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Abstract

In this paper, we propose a Sample Average Approximation (SAA) method for a class of

Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently

considered by Birbil, Gürkan and Listes [3]. We study the statistical properties of obtained

SAA estimators. In particular we show that under moderate conditions a sequence of weak

stationary points of SAA programs converge to a weak stationary point of the true problem

with probability approaching one at exponential rate as the sample size tends to infinity.

To implement the SAA method more efficiently, we incorporate the method with some

techniques such as Scholtes’ regularization method and the well known smoothing NCP

method. Some preliminary numerical results are reported.
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1. Introduction

In this paper, we investigate the following Stochastic Mathematical Programs with Com-
plementarity Constraints (SMPCC)

min
x∈X

E[f(x, ξ(ω))]

s.t. E[F (x, ξ(ω))] ≥ 0, E[G(x, ξ(ω))] ≥ 0,

0 ≤ E[F (x, ξ(ω))] ⊥ E[G(x, ξ(ω))] ≥ 0,

(1.1)

where f : IRn × IRk → IR, F : IRn × IRk → IRm, G : IRn × IRk → IRm are twice continuously
differentiable with respect to x for almost every ξ and continuous with respect to ξ, X ⊂ IRn is
a compact subset of IRn, ξ : Ω → IRk is a vector of random variables defined on a probability
space (Ω,F , P ), E denotes the mathematical expectation.

The SMPCC model (1.1) was first considered by Birbil, Gürkan and Listes [3] and it is a
natural extension of deterministic MPEC models [6]. The primary motivation for the model
(1.1) is that the objective and constraint functions may involve some random data which reflect
uncertainties in practical problems. For instance, in Stackelberg leader follower model [6], if
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players have to make a decision before the realization of uncertain demand, then each player
has to consider the expected profit rather than the profit in a particular demand scenario.
Subsequently the model can be reformulated as (1.1).

Birbil, Gürkan and Listes [3] applied the well known Sample Path (SP) method [9, 10]
to solve (1.1). The basic idea of SP is to use computer simulation to approximate functions
which are not observable. In this context, the expected value of functions in the objective
and constraints of (1.1) are either not observable or very costly to be integrated out. Birbil,
Gürkan and Listes [3] used simulation based average to construct successive approximate MPEC
problems and showed that under some stability conditions the stationary points of approximate
MPEC problems converge to their counterpart almost surely. More recently, Bastin, Cirillo and
Toint [2] extended the discussion to investigate the convergence of stationary points for a broader
class of stochastic optimization problems.

In this paper, we apply well known sample average approximation method to solve (1.1).
Specifically, we consider an independent identically distributed (i.i.d) sample of ξ(ω), which is
denoted by ξ1, ..., ξN , and use the following Sample Average Approximation (SAA) problem to
approximate the true problem (1.1):

min
x∈X

f̂N (x)

s.t. 0 ≤ F̂N (x) ⊥ ĜN (x) ≥ 0,
(1.2)

where f̂N (x) =
1
N

∑N
i=1 f(x, ξi), and F̂N (x) =

1
N

∑N
i=1 F (x, ξi), ĜN (x) =

1
N

∑N
i=1 G(x, ξi).

SAA methods are essentially the same as SP methods and they have been extensively investi-
gated in stochastic optimization. See recent work [1, 5, 16, 18]. More recently SAA methods
have been applied to two stage stochastic mathematical programs with equilibrium constraints
[17, 19, 21, 7] and various convergence results have been established.

In this paper, we analyze convergence of weak stationary points of SAA problem (1.2).
This is motivated by the fact that due to the combinatorial nature, one may be more likely to
obtain a stationary point than a local or global minimizer for MPEC problems. Consequently
the notion of weak stationary point which was introduced by Scheel and Scholtes [12] is very
relevant, indeed it has been well accepted and studied. The focus of this paper is on the
convergence rate of weak stationary points of the SAA problem (1.2). Under some moderate
conditions, we show the exponential convergence for weak stationary point of the SAA problems
as sample size N tends to infinity. This result has significantly strengthened recent results of
SAA methods for model (1.1).

The rest of this paper are organized as follows. In Section 2, we introduce some definitions
about stationary points and present some preliminary results. In Section 3, we show that
under some moderate stability conditions which are widely used in MPEC literature, the weak
stationary points of SAA problem (1.2) converge to its counterpart of the true problem as the
sample size tends to infinity. In Section 4, we discuss numerical implementation of the SAA
method, and finally in Section 5 we report some preliminary test results.

2. Preliminaries

In this section, we recall some basic notions and definitions in mathematical programs with
complementarity constraints. For simplicity of notation, let f̄(x) = E[f(x, ξ(ω))], F̄ (x) =
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E[F (x, ξ(ω))] and Ḡ(x) = E[G(x, ξ(ω))]. Then, (1.1) can be written componentwise as

min
x∈X

f̄(x)

s.t. F̄j(x) ≥ 0, Ḡj(x) ≥ 0, j = 1, · · · ,m,

F̄j(x)Ḡj(x) = 0, j = 1, · · · ,m.

(2.1)

Under some appropriate conditions, we can show that the underlying functions in (2.1) are
twice continuously differentiable.

Proposition 2.1. Suppose that: (a) f(x, ξ(ω)), F (x, ξ(ω)), G(x, ξ(ω)) are twice continuously
differentiable in x w.p.1; (b) E[∇xf(x, ξ(ω))], E[∇xFj(x, ξ(ω))] and E[∇xGj(x, ξ(ω))] are well
defined and ∇xf(x, ξ(ω)), ∇xFj(x, ξ(ω)), ∇xGj(x, ξ(ω)) are dominated by an integrable func-
tion κ1(ξ), j = 1, · · · ,m. Then f̄(x), F̄ (x) and Ḡ(x) are continuously differentiable and

∇f̄(x) = E[∇xf(x, ξ(ω))]

and
∇F̄j(x) = E[∇xFj(x, ξ(ω))]; ∇Ḡj(x) = E[∇xGj(x, ξ(ω))], j = 1, · · · ,m.

Suppose in addition that (c) E[∇2
xxf(x, ξ(ω))], E[∇2

xxFj(x, ξ(ω))] and E[∇2
xxGj(x, ξ(ω))] are

well defined; (d) ∇2
xxf(x, ξ(ω)), ∇2

xxFj(x, ξ(ω)), ∇2
xxGj(x, ξ(ω)) are dominated by an integrable

function κ2(ξ), j = 1, · · · ,m. Then f̄(x), F̄ (x) and Ḡ(x) are twice continuously differentiable
and

∇2f̄(x) = E[∇2
xxf(x, ξ(ω))]

and
∇2F̄j(x) = E[∇2

xxFj(x, ξ(ω))]; ∇2Ḡj(x) = E[∇2
xxGj(x, ξ(ω))], j = 1, · · · ,m.

The results follow straightforwardly from [15, Proposition 3.2]. We omit the details of the
proof.

Throughout the paper, we make a blanket assumption that conditions in Proposition 2.1
hold. Next, we define the following active index sets at a feasible point x of problem (2.1):

IF̄ (x) := {i ∈ {1, · · · ,m} | F̄i(x) = 0},
IḠ(x) := {i ∈ {1, · · · ,m} | Ḡi(x) = 0}.

Clearly IF̄ (x) ∪ IḠ(x) = {1, 2, · · · ,m}. We call IF̄ (x) ∩ IḠ(x) the biactive set.
Recall that the MPEC-LICQ is satisfied at a feasible point x∗ if the gradients

{∇F̄i(x∗),∇Ḡj(x∗) : i ∈ IF̄ (x∗), j ∈ IḠ(x∗)
}

are linearly independent. The notion of MPEC-LICQ was first considered by Scholtes [13] to
deal with the problem in MPEC that the natural LICQ may not hold at any feasible point of an
MPEC problem. The notion has been well accepted and widely used in the MPEC literature.

We consider the Lagrangian function associated with problem (1.1) (or (2.1))

L(x, λ, µ) = E[f(x, ξ(ω))]− λTE[F (x, ξ(ω))]− µTE[G(x, ξ(ω))].

A feasible point x∗ of (2.1) is called a weakly stationarity point if there exist multipliers λ∗ and
µ∗ such that




∇xL(x∗, λ∗, µ∗) = 0,

λ∗iE[Fi(x∗, ξ)] = 0, i = 1, · · · ,m,

µ∗iE[Gi(x∗, ξ)] = 0, i = 1, · · · ,m.

(2.2)
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A feasible point x∗ is called a strongly stationarity point if λ∗i ≥ 0, µ∗i ≥ 0 for i ∈ IF̄ (x∗) ∩
IḠ(x∗). Note that, in this case, if the MPEC-LICQ is satisfied at the point x∗, then the
Lagrange multipliers λ∗ and µ∗ are unique. A solution (x∗, λ∗, µ∗) of (2.2) is said to satisfy
Upper-level Strict Complementarity (USC) condition if λ∗i µ

∗
i 6= 0, for i ∈ IF̄ (x∗) ∩ IḠ(x∗), and

it is said to satisfy Lower-level Strict Complementarity (LSC) condition if IF̄ (x∗)∩IḠ(x∗) = ∅.
In this paper, we focus on the convergence of the weak stationary points of SAA program

(1.2) when the sample size N tends to infinity although the results can be easily extended to
the strong stationary points. For convenience, we make the following assumption.

Assumption 2.1. The LSC condition holds at a weak stationary point of the true problem
(1.1).

Under Assumption 2.1, the optimality conditions (2.2) for the weak stationary point x∗ can
be written as 




∇xL(x∗, λ∗, µ∗) = 0,

F̄i(x∗) = 0, i ∈ IF̄ (x∗),
Ḡi(x∗) = 0, i ∈ IḠ(x∗),
λ∗i = 0, i ∈ IḠ(x∗),
µ∗i = 0, i ∈ IF̄ (x∗).

(2.3)

Define the mapping: H : IRn × IRm × IRm → IRn × IRm × IRm by

H(x, λ, µ) =




∇xL(x, λ, µ)
F̄IF̄ (x)(x)
ḠIḠ(x)(x)

λIḠ(x)

µIF̄ (x)




, (2.4)

where F̄IF̄ (x)(x) denotes the column vector consisting of F̄i(x) for each i ∈ IF̄ (x), ḠIḠ(x)(x)
denotes the column vector consisting of Ḡi(x) for each i ∈ IḠ(x), λIḠ(x) denotes the column
vector consisting of λi for each i ∈ IḠ(x), µIF̄ (x) denotes the column vector consisting of µi for
each i ∈ IF̄ (x). Then (2.3) can be written as

H(x∗, λ∗, µ∗) = 0.

Similarly, we can define the weak stationary point xN of the SAA problem (1.2) associated with
multipliers λN and µN : 




∇xLN (xN , λN , µN ) = 0,

λN
i F̂N

i (xN ) = 0, i = 1, · · · ,m,

µN
i ĜN

i (xN ) = 0, i = 1, · · · ,m,

(2.5)

where F̂N
i denotes the i-th component of F̂N and ĜN

i denotes the i-th component of ĜN , and
the Lagrangian function is defined as

LN (x, λ, µ) = f̂N (x)− λT F̂N (x)− µT ĜN (x).

Let IF̂N
(x) and IĜN

(x) be the active index sets at a feasible point x of (1.2). We make the
following assumption for (2.5).

Assumption 2.2. The LSC condition holds at a weak stationary point of the SAA problem
(1.2).
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Under Assumption 2.2, condition (2.5) can be written as



∇xLN (x, λ, µ)
F̂N
IF̂N

(x)(x)

ĜN
IĜN

(x)(x)

λIĜN
(x)

µIF̂N
(x)




= 0.

Note that the index sets IF̂N
and IĜN

depends on sample size N . This is not convenient for
convergence analysis. In the following lemma, we show that they can be replaced by IF̄ and
IḠ respectively.

Lemma 2.1. Let x∗ be a weak stationary point of the true problem (1.1) and xN be a weak
stationary point of SAA problem (1.2). Suppose that Assumption 2.1 hold at x∗ and Assumption
2.2 holds at xN . Suppose also that xN → x∗ as N →∞. Then for N sufficiently large

IF̄ (x∗) = IF̂N
(xN ), IḠ(x∗) = IĜN

(xN ), w.p.1.

Proof. Let I := {1, 2, · · · ,m}. Under Assumptions 2.1–2.2, we have I \ IF̄ (x∗) = IḠ(x∗)
and I \ IF̂N

(xN ) = IĜN
(xN ).

Let i ∈ IḠ(x∗). Then F̄i(x∗) > 0. Since F̄i is continuous, there exists a closed neighborhood
B(x∗) of x∗ such that F̄i(x) > δ for any x ∈ B(x∗) where δ > 0 is some constant. Since
xN → x∗, we assume that N is sufficiently large such that xN ∈ B(x∗). Hence F̄i(xN ) > δ,
therefore IḠ(x∗) ⊂ IĜN

(xN ).
Under the assumptions of Proposition 2.1 (a blanket assumption), we can apply the uniform

strong law of large numbers [11, Lemma A1] to F̂N
i on B(x∗) and conclude that F̂N

i → F̄i w.p.1
uniformly as N → ∞. Therefore for N sufficiently large, we have that F̂N

i (xN ) > δ/2 > 0
w.p.1. This shows i ∈ IĜN

(xN ).
Similarly we can show that IF̄ (x∗) ⊂ IF̂N

(xN ). Since IḠ(x∗) and IF̄ (x∗) are complementary
to each other and IĜN

(xN ) and IF̂N
(xN ) are complementary to each other, the conclusion

follows.
In the following analysis, we are interested in the local convergence analysis of the weak

stationary points of the SAA problem when N tends to infinity. Based on the observations
obtained in Lemma 2.1, we only need to consider the following equation for SAA program (1.2)
for N sufficiently large:

HN (x, λ, µ) :=




∇xLN (x, λ, µ)
F̂N
IF̄ (x)(x)

ĜN
IḠ(x)(x)
λIḠ(x)

µIF̄ (x)




= 0.

We are now ready to state our first convergence result for the weak stationary points of the
SAA problem.

Proposition 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Let {xN} be a sequence of weak
stationary points of the SAA problem (1.2) and {(λN , µN )} be the corresponding multipliers.
Then w.p.1 an accumulation point of {xN} with finite corresponding accumulation point of
{(λN , µN )} is a weak stationary point of (1.1).
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Proof. Assume without loss of generality that {(xN , λN , µN )} → (x∗, λ∗, µ∗). Under As-
sumptions 2.1-2.2, we have from Lemma 2.1 that for N sufficiently large, IF̄ (xN ) = IF̄ (x∗) and
IḠ(xN ) = IḠ(x∗). Then (xN , λN , µN ) is a solution of the following equation

HN (x, λ, µ) =




∇xLN (x, λ, µ)
F̂N
IF̄ (x∗)(x)

ĜN
IḠ(x∗)(x)
λIḠ(x∗)

µIF̄ (x∗)




= 0.

Under condition (d) of Proposition 2.1 and the uniform law of large numbers [11, Lemma
A1], HN converges to H uniformly w.p.1. in any closed neighborhood of (x∗, λ∗, µ∗) w.p.1 as
N →∞. Therefore

lim
N→∞

HN (xN , λN , µN ) = H(x∗, λ∗, µ∗) = 0 w.p.1.

which indicates that w.p.1 x∗ is a weak stationary point of the true problem.

3. Exponential Convergence of Weak Stationary Points

In this section, we study the exponential convergence of the weak stationary points of the
SAA program when the sample size N tends to infinity. For this purpose, we need to make the
following assumption.

Assumption 3.1. Let X be a compact set in IRn and υ(x, ξ(ω)) denote any element in the col-
lection of functions {(∇xf(x, ξ(ω)))i, Fj(x, ξ(ω)), Gj(x, ξ(ω)), (∇xFj(x, ξ(ω)))i, (∇xGj(x, ξ(ω)))i,

i = 1, · · · , n, j = 1, · · · ,m.}. Then υ(x, ξ(ω)) possesses the following properties:

(A1) for every x ∈ X , the moment generating function

M(t) := E
[
et(υ(x,ξ(ω))−E[υ(x,ξ(ω))])

]

of random variable υ(x, ξ(ω))−E[υ(x, ξ(ω))] is finite valued for all t in a neighborhood of
zero;

(A2) there exists a (measurable) function κ3 : IRn → R+ and constant γ > 0 such that

|υ(x′, ξ(ω))− υ(x, ξ(ω))| ≤ κ3(ξ(ω))‖x′ − x‖γ (3.1)

for all ξ(ω) ∈ Ξ and all x′, x ∈ X ;

(A3) the moment generating function Mκ3(t) of κ3(ξ(ω)) is finite valued for all t in a neigh-
borhood of zero.

Assumption 3.1 (A1) means that the random variable υ(x, ξ(ω)) does not have a heavy tail
distribution. In particular, it holds if this random variable has a distribution supported on a
bounded subset of R. Assumption 3.1 (A2) requires υ(x, ξ(ω)) to be globally Holder continuous
with respect to x. Assumption 3.1 (A3) is satisfied if E[κ3(ξ(ω))] is finite.

Lemma 3.1. Let υ(x, ξ(ω)) = (υ1(x, ξ(ω)), · · · , υp(x, ξ(ω)))T be such that each component
υi(x, ξ(ω)) is given as in Assumption 3.1 and Assumption 3.1 hold. Then for any ε > 0,
there exist positive constants C(ε) and β(ε), independent of N , such that

Prob
{

sup
x∈X

‖υN (x)− E[υ(x, ξ(ω))]‖ ≥ ε

}
≤ pC(ε)e−Nβ(ε), (3.2)

where υN (x) = N−1
∑N

i=1 υ(x, ξi) and ξ1, · · · , ξN is an i.i.d sample of ξ(ω).
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Proof. By [19, Theorem 5.1], for each i ∈ {1, · · · , p}, there exist positive constants Ci(ε)
and βi(ε), independent of N such that

Prob
{

sup
x∈X

|υN
i (x)− E[υi(x, ξ(ω))]| ≥ ε

}
≤ Ci(ε)e−Nβi(ε), (3.3)

where υN
i (x) denotes the i-th component of υN (x). Consequently, we have

Prob
{

sup
x∈X

‖υN (x)− E[υ(x, ξ(ω))]‖ ≥ ε

}
≤

p∑

i=1

Prob
{

sup
x∈X

|υN
i (x)− E[υi(x, ξ(ω))]| ≥ ε

}

≤
p∑

i=1

Ci(ε)e−Nβi(ε)

≤ pC(ε)e−Nβ(ε)

where C(ε) := max{C1(ε), · · · , Cp(ε)} and β(ε) := min{β1(ε), · · · , βp(ε)}.
We are now ready to state our main convergence result, that is, if {xN} converges to x∗ as

in Proposition 2.2, then it does so at exponential rate under some mild conditions. The proof
relies on a stability theorem [4, Theorem 5.2.4].

Let Φ : D → IRn be a continuous function, where D is a subset of IRn. Let N be an open
subset of D. We use B(Φ; ε, clN ), where cl denotes the closure of a set, to denote the set of
continuous functions Ψ such that

sup
y∈clN

‖Ψ(y)− Φ(y)‖ < ε.

An isolated zero x ∈ D of Φ is said to be stable if for every open neighborhood N of x which
satisfies

clN ⊂ D and Φ−1(0)
⋂

clN = {x},
there exist positive scalars ε and c such that, for all Ψ ∈ B(Φ; ε, clN ), Ψ−1(0)∩N is nonempty
and

‖x′ − x‖ ≤ c‖Φ(x′)‖, ∀x′ ∈ Ψ−1(0) ∩N .

Theorem 3.1. Suppose that all conditions in Proposition 2.2 are satisfied. Suppose also that
Assumptions 2.1, 2.2 and 3.1 hold. Suppose further that a sequence of weak stationary points
of (1.2), {xN}, converges to x∗ and (λ∗, µ∗) is the corresponding Lagrange multipliers as
Proposition 2.2 and

W :=



∇2

xxL(x∗, λ∗, µ∗) −∇xF̄IF̄ (x∗)(x∗) −∇xḠIḠ(x∗)(x∗)
∇xF̄IF̄ (x∗)(x∗)T 0 0
∇xḠIḠ(x∗)(x∗)T 0 0


 (3.4)

is nonsingular. Then {xN} converges to x∗ with probability approaching 1 exponentially fast
with the increase of sample size N and x∗ is the weak stationary points of the SAA program
(1.2).

Proof. Observe first that H defined in (2.4) is continuously differentiable at (x∗, λ∗, µ∗).
The Jacobian of H with respect to (x, λ, µ) at (x∗, λ∗, µ∗) is

∇H(x∗, λ∗, µ∗) =2
666664

∇2
xxL(x∗, λ∗, µ∗) −∇xF̄IF̄ (x∗)(x

∗) −∇xF̄IḠ(x∗)(x
∗) −∇xḠIḠ(x∗)(x

∗) −∇xḠIF̄ (x∗)(x
∗)

∇xF̄IF̄ (x∗)(x
∗)T 0 0 0 0

∇xḠIḠ(x∗)(x
∗)T 0 0 0 0

0 0 IIḠ(x∗) 0 0

0 0 0 0 IIF̄ (x∗)

3
777775

.
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By swapping some columns in matrix ∇H(x∗, λ∗, µ∗) which does not change the nonsigu-
larity/singularity of the matrix, we obtain the following matrix

V =




W α β

0 IIḠ(x∗) 0
0 0 IIF̄ (x∗)


 ,

where

α =



−∇xF̄IḠ(x∗)(x∗)

0
0


 and β =



−∇xḠIF̄ (x∗)(x∗)

0
0


 .

It is easy to see that ∇H(x∗, λ∗, µ∗) is nonsingular if and only if matrix W is nonsingular.
This shows nonsingularity of ∇H(x∗, λ∗, µ∗) under the assumption of the nonsingularity of W .
Thereby we have

H ′(x∗, λ∗, µ∗; dx, dλ, dµ) = 0 =⇒ dx = 0, dλ = 0, dµ = 0,

where H ′(·;h) denotes the directional derivative of H in direction h. To ease the notation, let
w denote (x, λ, µ). By [4, Lemma 5.2.1], there exist an open neighbourhood B of w∗ and a
constant c > 0 such that

‖w − w∗‖ ≤ c‖H(w)‖
for any w ∈ B. This indicates that w∗ is an isolated solution of H. Moreover, since ∇H(w∗)
is nonsingular, by the inverse function theorem, H is a local homeomorphism at w∗, that is,
there exists an open neighborhood N of w∗ such that the restriction H|N : N → H(N ) is a
homeomorphism [4, Proposition 2.1.14]. Furthermore, following a discussion of [4, Section 2.1.1],
we have that for any open neighborhood N ′ contained in N , the degree deg(H,N ′,H(w∗))
coincides with the index set of H at w∗, ind(H, w∗), and the sign of the determinant of∇H(w∗).
Thus by [4, Theorem 5.2.4], w∗ is a stable zero of H, that is, for any open neighborhood N of
w∗ satisfying

H−1(0) ∩ cl(N ) = {w∗},
and there exist positive scalars ε and η such that for any Ψ ∈ B(H; ε, clN ) and any w ∈
Ψ−1(0) ∩N ,

‖w − w∗‖ ≤ η‖H(w)‖.
Next we define the set

W := {w | ‖w − w∗‖ ≤ δ}
where δ is a small positive scalar. Since W is compact, by assumption, we have

W ∩H−1(0) = {w∗}.
By the uniform strong law of large numbers [11, Lemma A1], HN converges to H uniformly
w.p.1. on set W, that is, there exist ε > 0 such that

sup
w∈W

‖HN (w)−H(w)‖ < ε

for N large enough, which leads to

H−1
N (0) ∩ int(W) 6= ∅,

where int denotes the interior of a set. Let wN := (xN , λN , µN ). Then wN ∈ H−1
N (0)∩ int(W),

that is,
HN (xN , λN , µN ) = 0, (xN , λN , µN ) ∈ W.
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Furthermore, we have

‖wN − w∗‖ ≤ c‖H(wN )‖ = c‖HN (wN )−H(wN )‖ ≤ c sup
w∈W

‖HN (w)−H(w)‖ < cε.

On the other hand, we apply Lemma 3.1 to HN and H over set W, that is, for the above ε,
under Assumption 3.1, there exist κ̃j(ε) > 0 and νj(ε) > 0, independent of N , such that

Prob
{

sup
w∈W

|HN j(w)−Hj(w)| ≥ ε

}
≤ κ̃j(ε)e−Nνj(ε),

where HN j(w) and Hj(w) denote the j-th component of HN (w) and Hj(w) respectively. There-
fore

Prob
{‖wN − w∗‖ ≥ cε

} ≤ Prob
{

sup
w∈W

‖HN (w)−H(w)‖ ≥ ε

}

≤ (n + 4m)κ(ε)e−Nν(ε),

where κ(ε) = maxj{κ̃j(ε)}, ν(ε) = minj{νj(ε)}. In particular,

Prob
{‖xN − x∗| ≥ cε

} ≤ (n + 4m)κ(ε)e−Nν(ε).

The proof is complete.
Note that Scheel and Scholtes [12] used a similar condition to (3.4) in their study of stability

of deterministic MPEC. Note also that (3.4) implies that the MPEC-LICQ holds at x∗. As-
sumptions 2.1 and 2.2 are essential in establishing the exponential convergence rate in Theorem
3.1. It is an open and challenging question whether similar results can be obtained under some
weaker conditions.

4. Numerical Implementation

In this section, we propose two approaches for practical implementation of the SAA program
(1.2): regularization approach and smoothing NCP approach. The first approach is well known
and has been widely used to deal with deterministic MPECs [13, 12]. Recently Meng, Ralph
and Xu [8] used the approach for solving two stage SMPECs. Likewise, the NCP approach has
been used a popular approach for solving deterministic MPECs. It has been recently used to
solve two stage SMPECs by Xu [20], Xu and Meng [21] and Meng and Xu [7].

4.1. Regularization and smoothing NCP schemes for SAA program

The regularization approach for SAA programs is defined as follows:

min
x∈X

1
N

∑N
i=1 f(x, ξi)

s.t. N−1
∑N

i=1 Fj(x, ξi) ≥ 0, N−1
∑N

i=1 Gj(x, ξi) ≥ 0, j = 1, · · · ,m,(
N−1

∑N
i=1 Fj(x, ξi)

)(
N−1

∑N
i=1 Gj(x, ξi)

)
≤ ε, j = 1, · · · ,m,

(4.1)

where ε > 0 is called regularization parameter. The problem (4.1) is an sample average
approximation of the following problem

min
x∈X

E[f(x, ξ(ω))]

s.t. E[Fj(x, ξ(ω))] ≥ 0, E[Gj(x, ξ(ω))] ≥ 0, j = 1, · · · ,m,

E[Fj(x, ξ(ω))]E[Gj(x, ξ(ω))] ≤ ε, j = 1, · · · ,m,

(4.2)

It is well known that under some mild conditions a weak stationary point of (4.2) approximates
its counterpart of the true problem (1.1). See for instances [12]. Note that in numerical
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implementation of (4.1), parameter εN may be related to sample size N , indeed, it is driven
to zero as N tends to infinity. Consequently we expect that a weak stationary point of (4.1)
converges to a weak stationary point of the true problem (1.1).

The smoothing NCP approach is defined as

min
x∈X

1
N

∑N
i=1 f(x, ξi)

s.t. Ψ
(
N−1

∑N
i=1 F (x, ξi), N−1

∑N
i=1 G(x, ξi), ε

)
= 0,

(4.3)

where

Ψ

(
N−1

N∑

i=1

F (x, ξi), N−1
N∑

i=1

G(x, ξi), ε

)

:=




ψ
(
N−1

∑N
i=1 F1(x, ξi), N−1

∑N
i=1 G1(x, ξi), ε

)

...

ψ
(
N−1

∑N
i=1 Fm(x, ξi), N−1

∑N
i=1 Gm(x, ξi), ε

)


 ,

and ψ is a smoothing function of an NCP function. Here, we use a smoothing function of the
min-function min(a, b)

ψ(a, b, ε) = −1
2

(√
(a− b)2 + ε2 − a− b

)
.

This problem is a sample average approximation of the following problem

min
x∈X

E[f(x, ξ(ω))]

s.t. Ψ(E[F (x, ξ(ω))],E[G(x, ξ(ω)], ε) = 0.
(4.4)

It is not difficult to show that under some mild conditions, a weak stationary point of (4.4)
is also a weak stationary point of the true problem (1.1). Note that in implementation the
smoothing parameter ε > 0 is driven to zero as N increases. Consequently we expect that a
weak stationary point of (4.3) converges to a weak stationary point of the true problem (1.1).

4.2. Estimating the optimal value

In practice, the SAA scheme involves repeated solutions of the SAA problem (4.1) and (4.3)
with independent samples. We now discuss consistency of the SAA estimators, including the
lower and upper bounds estimations, and the gap of optimal values estimation.
Lower Bound Estimation. For small regularized parameter or smoothing parameter ε, let
v∗(ε) and ṽN (ε) denote the optimal values of the regularized problem (4.2) or the smoothing
NCP problem (4.4) and the corresponding SAA problem. It is well known that

E[ṽN (ε)] ≤ v∗(ε).

The expected value E[ṽN (ε)] can be estimated as follows. Generate M independent samples,
{ξ1

j , · · · , ξN
j }, j = 1, · · · ,M , each of size N . For each sample j, solve the regularized SAA

problem

min
x∈X

1
N

∑N
i=1 f(x, ξi

j)

s.t. N−1
∑N

i=1 F (x, ξi
j) ≥ 0, N−1

∑N
i=1 G(x, ξi

j) ≥ 0,(
N−1

∑N
i=1 F (x, ξi

j)
)
◦

(
N−1

∑N
i=1 G(x, ξi

j)
)
≤ ε,
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where ◦ denotes Hadmard product, or solve the smoothing NCP SAA problem

min
x∈X

1
N

∑N
i=1 f(x, ξi

j)

s.t. Ψ
(
N−1

∑N
i=1 F (x, ξi

j), N
−1

∑N
i=1 G(x, ξi

j), ε
)

= 0.

Let ṽj
N (ε) denote the corresponding optimal value of the above problem, j = 1, · · · ,M . We

compute

LN,M (ε) :=
1
M

M∑

j=1

ṽj
N (ε),

which is an unbiased estimate of E[ṽN (ε)]. It provides a statistical lower bound for the true
optimal value v∗(ε). Let zα be such that P{z ≤ zα} = 1 − α where z satisfies the standard
normal distribution, that is, z v N(0, 1). By the Central Limit Theorem, we can obtain an
approximate (1− α)-confidence interval for E[ṽN (ε)] as follows:

[
LN,M (ε)− zαsL(M ; ε)√

M
,LN,M (ε) +

zαsL(M ; ε)√
M

]

where the sample variance estimator of V ar[ṽN (ε)] is

s2
L(M ; ε) :=

1
M − 1

M∑

j=1

(
ṽj

N (ε)− LN,M (ε)
)2

.

Upper Bound Estimation. An upper bound can be obtained by observing that, for a feasible
point x̄ = x̄(ε) of the regularized SAA program or the smoothing NCP SAA program with a
small regularization parameter or a small smoothing parameter ε > 0,

ϑ̃(x̄, ε) := ϑ̃(x̄(ε)) ≥ v∗(ε).

Hence, by choosing x̄(ε) to be an ε-optimal solution, for example, by solving an SAA problem,
and using an unbiased estimator for ϑ̃(x̄(ε)), we can obtain an estimate of the upper bound
of v∗(ε). To do so, we may generate T independent batches of samples: {ξ1

j , · · · , ξN ′
j }, j =

1, · · · , T , each of size N ′. For any feasible x(ε), let

ṽj
N ′(x, ε) :=

1
N ′

N ′∑

i=1

f(x(ε), ξi
j).

Then E[ṽj
N ′(x, ε)] = ϑ̃(x, ε). We calculate

UN ′,T (x̄; ε) :=
1
T

T∑

j=1

ṽj
N ′(x̄, ε),

which is an estimate of ϑ̃(x̄, ε). By the Central Limit Theorem again, we can obtain a (1− α)-
confidence interval for ϑ̃(x̄, ε)

[
UN ′,T (x̄; ε)− zαsU (x̄, T ; ε)√

T
,UN ′,T (x̄; ε) +

zαsU (x̄, T ; ε)√
T

]
,

where the sample variance estimator of V ar[ṽN ′(x̄, ε)] is

s2
U (x̄, T ; ε) :=

1
T − 1

T∑

j=1

(
ṽj

N ′(x̄, ε)− UN ′,T (x̄, ε)
)2

.

Note that, in practice, we may take x̄ from any of the solutions of the M regularized SAA
problems or the smoothing NCP SAA problems as discussed in the previous subsection by
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generating independent samples {ξ1
j , · · · , ξN

j }, j = 1, · · · ,M . Indeed, we will use x̄j
N , the best

optimal solution which estimates the smallest optimal value v∗(ε), to compute the upper bound
estimates and the optimality gap in Section 5.
Estimating the Gap. We compute an estimate of the optimality gap of the solution x̄ using
the lower bound estimate and the objective function value estimate as follows:

GapN,M,N ′,T (x̄) := UN ′,T (x̄; ε)− LN,M (ε),

where UN ′,T (x̄; ε) and LN,M (ε) are defined as before. The estimated variance of the above gap
estimator is then given by

S2
Gap =

1
M

s2
L(M ; ε) +

1
T

s2
U (x̄, T ; ε).

5. Preliminary Computational Results

We have carried out numerical tests on SAA with regularization and SAA with NCP re-
formulation. The tests are carried out by implementing mathematical programming codes in
MATLAB 6.5 installed in a PC with Windows XP Operating System. We use Matlab built-
in solver fmincon for solving the regularized SAA problem (4.1) and smoothing NCP SAA
problem (4.3). We use the Latin Hypercube Sampling (LHS) to generate samples.

We now report the numerical test results. In each of the following test problems, we choose
different values for the regularization or the smoothing parameter ε and sample sizes N , M , N ′,
and T . In the tables below, “reg” denotes the regularized SAA scheme and “ncp-min” denotes
the smoothing NCP SAA method. ṽN (ε) stands for the lower bound estimation LN,M (ε) and
ϑ̃(x̄j

N , ε) represents the upper bound estimation where x̄j
N is an optimal solution which estimates

the smallest optimal value as discussed in Section 4. The 95%-confidence intervals around
ṽN (ε) and ϑ̃(x̄j

N , ε) are also reported. For brevity, Gap(x̄j
N ) denotes GapN,M,N ′,T (x̄j

N ) and
SGap represents the estimated variance of the optimality gap as follows:

SGap :=

√
1
M

S2
L(M ; ε) +

1
T

S2
U (x̄j

N , T ; ε).

In order to compare with the performance of the proposed SAA methods of this paper, for each
test problem, we also report the numerical results of the corresponding deterministic MPCC
problem.

Example 5.1. Consider the following problem

min E[(x1 − 1)2 + (x2 − 1)2 + x1ξ1 + x2ξ2 + ξ1ξ2]

s.t. 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2,

0 ≤ E[F (x, ξ)] ⊥ E[G(x, ξ)] ≥ 0,

where

F (x, ξ) = (x1 − ξ1 + ξ2, x2 + ξ1 − ξ2)T , G(x, ξ) = (x1 − ξ1, x2 − ξ2)T ,

and ξ1, ξ2 are independent random variables having uniform distribution on [0, 1]. The test
results are presented in Table 5.1.1.
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Table 5.1.1 Test results for Example 5.1

methods N M N ′ T ε ṽN (ε) x̄j
N ϑ̃(x̄j

N , ε) Gap(x̄j
N ) SGap

(95% conf. int.) (95% conf. int.)

reg 400 30 600 40 10−4
1.2497 ± 0.0014 (0.5002, 0.5002) 1.2505 ± 0.0044 2.8549e-004 0.0028

ncp-min 400 30 600 40 10−4
1.2502 ± 0.0012 (0.5000, 0.5000) 1.2503 ± 0.0051 1.6172e-004 0.0030

reg 1000 60 1500 60 10−6
1.2501 ± 4.8539e-004 (0.5000, 0.5000) 1.2512 ± 0.0021 0.0011 0.0016

ncp-min 1000 60 1500 60 10−6
1.2503 ± 5.5244e-004 (0.5000, 0.5000) 1.2506 ± 0.0028 2.5948e-004 0.0018

Note that in Example 5.1, we can integrate the underlying functions out and obtain a
deterministic MPCC problem

min (x1 − 1)2 + (x2 − 1)2 +
1
2
(x1 + x2) +

1
4

s.t. 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2,

0 ≤ F̄ (x) ⊥ Ḡ(x) ≥ 0,

(5.1)

where F̄ (x) = x and Ḡ(x) = (x1 − 1/2, x2 − 1/2)T . The test results are stated in Table 5.1.2.

Table 5.1.2 Numerical results for problem (5.1)

methods ε x∗ optimal value

reg 10−4 (0.5002, 0.5002) 1.2498

ncp-min 10−4 (0.5000, 0.5000) 1.2500

reg 10−6 (0.5000, 0.5000) 1.2500

ncp-min 10−6 (0.5000, 0.5000) 1.2500

Example 5.2. Consider the following problem

min E[(x1 − 1)2 + (x2 − 1)2 − x1 + x2 + x1ξ1 + x2ξ2 + ξ1ξ2]

s.t. −2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

0 ≤ E[F (x, ξ)] ⊥ E[G(x, ξ)] ≥ 0,

where

F (x, ξ) = (x1 − x2 − ξ1 + ξ2, x2 − 1 + ξ1 − ξ2)T , G(x, ξ) = (x1 − 1− ξ1, x2 − ξ2)T ,

and ξ1, ξ2 are independent random variables having a truncated normal distribution N(µ, σ2)
on [-0.5, 0.5] with µ = 0 and σ = 3. The test results are presented in Table 5.2.1.

Table 5.2.1 Test results for Example 5.2

methods N M N ′ T ε ṽN (ε) x̄j
N ϑ̃(x̄j

N , ε) Gap(x̄j
N ) SGap

(95% conf. int.) (95% conf. int.)

reg 400 40 600 40 10−5
0.0697 ± 0.0056 (1.0280, 0.9570) -0.0052 ± 0.0047 0.0645 0.0029

ncp-min 400 40 600 40 10−5
-0.0169 ± 0.0076 (1.0000, 0.9786) -0.0058 ± 0.0055 0.0111 0.0057

reg 800 60 700 60 10−7
-0.0568 ± 0.0118 (1.0233, 0.9642) -0.0089 ± 0.0008 0.0478 0.0013

ncp-min 800 60 700 60 10−7
-0.0388 ± 0.0040 (0.0759, 0.0427) -0.0012 ± 0.0027 0.0376 0.0029

Note that in Example 5.2, we can integrate the underlying functions out and obtain a
deterministic MPCC problem

min (x1 − 1)2 + (x2 − 1)2 − x1 + x2

s.t. −2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

0 ≤ F̄ (x) ⊥ Ḡ(x) ≥ 0,

(5.2)

where F̄ (x) = (x1 − x2, x2 − 1)T and Ḡ(x) = (x1 − 1, x2)T . The test results are presented in
Table 5.2.2.
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Table 5.2.2 Numerical results for problem (5.2)

methods ε x∗ optimal value

reg 10−5 (1.0032, 1.0000) -0.0032

ncp-min 10−5 (1.0000, 1.0000) -5.0000e-006

reg 10−7 (1.0003, 1.0000) -3.1615e-004

ncp-min 10−7 (1.0000, 1.0000) -2.4425e-015

Example 5.3. Consider the following problem

min E[(x1 − 1)2 + (x2 − 1)2 + x1x2 + ξ1 + ξ2]

s.t. 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2,

0 ≤ E[F (x, ξ)] ⊥ E[G(x, ξ)] ≥ 0,

where

F (x, ξ) = (x1 + x2 − ξ1, x2 − ξ2)T , G(x, ξ) = (x1 − ξ1 − ξ2, x2 − ξ1 − ξ2)T ,

and ξ1, ξ2 are independent random variables having uniform distribution on [0, 1]. The test
results are stated in Table 5.3.1.

Table 5.3.1 Test results for Example 5.3

methods N M N ′ T ε ṽN (ε) x̄j
N ϑ̃(x̄j

N , ε) Gap(x̄j
N ) SGap

(95% conf. int.) (95% conf. int.)

reg 500 40 700 40 10−5
2.000 ± 3.0543e-005 (0.9999, 0.9999) 2.0007 ± 0.0037 0.0007 0.0022

ncp-min 500 40 700 40 10−5
2.0000 ± 2.7410e-005 (0.9999, 0.9999) 2.0003 ± 2.7410e-005 0.0003 0.0024

reg 1000 60 1500 60 10−7
2.0000 ± 8.0645e-006 (1.0000, 1.0000) 2.0005 ± 0.0021 0.0005 0.0013

ncp-min 1000 60 1500 60 10−7
2.0000 ± 9.0249e-006 (1.0000, 1.0000) 2.0032 ± 0.0025 0.0032 0.0015

Note that in Example 5.3, we can integrate the underlying functions out and obtain a
deterministic MPCC problem

min (x1 − 1)2 + (x2 − 1)2 + x1x2 + 1
s.t. 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2,

0 ≤ F̄ (x) ⊥ Ḡ(x) ≥ 0,

(5.3)

where F̄ (x) = (x1 + x2 − 1/2, x2 − 1/2)T and Ḡ(x) = (x1 − 1, x2 − 1)T . The test results are
presented in Table 5.3.2.

Table 5.3.2 Numerical results for problem (5.3)

methods ε x∗ optimal value

reg 10−5 (1.0000, 1.0000) 2.0000

ncp-min 10−5 (1.0000, 1.0000) 2.0000

reg 10−7 (1.0000, 1.0000) 2.0000

ncp-min 10−7 (1.0000, 1.0000) 2.0000

Example 5.4. Consider the following problem

min E[2(x1 − 1)2 + (x2 − 1)2 + 2x1x2 + ξ2
1 + ξ2

2 ]

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,

0 ≤ E[F (x, ξ)] ⊥ E[G(x, ξ)] ≥ 0,

where

F (x, ξ) = (x1 + x2 + ξ1 + ξ2, 2x2 − 1 + ξ1 + ξ2)T , G(x, ξ) = (x1 − ξ1, x2 − ξ2)T ,

and ξ1, ξ2 are independent random variables having a truncated normal distribution N(µ, σ2)
on [-0.3, 0.3] with µ = 0, σ = 5. The test results are stated in Table 5.4.2.
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Table 5.4.1 Test results for Example 5.4

methods N M N ′ T ε ṽN (ε) x̄j
N ϑ̃(x̄j

N , ε) Gap(x̄j
N ) SGap

(95% conf. int.) (95% conf. int.)

reg 400 40 500 40 10−5
2.2441 ± 0.0016 (0.0050, 0.4976) 2.2561 ± 4.7576e-005 0.0120 0.0009

ncp-min 400 40 500 40 10−5
2.2367 ± 0.0021 (0.0081, 0.4958) 2.2568 ± 5.6762e-005 0.0201 0.0013

reg 800 60 1500 60 10−7
2.2463 ± 0.0010 (0.0045, 0.4969) 2.2559 ± 2.4513e-005 0.0096 0.0006

ncp-min 800 60 1500 60 10−7
2.2437 ± 0.0011 (0.0050, 0.4980) 2.2558 ± 2.4171e-005 0.0121 0.0007

Note that in Example 5.4, we can integrate the underlying functions out and obtain a
deterministic MPCC problem

min 2(x1 − 1)2 + (x2 − 1)2 + 2x1x2

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,

0 ≤ F̄ (x) ⊥ Ḡ(x) ≥ 0,

(5.4)

where F̄ (x) = (x1 +x2, 2x2−1)T and Ḡ(x) = (x1, x2)T . The test results are presented in Table
5.4.2.

Table 5.4.2 Numerical results for problem (5.4)

methods ε x∗ optimal value

reg 10−5 (0.0000, 0.5000) 2.2499

ncp-min 10−5 (0.0000, 0.5000) 2.2500

reg 10−7 (0.0000, 0.5000) 2.2500

ncp-min 10−7 (0.0000, 0.5000) 2.2500

From the preliminary computational experience, we can see that sample average approxima-
tion methods appear to be effective and promising for solving stochastic mathematical programs
with equilibrium constraints. The numerical results also show that regularized SAA methods
and smoothing NCP SAA methods have different performances for different problems. We are
not able to conclude which method is better.
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