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Abstract

The main aim of this paper is to study the error estimates of a nonconforming finite
element with some superconvergence results under anisotropic meshes. The anisotropic
interpolation error and consistency error estimates are obtained by using some novel ap-
proaches and techniques, respectively. Furthermore, the superclose and a superconvergence
estimate on the central points of elements are also obtained without the regularity assump-
tion and quasi-uniform assumption requirement on the meshes. Finally, a numerical test
is carried out, which coincides with our theoretical analysis.
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1. Introduction

It is well-known that regular assumption or quasi-uniform assumption[1] of finite element
meshes is a basic condition in analysis of finite element approximation both for conventional
conforming and nonconforming elements. However, with the development of the finite element
methods and its applications to more fields and more complex problems, the above regular
assumption or quasi-uniform assumption are great deficient in the finite element methods. For
example, the solution may have anisotropic behavior in parts of the domain. This means
that the solution varies significantly only in certain directions. Such as the diffusion problems
in domains with edges and singularly perturbed convection-diffusion-reaction problems where
boundary or interior layers appear. In such cases, it is an obvious idea to reflect this anisotropy
in the discretization by using anisotropic meshes with a small mesh size in the direction of the
rapid variation of the solution and a larger mesh size in the perpendicular direction.

Considering a bounded convex domain Ω ⊂ R2, we can describe the elements of anisotropic
meshes mathematically. Let Jh be a family of meshes of Ω and denote the diameter of the
finite element K and the supremum of the diameters of all circles contained in K by hK and ρK

respectively, h = max
K∈Jh

hK . It is assumed in the classical finite element theory that hK

ρK
≤ C,

where C be a positive constant which is independent of K and the function considered. Such
assumption is no longer valid in the case of anisotropic meshes. Conversely, anisotropic elements
K are characterized by hK

ρK
→ ∞, where the limit can be considered as h → 0. Recently,

Zenisek[2,3] and Apel[4,5] published a series of papers concentrating on the interpolation error
estimates of some Lagrange Type elements(conforming elements), but nonconforming methods
are hardly treated. As far as we know, it seems that there are few papers focused on the
nonconforming elements under anisotropic meshes.
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On the other hand, the superconvergence study of the finite element methods is one of the
most active research subject for a long time in theoretical analysis and practical computations.
Many superconvergence results about conforming finite element methods have been obtained(see
[6] [7]). Do these superconvergence results of conforming elements still hold for nonconforming
ones? [8-10] studied the superconvergence of Wilson’s element and obtained the superconver-
gence estimate of the gradient error on the centers of elements. Under square meshes, [11]
recently obtained same superconvergentce results of rotated Q1 element, too. However, to our
knowledge, there are no papers published with respect to anisotropic meshes.

In our work, we firstly study the anisotropic interpolation property of a nonconforming fi-
nite element proposed by [12], which will play an important role in estimating the interpolation
error. By employing some techniques different from the existing articles, we obtain the con-
sistency error estimate. Then we get the superclose property and a superconvergence estimate
on the centers of elements without the regularity assumption and quasi-uniform assumption
requirements on the meshes. In the last section, some numerical examples are presented to
illustrate the validity of our theoretical analysis.

2. Construction of the Finite Element Space with Anisotropic

Interpolation Property

Assume K̂ = [−1, 1] × [−1, 1] to be the reference element, the four vertices are d̂1 =

(−1,−1), d̂2 = (1,−1), d̂3 = (1, 1), d̂4 = (−1, 1), let l̂1 = d̂1d̂2, l̂2 = d̂2d̂3, l̂3 = d̂3d̂4, l̂4 = d̂4d̂1.
We define the finite element (K̂, P̂ , Σ̂) on K̂ as follows

Σ̂ = {v̂1, v̂2, v̂3, v̂4, v̂5}, P̂ = span{1, ξ, η, ϕ(ξ), ϕ(η)}, (1)

where v̂i = 1

|l̂i|
∫

l̂i
v̂dŝ, i = 1, 2, 3, 4, v̂5 = 1

|K̂|
∫

K̂
v̂dξdη, ϕ(t) = 1

2 (3t2 − 1).

It can be easily proved that the interpolation defined above is properly posed, the interpo-
lation function is as follows

Π̂v̂ = v̂5 +
1

2
(v̂2 − v̂4)ξ +

1

2
(v̂3 − v̂1)η +

1

2
(v̂2 + v̂4 − 2v̂5)ϕ(ξ) +

1

2
(v̂3 + v̂1 − 2v̂5)ϕ(η) (2)

For the sake of convenience, Let Ω ⊂ R2 to be a convex polygon composed by a family of
rectangular meshes Jh which doesn’t need to satisfy the regularity conditions. ∀K ∈ Jh, denote
the barycenter of element K by (xK , yK), the length of edges parallel to x-axis and y-axis by
2hx, 2hy respectively, hK = max{hx, hy}, h = max

K∈Jh

hK .

FK : K̂ −→ K is defined as
{

x = xK + hxξ,
y = yK + hyη.

(3)

Define the finite element space as

Vh = {vh|v̂h = vh|K ◦ FK ∈ P̂ , ∀K ∈ Jh,

∫

F

[vh]ds = 0, F ⊂ ∂K}, (4)

where [vh] stands for the jump of vh across the edge F if F is an internal edge, and it is equal
to vh itself if F is a boundary edge.

Let the general element K is a rectangle element in x− y plane, the interpolate operator is
defined as

ΠK : H2(K) → P̂ ◦ F−1
K , ΠKv = (Π̂v̂) ◦ F−1

K , Πh : H2(Ω) → Vh, Πh|K = ΠK .

In order to obtain the anisotropic interpolation error estimate we should turn to the following
lemma
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Lemma 2.1. The interpolation operator Π̂ defined as (2) has the anisotropic interpolation
properties, i.e., for |α| = 1, such that

‖D̂α(v̂ − Π̂v̂)‖0,K̂ ≤ C|D̂αv̂|1,K̂ . (5)

Here and later, the positive constant C will be used as a generic constant, which is inde-
pendent of hK and of hK

ρK
.

Proof. When α = (1, 0),

D̂αΠ̂v̂ =
∂Π̂v̂

∂ξ
=

1

2
(v̂2 − v̂4) +

1

2
(v̂2 + v̂4 − 2v̂5)ϕ

′

(ξ). (6)

Notice that r = dimD̂αP̂ = 2. Obviously, {1, ϕ
′

(ξ)} is a basis of D̂αP̂ , and denote

D̂αΠ̂v̂ = β1 + β2ϕ
′

(ξ),

where

β1 =
1

2
(v̂2 − v̂4) =

1

4
(

∫

l̂2

v̂(1, η)dη −

∫

l̂4

v̂(−1, η)dη) =
1

|K̂|

∫

K̂

∂v̂

∂ξ
dξdη,

β2 =
1

2
(v̂2 + v̂4 − 2v̂5) =

1

4
(

∫

l̂2

v̂(1, η)dη +

∫

l̂4

v̂(−1, η)dη − 2

∫

K̂

v̂(ξ, η)dξdη)

=
1

|K̂|

∫

K̂

ξ
∂v̂

∂ξ
dξdη.

∀ŵ ∈ H1(K̂), let

F1(ŵ) =
1

|K̂|

∫

K̂

ŵdξdη,

F2(ŵ) =
1

|K̂|

∫

K̂

ξŵdξdη.

Apparently Fj ∈ (H1(K̂))
′

, j = 1, 2. Employing the basic anisotropic interpolation theorem[13]

yields

‖D̂α(v̂ − Π̂v̂)‖0,K̂
≤ C|D̂αv̂|1,K̂

.

Similarly, we can prove that (5) is valid for α = (0, 1) . This completes the proof.

3. Anisotropic Error Estimates for the Second Order Elliptic Problem

Now, let us consider the following Poisson problem
{

−4u = f, in Ω,
u|Γ = 0, on Γ = ∂Ω.

(7)

Let V = H1
0 (Ω), then the weak form of (7) is

{

Find u ∈ V, such that
a(u, v) = f(v), ∀ v ∈ V,

(8)

where

a(u, v) =

∫

Ω

∇u∇vdxdy, f(v) =

∫

Ω

fvdxdy.
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The approximation of (8) reads as follows

{

Find uh ∈ Vh, such that
ah(uh, vh) = f(vh), ∀ vh ∈ Vh.

(9)

We define

‖ · ‖h = (
∑

K∈Jh

| · |21,K )
1

2 ,

then it is easy to see that ‖ · ‖h is the norm over Vh.

Assume u and uh to be the unique solution of (7) and (9) respectively, then by the second
Strang lemma[1], we have

‖u − uh‖h ≤ C( inf
vh∈Vh

‖u − vh‖h + sup
vh∈Vh\{0}

|ah(u, vh) − (f, vh)|

‖vh‖h

). (10)

Now we consider the first term on the right hand of (10), i.e., interpolation error.

By lemma 2.1, we have

inf
vh∈Vh

‖u − vh‖h ≤ ‖u − Πhu‖h = (
∑

K∈Jh

|u − ΠKu|21,K)
1

2

= (
∑

K∈Jh

∑

|α|=1

‖Dα(u − ΠKu)‖2
0,K)

1

2

= (
∑

K∈Jh

∑

|α|=1

h−2α
K (hxhy)‖D̂

α(û − Π̂
K̂

û)‖2
0,K̂

)
1

2

≤ C(
∑

K∈Jh

∑

|α|=1

h−2α
K (hxhy)|D̂αû|2

1,K̂
)

1

2

≤ C(
∑

K∈Jh

∑

|α|=1

∑

|β|=1

h2β
K ‖Dα+βu‖2

0,K)
1

2

≤ Ch|u|2,Ω. (11)

Then we turn to the second term on the right hand of (10), i.e., consistency error which will
be very difficult to estimate without the usual regular assumption.

For ∀K ∈ Jh, ∀v ∈ H1(K), we define

P0iv =
1

2hx

∫

li

vdx, i = 1, 3,

P0iv =
1

2hy

∫

li

vdy, i = 2, 4,

P0v =
1

|K|

∫

K

vdxdy.

It is easy to see that these projections are affine equivalent and the corresponding ones onto
the reference element K̂ denote by P̂0i, i = 1, 2, 3, 4 and P̂0.
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Then by Green’s formula we get

ah(u, vh) − (f, vh) =
∑

K

∫

∂K

∂u

∂n
vhds =

∑

K

∑

li⊂∂K

∫

li

∂u

∂n
vhds

=
∑

K∈Jh

[

∫

l1

−(vh − P01vh)(
∂u

∂y
− P0

∂u

∂y
)dx

+

∫

l3

(vh − P03vh)(
∂u

∂y
− P0

∂u

∂y
)dx

+

∫

l2

(vh − P02vh)(
∂u

∂x
− P0

∂u

∂x
)dy

−

∫

l4

(vh − P04vh)(
∂u

∂x
− P0

∂u

∂x
)dy

=
∑

K

[I1 + I3 + I2 + I4], (12)

where

I1 =

∫

l1

−(vh − P01vh)(
∂u

∂y
− P0

∂u

∂y
)dx,

I2 =

∫

l2

(vh − P02vh)(
∂u

∂x
− P0

∂u

∂x
)dy,

I3 =

∫

l3

(vh − P03vh)(
∂u

∂y
− P0

∂u

∂y
)dx,

I4 = −

∫

l4

(vh − P04vh)(
∂u

∂x
− P0

∂u

∂x
)dy.

We will note that the conventional consistency error estimate will become invalid under the
consideration of anisotropic meshes. Take I1 for example, in the conventional way,it can be
estimated as

|I1| ≤ hxh−1
y (

∑

|α|=1

h2α
K ‖Dαvh‖

2
0,K)

1

2 |
∂u

∂y
|1,K . (13)

When the regularity assumption is satisfied, which yields hx

hy
≤ C, then we can get

|I1| ≤ ChK |u|2,K |vh|1,K . (14)

However, under the anisotropic meshes,hx

hy
−→ ∞, we can not get the desired convergence

result of (14) as usual. Thus it is more difficult for us to estimate anisotropic nonconforming
error than conventional one. We will fasten on the consistency error from now on.

Let us see (12) again, we will introduce the following notations

Lvh =
x − (xk − hx)

2hx

P02vh−
x − (xk + hx)

2hx

P04vh =
1

2
(1+ξ)P̂02v̂h−

1

2
(1−ξ)P̂04v̂h = L̂v̂h, (15)

Nvh =
y − (yk − hy)

2hy

P03vh−
y − (yk + hy)

2hy

P01vh =
1

2
(1+η)P̂03 v̂h−

1

2
(1−η)P̂01v̂h = N̂ v̂h, (16)

i.e., L, N are linear interpolations of P02vh, P04vh, and P01vh, P03vh, they are also affine equiv-
alent.
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By using the definition of these operators, (12) can be written as

ah(u, vh) − (f, vh) =
∑

K∈Jh

[
∫

K
∂
∂y

[(vh − Nvh)(∂u
∂y

− P0
∂u
∂y

)]dxdy

+
∫

K
∂
∂x

[(vh − Lvh)(∂u
∂x

− P0
∂u
∂x

)]dxdy]
=

∑

K∈Jh

(AK + BK),
(17)

where

AK =

∫

K

∂

∂y
[(vh − Nvh)(

∂u

∂y
− P0

∂u

∂y
)]dxdy,

BK =

∫

K

∂

∂x
[(vh − Lvh)(

∂u

∂x
− P0

∂u

∂x
)]dxdy.

Noticed that AK can be decomposed expressed as

AK =

∫

K

(vh − Nvh)
∂2u

∂y2
dxdy +

∫

K

(w − P0w)(
∂vh

∂y
−

∂Nvh

∂y
)dxdy = AK1 + AK2, (18)

where

AK1 =

∫

K

(vh − Nvh)
∂2u

∂y2
dxdy,

AK2 =

∫

K

(w − P0w)(
∂vh

∂y
−

∂Nvh

∂y
)dxdy, w =

∂u

∂y
.

Notice that N̂ is accurate for zero degree polynomial. By employing interpolation theorem,
we have

AK1 =

∫

K

(vh − Nvh)
∂2u

∂y2
dxdy

≤ (

∫

K

|vh − Nvh|
2dxdy)

1

2 (

∫

K

|
∂2u

∂y2
|2dxdy)

1

2

≤ (hxhy)
1

2 ‖v̂h − N̂ v̂h‖0,K̂ |u|2.K

≤ C(hxhy)
1

2 |v̂h|1,K̂ |u|2,K

= C(hxhy)
1

2 |u|2,K(

∫

K̂

(|
∂v̂h

∂ξ
|2 + |

∂v̂h

∂η
|2)dξdη)

1

2

= C(hxhy)
1

2 |u|2,K(

∫

K

(h2
x|

∂vh

∂x
|2 + h2

y|
∂vh

∂y
|2)(hxhy)−1dxdy)

1

2

≤ ChK |u|2,K |vh|1,K . (19)

Because

∂Nvh

∂y
=

1

2hy

(P03vh − P03vh) =
1

|K|

∫

K

∂vh

∂y
dxdy = P0

∂vh

∂y
, (20)

there holds

‖
∂Nvh

∂y
‖0,K =

1

|K|
|

∫

K

∂vh

∂y
dxdy|K|

1

2 ≤ (

∫

K

|
∂vh

∂y
|2dxdy)

1

2 = ‖
∂vh

∂y
‖0,K . (21)
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Then AK2 can be rewritten as

AK2 =

∫

K

(w − P0w)(
∂vh

∂y
−

∂Nvh

∂y
)dxdy

≤ ‖w − P0w‖0,K‖
∂vh

∂y
−

∂Nvh

∂y
‖0,K

≤ ‖w − P0w‖0,K‖
∂vh

∂y
‖0,K + ‖

∂Nvh

∂y
‖0,K

≤ 2‖w − P0w‖0,K‖
∂vh

∂y
‖0,K

≤ C(hxhy)
1

2 ‖ŵ − P̂0ŵ‖0,K̂
|vh|1,K

≤ C(hxhy)
1

2 |ŵ|1,K̂ |vh|1,K

≤ C(hxhy)
1

2 (

∫

K

(h2
x(

∂w

∂x
)2 + h2

y(
∂w

∂y
)2)(hxhy)

−1dxdy)
1

2 |vh|1,K

≤ Ch|vh|1,K |w|1,K

≤ ChK |vh|1,K |u|2,K . (22)

Substituting (19) and (22) into (18), we obtain

|AK | ≤ ChK |vh|1,K |u|2,K . (23)

Similarly, we can estimate BK as follows

|BK | ≤ ChK |vh|1,K |u|2,K . (24)

Substituting (23) and (24) into (17) yields

|ah(u, vh) − (f, vh)| ≤
∑

K∈Jh

ChK |u|1,K |vh|1,K ≤ Ch‖vh‖h|u|2,Ω. (25)

Then we get the following theorem.
Theorem 3.1. Under anisotropic meshes, we have the anisotropic error estimate as follows

‖u − uh‖h ≤ Ch|u|2,Ω, (26)

‖u − uh‖0,Ω ≤ Ch2|u|2,Ω. (27)

Proof. Substituting (11) and (25) into (10) we can obtain (26). By the duality argument as
standard finite element theory[1] we will get (27). Then the proof is completed.

4. Some Anisotropic Superconvergence Results

In this section, we will focus on studying the superconvergence behavior of the finite element
constructed as (1).

Firstly, we can prove the following identical relation
Lemma 4.1. Under anisotropic meshes, we have

‖u− uh‖
2
h = ‖u − Πhu‖2

h + ‖Πhu − uh‖
2
h. (28)

Proof. Note that 4(Πhu − uh)|K and ∂(Πhu−uh)
∂n

|∂K are constants, we have

ah(u − Πhu, Πhu − uh) =
∑

K∈Jh

∫

K

5(u − ΠKu) 5 (Πhu − uh)dxdy
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=
∑

K∈Jh

∫

K

−(u − ΠKu) 4 (Πhu − uh)dxdy

+
∑

K∈Jh

∫

∂K

−(u − ΠKu)
∂(Πhu − uh)

∂n
ds

=
∑

K∈Jh

4(Πhu − uh)

∫

K

−(u − ΠKu)dxdy

+
∑

K∈Jh

∂(Πhu − uh)

∂n

∫

∂K

−(u − ΠKu)ds

= 0.

Then it is easy to show that

‖u − uh‖
2
h = ah(u − uh, u − uh)

= ah(u − Πhu, u− Πhu) + ah(Πhu − uh, Πhu − uh) + 2ah(u − Πhu, Πhu − uh)

= ‖u − Πhu‖2
h + ‖Πhu − uh‖

2
h.

Thus the proof is completed.

Remark 1. The identical relation (28) is obvious for conforming element, but (28) seldom
happens for nonconforming element, especially for the element with anisotropic property.

The following theorem shows that the order of anisotropic consistency error is of O(h2)
which is one order higher than the anisotropic interpolation error.

Theorem 4.1. Under anisotropic meshes, if u ∈ H3(Ω), we have

|ah(u, vh) − (f, vh)| ≤ Ch2|u|3,Ω‖vh‖h, ∀vh ∈ Vh. (29)

Proof. We turn back to (12) again and study the following relations,

I1 + I3 =

∫

l1

−(vh − P01vh)(
∂u

∂y
− P01

∂u

∂y
)dx +

∫

l3

(vh − P03vh)(
∂u

∂y
− P03

∂u

∂y
)dx

= −

∫ xK+hx

xK−hx

[
∂u

∂y
(x, yK − hy) −

1

2hx

∫ xK+hx

xK−hx

∂u

∂y
(x, yK − hy)dx]·

[vh(x, yK − hy) −
1

2hx

∫ xK+hx

xK−hx

vh(x, yK − hy)dx]dx

+

∫ xK+hx

xK−hx

[
∂u

∂y
(x, yK + hy) −

1

2hx

∫ xK+hx

xK−hx

∂u

∂y
(x, yK + hy)dx]·

[vh(x, yK + hy) −
1

2hx

∫ xK+hx

xK−hx

vh(x, yK + hy)dx]dx.
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Note that

vh(x, yK − hy) −
1

2hx

∫ xK+hx

xK−hx

vh(x, yK − hy)dx

=
1

2hx

∫ xK+hx

xK−hx

[vh(x, yK − hy) − vh(t, yK − hy)]dt

=
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK − hy)dzdt

=
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK + hy)dzdt

= vh(x, yK + hy) −
1

2hx

∫ xK+hx

xK−hx

vh(x, yK + hy)dx.

By the way, here we have used the specialities: ∂vh

∂x
∈ {1, x} and ∂vh

∂y
∈ {1, y}, then

I1 + I3 =

∫ xK+hx

xK−hx

[−
∂u

∂y
(x, yK − hy) +

1

2hx

∫ xK+hx

xK−hx

∂u

∂y
(x, yK − hy)dx

+
∂u

∂y
(x, yK + hy) −

1

2hx

∫ xK+hx

xK−hx

∂u

∂y
(x, yK + hy)dx] ·

[vh(x, yK + hy) −
1

2hx

∫ xK+hx

xK−hx

vh(x, yK + hy)dx]dx

=

∫ xK+hx

xK−hx

[−
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂2u

∂x∂y
(x, yK − hy)dxdt

+
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂2u

∂x∂y
(x, yK + hy)dxdt] ·

[
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK + hy)dzdt]dx

=
1

2hx

∫ xK+hx

xK−hx

[

∫ xK+hx

xK−hx

∫ x

t

∫ yK+hy

yK−hy

∂3u

∂x∂y2
dxdtdy] ·

[
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK + hy)dzdt]dx

=
1

2hx

∫ xK+hx

xK−hx

D1D2dx. (30)

where

D1 =

∫ xK+hx

xK−hx

∫ x

t

∫ yK+hy

yK−hy

∂3u

∂x∂y2
dxdtdy,

D2 =
1

2hx

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK + hy)dzdt.
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Since

|D1|
2 ≤

∫ xK+hx

xK−hx

∫ x

t

∫ yK+hy

yK−hy

|
∂3u

∂x∂y2
|2dxdtdy × 2hy

∫ xK+hx

xK−hx

|x − t|dt

≤ 2hx

∫ xK+hx

xK−hx

∫ yK+hy

yK−hy

|
∂3u

∂x∂y2
|2dxdy × 2hy

∫ xK+hx

xK−hx

|x − t|dt

= 4hxhy‖
∂3u

∂x∂y2
‖2
0,K ×

∫ xK+hx

xK−hx

|x − t|dt,

|D2|
2 =

1

4h2
x

|

∫ xK+hx

xK−hx

∫ x

t

∂vh

∂z
(z, yK − hy)dzdt|2

≤
1

4h2
x

∫ xK+hx

xK−hx

∫ x

t

|
∂vh

∂z
|2dzdt

∫ xK+hx

xK−hx

|x − t|dt,

then
∫ xK+hx

xK−hx

|D1|
2dx ≤ 4hxhy‖

∂3u

∂x∂y2
‖2
0,K ×

∫ xK+hx

xK−hx

∫ xK+hx

xK−hx

|x − t|dtdx

= 4hxhy‖
∂3u

∂x∂y2
‖2
0,K ×

8h3
x

3

=
32h4

xhy

3
‖

∂3u

∂x∂y2
‖2
0,K , (31)

∫ xK+hx

xK−hx

|D2|
2dx ≤

1

4h2
x

∫ xK+hx

xK−hx

∫ xK+hx

xK−hx

∫ x

t

|
∂vh

∂z
|2dzdt

∫ xK+hx

xK−hx

|x − t|dtdx

≤
1

2hx

∫ xK+hx

xK−hx

|
∂vh

∂x
|2dx

∫ xK+hx

xK−hx

∫ xK+hx

xK−hx

|x − t|dxdt

=
1

2hx

∫ xK+hx

xK−hx

|
∂vh

∂x
|2dx ×

8h3
x

3

=
2h2

x

3hy

∫ xK+hx

xK−hx

∫ yK+hy

yK−hy

|
∂vh

∂x
|2dxdy. (32)

By (30), (31),(32) and Cauchy-Schwartz inequality, we have

|I1 + I3| ≤
4h2

x

3
‖

∂3u

∂x∂y2
‖0,K‖

∂vh

∂x
‖0,K . (33)

Similarly , we can get

|I2 + I4| ≤
4h2

y

3
‖

∂3u

∂x2∂y
‖0,K‖

∂vh

∂y
‖0,K . (34)

Then (29) follows from (12), (33) and (34). This completes the proof.
Remark 2. We should point out that theorem 4.1 will be hold for the rectangular finite
elements whose spaces satisfy the following property: ∂vh

∂x
and ∂vh

∂y
have nothing to do with the

variable y and x, respectively. One may check that the rotated Q1 element studied in [14,15]
and the elements proposed in [16] have above property. Thus (29) holds for these elements.
Remark 3. The order of consistency error of this element is O(h2) under anisotropic meshes,
which is just one order higher than the anisotropic interpolation error. This convergency prop-
erty is similar to that of the famous Quasi-Wilson[17,18] element under regularity assumption.



An Anisotropic Nonconforming Finite Element with Some Superconvergence Results 271

The superclose result will be obtained by theorem 4.1.
Theorem 4.2. Suppose u, uh, Πhu are the same as in lemma 4.1, u ∈ H3(Ω) ∩ H1

0 (Ω), then
we have the following superclose result under anisotropic meshes

‖Πhu − uh‖h ≤ Ch2|u|3,Ω. (35)

Proof. By lemma 4.1, we have

ah(Πhu − u, Πhu − uh) = 0,

then

‖Πhu− uh‖
2
h = ah(Πhu − uh, Πhu − uh)

= ah(Πhu − u, Πhu − uh) + ah(u − uh, Πhu − uh)

= ah(u − uh, Πhu − uh)

= ah(u, Πhu − uh) − f(Πhu − uh).

By theorem 4.1, we have

‖Πhu − uh‖
2
h ≤ Ch2|u|3,Ω‖Πhu − uh‖h. (36)

So, (35) follows from (36).
The following superconvergence theorem is the main result of this section.

Theorem 4.3. Assume OK to be the central point of element K, u ∈ H3(Ω) ∩ W 1,∞(Ω), then
we have

(
∑

K∈Jh

| 5 (u − uh)(OK)|2hxhy)
1

2 ≤ Ch2|u|3,Ω. (37)

Proof.

(
∑

K∈Jh

| 5 (u − uh)(OK)|2hxhy)
1

2 ≤ (
∑

K∈Jh

| 5 (u − Πhu)(OK)|2hxhy)
1

2

+(
∑

K∈Jh

| 5 (Πhu − uh)(OK)|2hxhy)
1

2

= M + H, (38)

where
M = (

∑

K∈Jh

| 5 (u − Πhu)(OK)|2hxhy)
1

2 ,

H = (
∑

K∈Jh

| 5 (Πhu − uh)(OK)|2hxhy)
1

2 .

Firstly, we estimate M . Denote Ô by the central point of the reference element K̂, then we
have

| 5 (u − Πhu)(OK)|2 = |
∂(u − Πhu)

∂x
(OK)|2 + |

∂(u − Πhu)

∂y
(OK)|2. (39)

Let Q̂(û) = |∂(û−Π̂û)
∂ξ

(Ô)|, then ∀û ∈ P2(K̂), Q̂(û) = 0. In fact, ∂(û−Π̂û)
∂ξ

∈ P1(K̂), suppose

∂(û−Π̂û)
∂ξ

= aξ + bη + c, then

1

K̂

∫

K̂

∂(û − Π̂û)

∂ξ
dξdη =

1

K̂

∫

K̂

(aξ + bη + c)dξdη = c =
∂(û − Π̂û)

∂ξ
(Ô), (40)
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and
1

K̂

∫

K̂

∂(û − Π̂û)

∂ξ
dξdη =

1

K̂

∫

∂K̂

(û − Π̂û)nξds = 0. (41)

Then by Bramble-Hilbert lemma, the first term on the right hand of (39) can be estimated
as

|
∂(u − Πhu)

∂x
(OK)|2 = |Q̂(û)|2h−2

x ≤ ‖
∂(û− Π̂û)

∂ξ
‖2
0,∞,K̂

h−2
x

≤ C|
∂(û − Π̂û)

∂ξ
|2
2,K̂

h−2
x = C|

∂û

∂ξ
|2
2,K̂

h−2
x

= C(hxhy)−1
∑

|α|=2

h2α
K ‖Dα ∂u

∂x
‖2
0,K . (42)

By the same argument, the second term on the right hand of (39) can be estimated as

|
∂(u − Πhu)

∂y
(OK)|2 ≤ C(hxhy)−1

∑

|α|=2

h2α
K ‖Dα ∂u

∂y
‖2
0,K . (43)

Substituting (42) and (43) into (39), we get

| 5 (u − Πhu)(OK)|2 ≤ C(hxhy)−1
∑

|α|=2

h2α
K (‖Dα ∂u

∂x
‖2
0,K + ‖Dα ∂u

∂y
‖2
0,K), (44)

and

M ≤ C
∑

K∈Jh

[
∑

|α|=2

h2α
K (‖Dα ∂u

∂x
‖2
0,K + ‖Dα ∂u

∂y
‖2
0,K)]

1

2 ≤ Ch2|u|3,Ω. (45)

Now, let us estimate H . | 5 (Πhu − uh)(OK)|2 can be expressed as

| 5 (Πhu − uh)(OK)|2 = |
∂(Πhu − uh)

∂x
(OK)|2 + |

∂(Πhu − uh)

∂y
(OK)|2

= |
∂(Π̂û − ûh)

∂ξ
(Ô)|2h−2

x + |
∂(Π̂û − ûh)

∂η
(Ô)|2h−2

y . (46)

Note that ∂(Π̂û−ûh)
∂ξ

, ∂(Π̂û−ûh)
∂η

∈ P1(K̂),and by (40), we have

| 5 (Πhu − uh)(OK)|2 = |
1

|K̂|

∫

K̂

∂(Π̂û − ûh)

∂ξ
|2h−2

x + |
1

|K̂|

∫

K̂

∂(Π̂û − ûh)

∂η
|2h−2

y

≤
1

|K̂|
[‖

∂(Π̂û − ûh)

∂ξ
‖2
0,K̂

h−2
x + ‖

∂(Π̂û − ûh)

∂η
‖2
0,K̂

h−2
y ]

= (4hxhy)−1[‖
∂(Πhu − uh)

∂x
‖2
0,K + ‖

∂(Πhu − uh)

∂y
‖2
0,K ]

= C(hxhy)−1|Πhu − uh|
2
1,K . (47)

By (47), theorem 4.2 and Cauchy-Schwarz inequality, we have

|N | ≤ C‖Πhu − uh‖h ≤ Ch2|u|3,Ω. (48)

Substituting (45) and (48) into (38), we complete the proof of theorem 4.3.
Remark 4. The above superconvergence result only requires u ∈ H3(Ω)∩W 1,∞(Ω). However,
as to rotated Q1 element, in order to get our results, reference [19] requires u ∈ W 3,∞(Ω) and
all the elements to be equal square.
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5. Numerical Experiment

In order to investigate the numerical behavior of the element under anisotropic meshes,
we still consider the second order problem (7) with f(x, y) = 4 − 2x2 − 2y2 ∈ L2(Ω), and
Ω = (−1, 1) × (−1, 1). It can be verified that the exact solution of problem (7) is u(x, y) =
(1 − x2)(1 − y2). In order to obtain the meshes on Ω, we subdivide the boundary of Ω into n
and m equal intervals along the x−axis and y−axis, respectively. We carry out the numerical
computing with respect to the mesh with n

m
= 10 and n

m
= 20, respectively. The numerical

results are listed in Table 5.1-5.4. Herein, α denotes the convergence order.

Table 5.1

m × n ‖u − uh‖0,Ω α ‖u − uh‖h α

2 × 20 0.1230889753 / 1.3833059703 /

4 × 40 0.0307053090 2.0031416416 0.7078987621 0.9665054679

8 × 160 0.0076721561 2.0007841587 0.3559613009 0.9918226004

16 × 320 0.0019177785 2.0001959801 0.1782315704 0.9979674816

32 × 640 0.0004794283 2.0000491142 0.0891471325 0.9994925261

Table 5.2

m × n ‖u − uh‖0,Ω α ‖u − uh‖h α

2 × 40 0.1220586740 / 1.3786250665 /

4 × 80 0.0304980042 2.0007882118 0.7053385757 0.9668422341

8 × 160 0.0076234603 2.0001969337 0.3546467856 0.9919331670

16 × 320 0.0019058000 2.0000493526 0.1775697988 0.9979966283

32 × 640 0.0004764459 2.0000123978 0.0888156759 0.9994999766

From the above two tables 5.1 and 5.2, we can see that the optimal energy norm error and L2

norm error estimates between u and uh are obtained under large aspect ratio (hK

ρK
=

√
m2+n2

m
).

It shows that the optimal error estimates are independent of hK and of hK/ρK , which means
that we can get the same order of error estimates whether the subdivision satisfies the regular
assumption or not.

Table 5.3

m × n ‖Πhu − uh‖h α (
∑

K∈Jh

| 5 (u − uh)(OK)|2hxhy)
1

2 α

2 × 20 0.2111396436 / 0.0961083012 /

4 × 40 0.0527266706 2.0015926361 0.0240498704 1.9986319542

8 × 80 0.0131780286 2.0003983974 0.0060138915 1.9996583462

16 × 160 0.0032942797 2.0000994205 0.0015035618 1.9999146461

32 × 320 0.0008235557 2.0000250340 0.0003758960 1.9999787807

Table 5.4

m × n ‖Πhu − uh‖h α (
∑

K∈Jh

| 5 (u − uh)(OK)|2hxhy)
1

2 α

2 × 40 0.2108962281 / 0.0961951954 /

4 × 80 0.0527096083 2.0003952980 0.0240544522 1.9996608496

8 × 160 0.0131764991 2.0000989437 0.0060139663 1.9999153614

16 × 320 0.0032940683 2.0000247955 0.0015035137 1.9999787807

32 × 640 0.0008235136 2.0000061989 0.0003758798 1.9999946356
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On the other hand, from table 5.3 and 5.4, we can see that superclose and superconvergence
behavior are also coincide with our theoretical analysis.

Acknowledgement. The authors thank the anonymous referees for their valuable suggestions.
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