x, t) ∈
Ω−, we have

u(x, t) − u(x− a, t)

a
<

E

t− a(x)
, (4.6)

where a(x) = l−1(x) if x > 0, and a(x) = 0 if x ≤ 0.

Proof. Since u satisfies the conservation law in Ωε, we have

0 =

∫∫

Ωε

(uψt + f(u)ψx)dxdt +

∫

t=0,x<0

u0l(x)ψ(x, 0)dx +

∫

Γε

ψ(ul
′ − f(u))dt, (4.7)

for any function ψ ∈ C1
0 (Ω− ∪ Γ1). Let ε→ 0, we get

∫∫

Ω−

(uψt + f(u)ψx)dxdt+

∫

t=0

u0l(x)dx +

∫

Γ

ψH(w, t)dt = 0. (4.8)

Here we have used Lemma 4.5 ([8], the proof) to obtain that limε→0

∫

Γε

ψ(ul
′ − f(u))dt =

∫

Γ

ψH(w, t)dt.

Now we need to verify the Oleinick entropy condition for the solution u. Consider the region
Ω(t0) = {(x, t)|x < l(t0), t > t0} for t0 > 0. On this region, recall that u is the (bounded) limit
of numerical solutions using the upwind scheme, thus u satisfies the following Oleinick entropy
condition: there exists a constant E > 0, such that for any a > 0 and for any (x, t) ∈ Ω(t0), we
have

u(x, t) − u(x− a, t)

a
<

E

t− t0
,

which implies (4.6), since t0 is arbitrary.
Our next lemma says that the entropy solution is unique.

Lemma 4.3. The entropy solution to problem (4.5) is unique.

Proof. Let u, v be two solutions. we need to show u = v, which is equivalent to show that
∫∫

Ω−

(u− v)ψdxdt = 0 (4.9)

for every ψ ∈ C1
0 (Ω− ∪ Γ1).

Recall that u and v satisfied (4.5). Subtract them to obtain
∫∫

Ω−

((u − v)ψt + (f(u) − f(v))ψx)dxdt = 0 (4.10)

or
∫∫

Ω−

(u− v)(ψt +
f(u) − f(v)

u− v
ψx)dxdt. (4.11)
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Recall that the solution satisfies the Oleinik Entropy condition (Lemma 4.2). The remain proof
of uniqueness is similar to that of Theorem 16.10 in [6].

Now we will consider problem (4.12, 4.13). Our strategy is to firstly prove that there exists a
solution to (4.12, 4.13) having some nice properties, then we prove in fact the solution coincides
with the solution given by Theorem 2.1, which will show that the solution u in Theorem 2.1
enjoys also these nice properties. These properties will make the pointwise Rankine-Hugniot
condition available, which is a key ingredient to our proof of the main theorem of this section.

Consider the following initial value problem:

∂u

∂t
+
∂f(u)

∂x
= 0, −∞ < x < l(t), t > 0, (4.12)

u(x, 0) = u0l(x), x ≤ 0, u(l(t), t) = w(t). (4.13)

Convention: from now on till to Lemma 4.6, we still denote by u a solution (we will construct
it numerically) to the problem (4.12, 4.13), by abusing the notation. However, this should not
make any confusion. In fact, we will prove that this solution coincides with the solution u in
Theorem 2.1 (restricted to Ω−).

Lemma 4.4. Suppose that the functions w and u0l are of bounded variation. Then there exists
an entropy solution u for problem (4.12) (4.13) such that the limit u(l(t) − 0, t) exists in L1.

Proof. Notice that we have l′(t) ≥ f∗ > f ′(M), and the slope of the characteristic line
C(x, t) is f ′(u(x, t)). The slope of Γ is greater than f ′(w) almost everywhere. This means that
in our problem (4.12, 4.13), condition u(l(t), t) = w(t) is not a boundary condition, but an
initial condition. We use then the up-wind difference scheme to obtain an approximate solution
(which is still denoted by un

j ).
Let ∆x, ∆t satisfy f ′(M) ≤ ∆x/∆t ≤ f∗. For any j ∈ N, we denote by wj the value of w

at the intersection point of Γ and the line x = j∆x. We give the value of the nearest grid point
on the line x = j∆x to Γ by u∗j .

For any n ∈ N, let mn = maxk {k|(k∆x, n∆t) ∈ Ω−}, then mn+1 > mn. By our discussions
above, for any mn < k ≤ mn+1, we have un+1

k = wk. In particular, un
mn

= wmn
.

Let Ωn
j = un

j+1 − un
j , zn

j = un+1
j − un

j . By the conservation law, we have

un+1
j = un

j + r(f(un
j−1) − f(un

j )), (4.14)

subtract (4.14) for j + 1, j, we have

Ωn+1
j = (1 − rf

′

(ξj))Ω
n
j + rf

′

(ξj−1)Ω
n
j−1,

where ξj−1 is a mean value. Sum them up from −∞ to mn, we get

mn−1
∑

j=−∞

|Ωn+1
j | ≤

mn−1
∑

j=−∞

|Ωn
j | − rf

′

(ξmn−1)|Ωn
mn−1|.

Notice that

Ωn+1
mn

= un+1
mn+1 − un+1

mn
= wmn+1 − un

mn
+ r(f(un

mn
) − f(un

mn−1))

= (wmn+1 − wmn
) + rf ′(ξmn−1)Ω

n
mn−1,

thus
mn
∑

j=−∞

|Ωn+1
j | ≤

mn−1
∑

j=−∞

|Ωn
j | + |wmn+1 − wmn

|,
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which gives the following estimation:

mn+1
∑

j=−∞

|Ωn+1
j | ≤

mn−1
∑

j=−∞

|Ωn
j | +

mn+1−1
∑

k=mn

|wk+1 − wk|

Now using an argument of induction, we get V ar(un+1) ≤ V ar(u0l)+V ar(w), which shows
by hypothesis that V ar(un+1) <∞.

Next we consider zn
j . Substract (4.14) for n, n+ 1, we get

zn
j = (1 − rf

′

(ξj))z
n−1
j + rf

′

(ξj−1)z
n−1
j−1 , for j ≤ mn−1.

mn−1
∑

j=−∞

|zn
j | ≤

mn−1
∑

j=−∞

|zn−1
j | − rf

′

(ξmn−1−1)|zn−1
mn−1−1|.

Notice that for mn−1 + 1 ≤ j ≤ mn, we have

|zn
j | = |un+1

j − un
j | = rf ′(ξj−1)|un

j − un
j−1| ≤ |wj − wj−1|.

Thus we have the following estimate:

mn
∑

j=−∞

|zn
j | ≤

mn−1
∑

j=−∞

|zn−1
j | − rf

′

(ξmn−1−1)|zn−1
mn−1−1| +

∑mn

k=mn−1+1 |wk − wk−1|

≤
mn−1
∑

j=−∞

|zn−1
j | + ∑mn

k=mn−1+1 |wk − wk−1|.

By induction, we obtain
∑mn

j=−∞ |zn
j | ≤ ∑0

j=−∞ |z0
j | + V ar(w). From z0

j = u1
j − u0

j =

rf
′

(ξj−1)(u
0
j−1 − u0

j), we have |z0
j | ≤ |Ω0

j−1|, and finally

m
∑

j=−∞

|zn
j | ≤

0
∑

j=−∞

|Ω0
j | + V ar(w). (4.15)

The rest of the proof is similar to that of Theorem 3.1 in [10].
Now our next step is to remove the condition that w and u0l are of bounded variation in the

precedent lemma. To do this, we first prove that the solution to problem (4.12), (4.13) depends
continuously on the initial condition (4.13). More precisely, we have the following lemma.

Lemma 4.5. Let u, v be two entropy solutions to problem (4.12) with (possibly different) initial
conditions. Then for any x0 < 0 and for any T > 0, there exists a constant 0 ≤ c < 1 such
that:

∫ 0

x0

|u(x, 0) − v(x, 0)|dx + (1 + c)

∫

Γ0

|u− v|dγ

≥
∫ l(T )

l(T )+x0

|u(x, T ) − v(x, T )|dx+ (1 − c)

∫

Γx0

|u− v|dγ,

where for any z, Γz denotes the curve x = l(t) + z, 0 ≤ t ≤ T, and the integral
∫

Γz
dγ is the

curve integral over Γz.

Proof. First a standard argument (see for example the proof of Theorem 2.4 Chapter III
[?]) will give the following

∫∫

K

{|u(x, t) − v(x, t)|∂φ
∂t

+ sign(u(x, t) − v(x, t))(f(u(x, t)) − f(v(x, t)))
∂φ

∂x
}dxdt ≥ 0,
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for any φ ≥ 0 in C1
0 (K), where K is the region {(x, t)|l(t) + x0 < x < l(t), 0 < t < T }.

Let ω ≥ 0 be a function in C∞
0 (−1, 1) such that

∫ +∞

−∞
ω(x)dx = 1. We define ωh(x) = 1

h
ω(x

h
)

for h > 0. Then ωh(x) = 0 if |x| ≥ h. Let αh(x) =
∫ x

−∞ ωh(y)dy, then αh(x) = 1 if x ≥ h.

For any ε > 0, we define the following functions:

ψ1(x, t) = 1 − αε(−t+ ε), ψ2(x, t) = 1 − αε(t− T + ε),

ψ3(x, t) = 1 − αε(l(t) + x0 − x+ ε), ψ4(x, t) = 1 − αε(x− l(t) + ε).

Let φε(x, t) =
∏4

i=1 ψi(x, t). Then supp φε ⊂ K and lim
ε→0+

φε(x, t) = 1 for any (x, t) ∈ K.

Replace φ by φε in the above inequality, then take ε→ 0+, we obtain

∫ 0

x0

|u(x, 0) − v(x, 0)|dx +

∫

Γ0

|u− v|(1 − F (x, t)

l′(t)
)dγ

≥
∫ l(T )

l(T )+x0

|u(x, T ) − v(x, T )|dx+

∫

Γx0

|u− v|(1 − F (x, t)

l′(t)
)dγ,

where F (x, t) = sign(u− v) f(u)−f(v)
u−v

.

By Lemma 4.1, 0 ≤ |F (x,t)|
l′(t) ≤ c < 1 for some constant c. Then the precedent inequality

gives that

∫ 0

x0

|u(x, 0) − v(x, 0)|dx + (1 + c)

∫

Γ0

|u− v|dγ

≥
∫ l(T )

l(T )+x0

|u(x, T ) − v(x, T )|dx+ (1 − c)

∫

Γx0

|u− v|dγ,

which completes the proof.

As a corollary, we see that the solution to problem (4.12) is unique if condition (4.13) is
fixed. We should point out that in the proof (also in the proof of Lemma 4.4), the condition
l′(t) > f ′(M) is essential.

Now we consider the general case, i.e. w (resp. u0l) is not necessarily of bounded variation,

but bounded and measurable. Then we can take a sequence w(k) (resp. u
(k)
0l ) of functions of

bounded variation on l(t) (resp. on t = 0, x ≤ 0) which converges to w in L1. Let u(k) be

the solution to problem (4.12) corresponding to the conditions u
(k)
0l and w(k). Then by the

precedent lemma, u(k) converges to u in L1. Furthermore, we have

∫ 0

x0

|u(k)
0l − u

(l)
0l |dx+ (1 + c)

∫

Γ0

|w(k) − w(l)|dγ

≥
∫ l(T )

l(T )+x0

|u(k)(x, T ) − u(l)(x, T )|dx+ (1 − c)

∫

Γx0

|u(k) − u(l)|dγ,

for any k, l and any x0 < 0. Now take k, l goes to infinity, then the above inequality shows that
u(k)(l(t)+x0, t) converges uniformly with respect to x0 to u(l(t)+x0, t) in L1(Γx0

). Thus when
x0 goes to 0, u(l(t) + x0, t) goes to w, which shows that u(l(t)− 0, t) exists in L1, which proves
the following:

Lemma 4.6. If w is bounded and measurable, then there exists an entropy solution u for
problem (4.12) (4.13) such that the limit u(l(t) − 0, t) exists in L1.

Now we come to the main result of this section.
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Theorem 4.1. If (4.1), (15) hold, then the discontinuity Γ of the weak solution u, z is a weak
detonation wave, which satisfies the Rankine-Hugoniot condition:

l′(t) =
f(u(l(t) − 0, t)) − f(u(l(t) + 0, t))

u(l(t) − 0, t) − u(l(t) + 0, t) − q
,

and l′(t) ≥ f ′(u(l(t) − 0, t)) ≥ f ′(u(l(t) + 0, t)) almost everywhere.

Proof. It is easy to see that the weak solution to (4.12) (4.13) satisfies the condition (4.5).
By Lemma 4.3, it is the solution provided by Theorem 2.1. Now Lemma 4.6 implies that for
the solution u to the problem (1), (4), (5) and (6), the limit u(l(t)− 0, t) exists. Thus the limit
of the solution u to the curve Γ exists from both sides, so the solution u satisfies the pointwise
Rankine-Hugoniot condition. Now by Lemma 4.1 and the discussions on the region Ω+, the
solution u contains a weak detonation wave.

Remark 4.1. In [Yin], the second named author has proved a similar result for the Riemann
problem, but in a weaker sense. The main difficulty there is that we did not know how to
prove the existence of the limit limε→0+u(l(t) − ε, t), which made unavailable the pointwise
Rankine-Hugoniot condition.

5. Numerical Examples

Example 1. Let u, z be two functions which satisfy

∂(u+ qz)

∂t
+

∂

∂x
(
u2

2
) = 0,

∂z

∂t
= −Kφ(u)z,

with q = 0.5, u0l(x) = 8.0 and

u0r(x) =











1.5, x ∈ (0, 20]

x/2 − 8.5, x ∈ (20, 22]

2.5, else.

As easily seen, we have the following results: u1 = 8, u2 = 2.5, uCJ = (6 +
√

11)/2, ūCJ =
(4 +

√
7)/2, ul∗ = (10 −

√
5)/2, u∗l = (10 +

√
5)/2, ū∗l = (10 +

√
29)/2 and ūl∗ = (10 −

√
29)/2.

Let u3 = 1.5.
Fig.1, Fig.2 and Fig.3 are the numerical results of our upwind scheme with the ignition

temperature Ui = 2.6, but at different time.
In Fig.1, we take t = 2, then we find just one discontinuity. The speed there is s = 5.1458,

which is equal to (f(u1)− f(u3))/(u1−u3− q), thus it is a strong detonation wave. Recall that
by our Theorem 3.1, if the ignition temperature Ui is in [ul∗ − q, u∗l ), then our upwind scheme
leads to a strong detonation wave. In Fig. 1, Ui is not in [ul∗ − q, u∗l ), however we still obtain
a strong detonation wave, which gives an example to show that our conditions in Theorem 3.1
are only sufficient, but not necessary.

In Fig.3, we take t = 15, then we find the speed at the right discontinuity is s = 12.1525
which equals to (f(a)−f(u2))/(a−u2−q)., which is a weak detonation wave, where a = 3 is the
value of the second horizontal line in Fig.3. At the left side of this weak detonation wave, there
is a shock wave. An interesting phenomena appears here: we observe that a strong detonation
wave (at t = 2) is transformed to a weak detonation wave (at t = 15).

In fact the weak detonation wave can be explained as follows: when Ui is slightly bigger
than 2.5 (the precise meaning of “slightly” will be made clear later), then by Theorem 4.1 there



348 X.T. ZHANG AND L.A. YING

is a weak detonation wave followed by a shock wave. In fact, this weak detonation wave can
be regarded as the weak detonation wave appeared in the Riemann problem with initial values
ul = 8 and ur = 2.5 (see [8] for a theoretical support and [11] for a numerical support).
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Fig.1 Ui = 2.6, t = 2 Fig.2 Ui = 2.6, t = 7.65

−200 −150 −100 −50 0 50 100 150 200
2

3

4

5

6

7

8

9
u(x,t) t=15 2000 steps

x

T =  15
ignition = 2.6 

−400 −300 −200 −100 0 100 200 300 400
2

3

4

5

6

7

8

9
u(x,t) t=50 2000 steps
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Fig.3 Ui = 2.6, t= 15 Fig.4 Ui = 2.92, t = 50

In Fig. 2, we take t = 7.65, then we are in the phrase of this transformation from a strong
detonation wave to a weak one.

Then one may wonder if such a transformation happens for all Ui. Interestingly this is not
the case. By some numerical experience, we find that if 2.5 < Ui < c, then such a transition
happens, and when Ui > c, there is only one strong detonation wave, and there is no such a
transition, where c is a constant between 2.92 and 2.93. Fig. 4 and Fig. 5 are illustrations of
this observation: when Ui = 2.92, there exists such a transition, but there is none if Ui = 2.93.

However, for the moment we don’t know how to determine the exact value of c. Some
estimates of such a jump can be given based on our Theorem 4.1, but as we stated before,
our Theorem 4.1 gives just a sufficient condition, but not a necessary condition. An optimal
estimate of a such jump would require more insight.
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Example 2. Finally we consider the same equation with initial condition: uor = 2 and

u0l(x) =

{

7.5, x ∈ [−20, 0]

3.5, x ∈ (−∞,−20)

We have done numerical simulation for Ui = 2.5. Fig. 6, Fig. 7 and Fig. 8 are the results
corresponding respectively to t = 1, 10, 100.

We observe that when t = 1, there is a strong detonation wave and a central rarefaction
wave, and when t = 100, this strong detonation wave is transformed to be a weak detonation
wave. When t = 10, the picture shows that this is still a strong detonation wave, but it is in
the phrase of transition.
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