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Abstract

The convergence rate of a generalized additive Schwarz algorithm for solving boundary
value problems of elliptic partial differential equations is studied. A quantitative analysis
of the convergence rate is given for the model Dirichlet problem. It will be shown that a
greater acceleration of the algorithm can be obtained by choosing the parameter suitably.
Some numerical tests are also presented in this paper.
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1. Introduction

A classical mathematical approach, the Schwarz alternating algorithm (see, e.g., in [12]),
appears to offer promise for the parallel solution of the very large systems of linear or nonlinear
elliptic problems in elasticity, fluid dynamics or other important areas. Its advantage in par-
allelism, wide applicability and great flexibility in implementation make Schwarz algorithm a
competitive technique in parallel computations. As a result, Schwarz algorithms have attracted
much attention from researchers in the field of parallel computation as well as theoreticians.
The early contributions relating to Schwarz algorithms can also be seen in [9, 10, 14]. Some
recent progress in this field can be seen in [8, 11, 13] and the references therein.

A generalized additive Schwarz algorithm is presented in the paper. The approach uses robin
condition on the inner boundaries of the subproblems. The use of Robin boundary condition as
interfacial transmission conditions in domain decomposition was introduced by P. L. Lions in
[7]. Various aspects of such methods have been discussed in [1, 2, 3, 4, 5, 6, 15, 16]. Numerical
experiments reported in [1, 2, 3, 6, 15, 16] show that the generalized Schwarz algorithms with
appropriate parameters can accelerate the convergence dramatically. The aim of this paper is to
study the convergence rate of a generalized additive Schwarz algorithm for model problems. A
quantitative analysis of the convergence rate for model Dirichlet problems and some numerical
results are presented in this paper.

The paper is organized as follows: In Section 2, we introduce a generalized additive Schwarz
algorithm. In Sections 3 and 4, we discuss the convergence rate of the generalized additive
Schwarz algorithm for one and two dimensional Dirichlet problem respectively. Finally, in
Section 5, we give some preliminary numerical results.

2. A Generalized Additive Schwarz Algorithms

Before proceeding, let us introduce a generalized version of additive Schwarz algorithm. We
consider the Dirichlet problem for a second order elliptic operator L:

{

Lu(x) = 0, x ∈ Ω,
u(x) = ψ(x), x ∈ ∂Ω,

(2.1)
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where, Ω is a bounded domain in d-dimensional space (d = 1, 2, 3), ∂Ω is the boundary of Ω,
ψ is a given function of L2(Ω) and x = (x1, . . . , xd) is the independent variable. To simplify
discussion, we consider a case for two subdomians. We also assume that the solution to this
problem exists and is unique.

We decompose the solution domain Ω into two overlapping subdomains Ω1 and Ω2. That
is Ω = Ω1 ∪ Ω2 and Ω12 = Ω1 ∩ Ω2 6= ∅. Denote by Γ1 = ∂Ω1 ∩ Ω and Γ2 = ∂Ω2 ∩ Ω the inner
boundaries of Ω1 and Ω2, respectively.

Denote u1 and u2 as the restrictions of the solution u of problem (2.1) on subdomain Ω1

and Ω2, respectively. Then, the following couplings

g1(u1)|Γ1
= g1(u2)|Γ1

and
g2(u2)|Γ2

= g2(u1)|Γ2

are true on the inner boundaries Γ1 and Γ2, where

gi(v) = αiv + βi
∂v

∂ni
, i = 1, 2. (2.2)

Here, for i = 1, 2, αi ∈ [0, 1], βi = 1 − αi, and ni is the outer unit normal direction of ∂Ωi.
With these new couplings we can formulate two coupled subproblems as follows:







Lu1(x) = 0, x ∈ Ω1,
u1(x) = ψ(x), x ∈ ∂Ω1 ∩ ∂Ω,
g1(u1(x)) = g1(u2(x)), x ∈ Γ1,

(2.3)







Lu2(x) = 0, x ∈ Ω2,
u2(x) = ψ(x), x ∈ ∂Ω2 ∩ ∂Ω,
g2(u2(x)) = g2(u1(x)), x ∈ Γ2.

(2.4)

We have the following result (see in [15]).

Theorem 2.1. If the boundary value problem















Lw(x) = 0, x ∈ Ω12,
w(x) = 0, x ∈ ∂Ω12\(Γ1 ∩ Γ2),
g1(w(x)) = 0, x ∈ Γ1,
g2(w(x)) = 0, x ∈ Γ2

(2.5)

has only trivial solution and the solutions u1, u2 of (2.3) and (2.4) exist, then

1. u1(x) = u2(x) if x ∈ Ω12.

2. u(x) = u1(x) if x ∈ Ω1 and u(x) = u2(x) if x ∈ Ω2,

where u is the solution of (2.1).

The original form of additive Schwarz algorithm consists of the following steps.
Let u0 be an initial function defined on Ω̄ such that u0 −ψ vanishes on ∂Ω. Set u0

1 = u0|Ω1
,

u0
2 = u0|Ω2

. For k > 0, we define independently the following two sequences respectively:







Luk+1
1 (x) = 0, x ∈ Ω1,

uk+1
1 (x) = ψ(x), x ∈ ∂Ω1 ∩ ∂Ω,

uk+1
1 (x) = uk

2(x), x ∈ Γ1,

(2.6)
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Luk+1
2 (x) = 0, x ∈ Ω2,

uk+1
2 (x) = ψ(x), x ∈ ∂Ω2 ∩ ∂Ω,

uk+1
2 (x) = uk

1(x), x ∈ Γ2.

(2.7)

By Theorem 2.1, in additive Schwarz algorithm, (2.6) and (2.7) could be modified by simply
replacing Dirichlet inner boundary conditions by Robin ones. In such a way we obtain a gen-
eralized additive Schwarz algorithm. In the modified approach, instead of solving subproblem
(2.6) and (2.7), we solve the following mixed boundary value problems







Luk+1
1 (x) = 0, x ∈ Ω1,

uk+1
1 (x) = ψ(x), x ∈ ∂Ω1 ∩ ∂Ω,

g1(u
k+1
1 (x)) = g1(u

k
2(x)), x ∈ Γ1,

(2.8)







Luk+1
2 (x) = 0, x ∈ Ω2,

uk+1
2 (x) = ψ(x), x ∈ ∂Ω2 ∩ ∂Ω,

g2(u
k+1
2 (x)) = g2(u

k
1(x)), x ∈ Γ2.

(2.9)

Obviously, if we let αi = 1, βi = 0, i = 1, 2, the generalized additive Schwarz algorithm is
correspond to classical additive algorithm.

In the sequel, we will analyze the convergence rate of above mentioned generalized additive
Schwarz algorithm for simple model problems in one and two dimensional spaces.

3. Convergence Rate for One-dimensional Problem

In this section, we will discuss the convergence of generalized additive Schwarz algorithm
when it is applied to approximate the solution of the following model problem:

{

−u′′ = f, in (0, 1),
u(0) = φ1, u(1) = φ2.

(3.1)

A quantitative analysis of the convergence rate is given by simple deduction. For this particular
problem, we decompose domain Ω = (0, 1) into two subdomains as

Ω1 = (0, l), Ω2 = (1 − l′, 1), (3.2)

where the constants l and l′ belong to (0, 1) that satisfy l + l′ > 1 (see Fig. 1). Obviously,
δ = l − (1 − l′) = l+ l′ − 1 > 0 is the overlapping size.

-

0 1l
Ω1

1 − l′
Ω2

Figure 1: Domain Decomposition of (0, 1).

Let u be the exact solution of problem (3.1). It is easy to verify that the solutions of (2.8)
and (2.9) in this case are

uk+1
1 (x) = u(x) + [g1(u

k
2(l)) − g1(u(l))] ·

x

α1l + β1
(3.3)
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and

uk+1
2 (x) = u(x) + [g2(u

k
1(1 − l′)) − g2(u(1 − l′))] ·

1 − x

α2l
′ + β2

, (3.4)

respectively. By (3.3), we have

uk+1
1 (1 − l′) = u(1 − l′) + [g1(u

k
2(l)) − g1(u(l))] ·

1 − l′

α1l + β1

and

(uk+1
1 (x))′|1−l′ = (u(x))′|1−l′ + [g1(u

k
2(l)) − g1(u(l))] ·

1

α1l + β1
.

Therefore,

g2(u
k+1
1 (1 − l′)) − g2(u(1 − l′)) = [g1(u

k
2(l)) − g1(u(l))] ·

α2(1 − l′) − β2

α1l + β1
. (3.5)

Similarly, by (3.4), we have

uk+1
2 (l) = u(l) + [g2(u

k
1(1 − l′)) − g2(u(1 − l′))] ·

1 − l

α2l
′ + β2

,

(uk+1
2 (x))′|l = (u(x))′|l − [g2(u

k
1(1 − l′)) − g2(u(1 − l′))] ·

1

α2l
′ + β2

,

and then

g1(u
k+1
2 (l)) − g1(u(l)) = [g2(u

k
1(1 − l′)) − g2(u(1 − l′))] ·

α1(1 − l) − β1

α2l
′ + β2

. (3.6)

Let ǫki = uk
i − u|Ωi

, i = 1, 2. Then by (3.3), (3.6) and (3.5), it follows that

ǫk+1
1 (x) = [g1(u

k
2(l)) − g1(u(l))] ·

x
α1l + β1

= [g2(u
k−1
1 (1 − l′)) − g2(u(1 − l′))] ·

α1(1 − l) − β1

α2l
′ + β2

· x
α1l+ β1

= [g1(u
k−2
2 (l)) − g1(u(l))] ·

α2(1 − l′) − β2

α1l+ β1
·
α1(1 − l) − β1

α2l
′ + β2

· x
α1l + β1

=
α2(1 − l′) − β2

α1l + β1
·
α1(1 − l) − β1

α2l
′ + β2

· ǫk−1
1 (x).

(3.7)

Similarly, by (3.4), (3.5) and (3.6), it follows that

ǫk+1
2 (x) = [g2(u

k
1(1 − l′)) − g2(u(1 − l′))] · 1 − x

α2l
′ + β2

= [g1(u
k−1
2 (l)) − g1(u(l))] ·

α2(1 − l′) − β2

α1l + β1
· 1 − x
α2l

′ + β2

= [g2(u
k−2
1 (1 − l′)) − g2(u(1 − l′))]

·
α1(1 − l) − β1

α2l
′ + β2

·
α2(1 − l′) − β2

α1l + β1
· 1 − x
α2l

′ + β2

=
α1(1 − l) − β1

α2l
′ + β2

·
α2(1 − l′) − β2

α1l + β1
· ǫk−1

2 (x).

(3.8)
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Therefore, the convergence rate of the generalized additive Schwarz algorithm is determined by

α1(1 − l) − β1

α2l
′ + β2

·
α2(1 − l′) − β2

α1l + β1

=
α1(l

′ − δ) − β1

α2l
′ + β2

·
α2(l − δ) − β2

α1l + β1

=



























l′ − δ − t1
l′ + t2

· l − δ − t2
l+ t1

, if α1α2 6= 0,

− l
′ − δ − t1
l + t1

, if α1 6= 0 and α2 = 0,

− l− δ − t2
l′ + t2

, if α1 = 0 and α2 6= 0,

1, if α1 = α2 = 0,

(3.9)

where ti = βi/αi = (1 − αi)/αi = 1/αi − 1, i = 1, 2. For special case of α = α1 = α2 6= 0, we
define

r(t, l, l′) =

√

|1 − l− t|

l′ + t
·
|1 − l′ − t|

l+ t
=

√

|l′ − δ − t|

l′ + t
·
|l − δ − t|

l + t
, (3.10)

where t = β/α = 1/α−1. In this case, it is easy to see that the convergence rate of the additive
algorithm is r(t, l, l′) for α 6= 0 and 1 for α = 0 respectively.

If 0 < t ≤ min{l′ − δ, l − δ}, we have

r2(t, l, l′) = (
l′ − t

l′ + t
−

δ

l′ + t
) · (

l − t

l + t
−

δ

l + t
) ≤

l′ − t

l′ + t
·
l − t

l + t
≤ min{

l′ − t

l′ + t
,
l − t

l + t
} < 1.

If t ≥ max{l′ − δ, l− δ}, we have that

r2(t, l, l′) = 1
t+ l′ − δ
t− l′ + δ

+ δ
t− l′ + δ

· 1
t+ l − δ
t− l + δ

+ δ
t− l+ δ

≤ t− l′ + δ
t+ l′ − δ

· t− l + δ
t+ l − δ

≤ min{ t− l′ + δ
t+ l′ − δ

, t− l + δ
t+ l − δ

}

= min{ t− 1 + l
t+ 1 − l

, t− 1 + l′

t+ 1 − l′
} < 1.

If l′ − δ < l − δ and l′ − δ < t < l− δ,

r2(t, l, l′) = 1
t+ l′ − δ
t− l′ + δ

+ δ
t− l′ + δ

· ( l − t
l + t

− δ
l + t

)

≤ t− l′ + δ
t+ l′ − δ

· l − t
l + t

≤ t− 1 + l
t+ 1 − l

· l − t
l + t

< 1.

And if l − δ < l′ − δ and l − δ < t < l′ − δ,

r2(t, l, l′) ≤
l′ − t

l′ + t
·
t− 1 + l′

t+ 1 − l′
< 1.

Therefore, we have that
r(t, l, l′) ≤ ρ(t,max{l, l′}),

where

ρ(t, l) = max{

√

|t− l|

t+ l
,

√

|t− 1 + l|

t+ 1 − l
}.
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It is easy to see that ρ(t,max{l, l′}) is bounded away from 1 and independent of the overlapping
size δ if t 6= 0. If t = 0, that is for classical additive Schwarz algorithm, the convergence rate is

r(0, l, l′) =
l′ − δ

l′
·
l − δ

l
= (1 −

δ

l′
) · (1 −

δ

l
), (3.11)

which is dependent on the overlapping size δ and

lim
δ→0+

r(0, l, l′) = lim
δ→0+

r(0, l, 1 − l + δ) = 1. (3.12)

(3.12) shows that the convergence rate of classical additive Schwarz algorithm (2.6)–(2.7) dete-
riorate as the overlapping size becomes small. However, if α = 0, Noting that (3.7) and (3.8),
ǫk+1
1 (x) = ǫk−1

1 (x) and ǫk+1
2 (x) = ǫk−1

2 (x) hold. That is the algorithm is divergent. Summing
up above discussion, we have the following result.

Theorem 3.1. Let generalized additive Schwarz algorithm (2.8)–(2.9) be applied to solve prob-
lem (3.1) with α = α1 = α2 and the partition defined by (3.2). We have that

1. If α = 0, that is Neunann boundary conditions are applied on the inner boundaries Γ1

and Γ2, the algorithm diverges.

2. If β = 0, that is for classical additive Schwarz algorithm, the algorithm converges to the
solution with the convergence rate r(0, l, l′) that is defined by (3.11) and dependent on the
overlapping size δ.

3. If αβ 6= 0, that is Robin boundary conditions are applied on the inner boundaries Γ1 and
Γ2, the algorithm converges to the solution with the convergence rate r(t, l, l′) that is de-
fined by (3.10) and bounded above by ρ(t,max{l, l′}), which is less than 1 and independent
of the overlapping size δ.

-
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Figure 2: uk+2
i = uk

i , i = 1, 2, k = 1, 2, . . ..

By Theorem 3.1, the algorithm does not converge if the interface conditions in (2.8) and
(2.9) are Neumann conditions. An simple example is furnished in Fig. 2, where the generalized
additive Schwarz algorithm with parameters α = α1 = α2 = 0 is applied to approximate the
(null) solution of the problem

{

−u′′ = 0, in (0, 1),
u(0) = u(1) = 0.

(3.13)
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Note that for this particular problem, whatever partition is chosen, the algorithm diverges.
When δ → 0+, the generalized additive algorithm we proposed becomes Schwarz alternating

method for nonoverlapping subdomains given by P. L. Lions (see [7]). In this case, the conver-
gence of the algorithm has been obtained in [7, 11] for α1 = α2 6= 0. However, if α1 6= α2, the
algorithm may diverge even for αi, βi 6= 0, i = 1, 2. In fact, let us consider the algorithm to
problem (3.13) with parameters l = 1

4 , l′ = 3
4 , t1 = 1

12 , t2 = 5
4 . It is easy to verify that for any

k ≥ 1, ǫk+1
i = −ǫk−1

i , i = 1, 2, which implies obvious the divergence of the algorithm.

4. Convergence Rate for Two-dimensional Problem

In this section, we will analyze quantitatively the convergence rate of generalized addi-
tive Schwarz algorithm when it is applied to approximate the solution of the following model
Dirichlet problem in two-dimensional space:

{

−∆u(x, y) = f(x, y), (x, y) ∈ Ω,
u(x, y) = ψ(x, y), (x, y) ∈ ∂Ω,

(4.1)

where Ω = (0, 1) × (0, 1), f and ψ are given functions of L2(Ω), ∆ is the Laplace operator.
For classical alternating Schwarz algorithm, a quantitative analysis of the convergence rate

was given in [8]. Here we discuss the convergence rate for generalized additive Schwarz algorithm
(2.8)–(2.9). Let Ω = (0, 1) × (0, 1) and consider particular partition as

Ω1 = (0, l) × (0, 1), Ω2 = (1 − l′, 1) × (0, 1), (4.2)

where the constants l and l′ belong to (0, 1) that satisfy l+ l′ > 1, δ = l− (1− l′) = l+ l′−1 > 0
is the overlapping size.

In the algorithms, we also let α1 = α2 = α = 1 − β. Moreover, we let the initial error
ǫ0 = u0 − u have a Fourier expansion of the form as

ǫ0 =

∞
∑

n=1

an sinnπx sinnπy. (4.3)

It is easy to see that

∂ǫ0

∂x
=

∞
∑

n=1

annπ cosnπx sinnπy. (4.4)

We have from the algorithm that,







−∆ǫk+1
1 = 0, in Ω1,

ǫk+1
1 = 0, on ∂Ω1 ∩ ∂Ω,

g1(ǫ
k+1
1 ) = g1(ǫ

k
2), on Γ1

(4.5)

and






−∆ǫk+1
2 = 0, in Ω2,

ǫk+1
2 = 0, on ∂Ω2 ∩ ∂Ω,

g2(ǫ
k+1
2 ) = g2(ǫ

k
1), on Γ2,

(4.6)

where
ǫki = uk

i − u|Ωi

, i = 1, 2, k = 0, 1, . . . . (4.7)

It follows from (4.3) and (4.4) that

ǫ02|Γ1
=

∞
∑

n=1

an sinnπl · sinnπy
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and
∂ǫ02
∂x

|Γ1
=

∞
∑

n=1

annπ cosnπl · sinnπy.

Therefore

g1(ǫ
0
2)|Γ1

=

∞
∑

n=1

an · (α sinnπl + βnπ cosnπl) sinnπy.

Hence, we have

ǫ11 =
∞
∑

n=1
an · α sinnπl + βnπ cosnπl

α sinhnπl + βnπ coshnπl
sinhnπx · sinnπy

=
∞
∑

n=1
a1

n sinhnπx · sinnπy,
(4.8)

where

a1
n = anr

0
n, r0n =

α sinnπl + βnπ cosnπl

α sinhnπl + βnπ coshnπl
(4.9)

and

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
.

Similarly

ǫ01|Γ2
=

∞
∑

n=1

an sinnπ(1 − l′) · sinnπy,

∂ǫ01
∂x

|Γ2
=

∞
∑

n=1

annπ cosnπ(1 − l′) · sinnπy,

and then

g2(ǫ
0
1)|Γ2

=

∞
∑

n=1

an · [α sinnπ(1 − l′) − βnπ cosnπ(1 − l′)] · sinnπy.

Hence, we have

ǫ12 =
∞
∑

n=1
an ·

α sinnπ(1 − l′) − βnπ cosnπ(1 − l′)
α sinhnπl′ + βnπ coshnπl′

· sinhnπ(1 − x) · sinnπy

=
∞
∑

n=1
ã1

n sinhnπ(1 − x) · sinnπy,
(4.10)

where

ã1
n = anr̃

0
n, r̃0n =

α sinnπ(1 − l′) − βnπ cosnπ(1 − l′)

α sinhnπl′ + βnπ coshnπl′
. (4.11)

Similarly, for k > 1, we obtain that

ǫk1 =
∞
∑

n=1
ak

n sinhnπx · sinnπy, (4.12)

ǫk2 =

∞
∑

n=1

ãk
n sinhnπ(1 − x) · sinnπy, (4.13)

where

ak
n = ãk−1

n r1n, ãk
n = ak−1

n r̃1n, k = 2, 3, . . . , (4.14)
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and

r1n =
α sinhnπ(1 − l) − βnπ coshnπ(1 − l)

α sinhnπl + βnπ coshnπl
, (4.15)

r̃1n =
α sinhnπ(1 − l′) − βnπ coshnπ(1 − l′)

α sinhnπl′ + βnπ coshnπl′
. (4.16)

Therefore

ǫk1 |Γ1
=

∞
∑

n=1
ak

n sinhnπl · sinnπy

=
∞
∑

n=1
bn(r1nr̃

1
n)[(k−1)/2] · sinnπy,

(4.17)

ǫk2 |Γ2
=

∞
∑

n=1
ãk

n sinhnπl′ · sinnπy

=
∞
∑

n=1
b̃n(r1nr̃

1
n)[(k−1)/2] · sinnπy,

(4.18)

where

bn =

{

anr̃
0
nr

1
n sinhnπl, if k is even,

anr
0
n sinhnπl, if k is odd,

(4.19)

b̃n =

{

anr
0
nr̃

1
n sinhnπl′, if k is even,

anr̃
0
n sinhnπl′, if k is odd.

(4.20)

Since

r1n+1

r1n
=

α sinh(n+ 1)π(1 − l) − β(n+ 1)π cosh(n+ 1)π(1 − l)
α sinh(n+ 1)πl + β(n+ 1)π cosh(n+ 1)πl

÷
α sinhnπ(1 − l) − βnπ coshnπ(1 − l)

α sinhnπl + βnπ coshnπl

=
α− β(n+ 1)π − [α+ β(n+ 1)π]e−2(n+1)π(l−δ)

α+ β(n+ 1)π − [α− β(n+ 1)π]e−2(n+1)πl · e−(n+1)πδ

·
α+ βnπ − (α− βnπ)e−2nπl

α− βnπ − (α+ βnπ) · e−2nπ(l−δ) · enπδ

→ e−πδ, n→ ∞

and
r̃1n+1

r̃1n
→ e−πδ, n→ ∞,

respectively, we have

lim
n→∞

r1n+1r̃
1
n+1

r1nr̃
1
n

= e−2πδ < 1.

Hence the convergence rate of the algorithm is dominant by the convergence rate of the lower
frequency terms in (4.17) and (4.18). Note that the lowest frequency terms of (4.17) and (4.18)
are

ek = b1(r
1
1 r̃

1
1)

[(k−1)/2] sinπy

and
ẽk = b̃1(r

1
k r̃

1
k)[(k−1)/2] sinπy,

respectively, it is easy to see that the convergence rate of ek and ẽk is r̄(α, l, l′) =
√

|r11 r̃
1
1 |. By

(4.15) and (4.16), we have

r̄2(α, l, l′)

=
|α sinhπ(1 − l) − βπ coshπ(1 − l)|

α sinhπl + βπ coshπl
·
|α sinhπ(1 − l′) − βπ coshπ(1 − l′)|

α sinhπl′ + βπ coshπl′

=
|α sinhπ(l′ − δ) − βπ coshπ(l′ − δ)|

α sinhπl + βπ coshπl
·
|α sinhπ(l − δ) − βπ coshπ(l − δ)|

α sinhπl′ + βπ coshπl′

≤ 1.
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For small overlapping size δ,

r̄(α, l.l′) ∼
|α− βπ|

α+ βπ
· e−πδ

{

≤
|α− βπ|
α+ βπ

· e−πδ, αβ 6= 0,

= e−πδ, αβ = 0.

Theorem 4.1. Let generalized additive Schwarz algorithm (2.8)–(2.9) be applied to solve prob-
lem (4.1) with α = α1 = α2 and the partition defined by (4.2). Let the initial error ǫ0 = u0 − u
have an expansion of the form as (4.3). Then (4.12) and (4.13) hold. Therefore, the conver-
gence rate of the algorithm is dominant by r̄(α, l, l′) =

√

|r11 r̃
1
1 |. Moreover, we have the following

conclusion:

1. If αβ = 0,
lim

δ→0+
r̄(α, l.l′) = lim

δ→0+
e−πδ = 1.

2. If αβ 6= 0,

lim
δ→0+

r̄(α, l.l′) ≤
|α− βπ|

α+ βπ
< 1.

Theorem 4.1 appears that Robin conditions on the inner boundaries in the Schwarz algorithm
are prefer to Dirichlet or Neumann conditions.

For three-dimensional problem, if we assume Ω = (0, 1) × (0, 1) × (0, 1) and Ω1 = (0, l) ×
(0, 1)2, Ω2 = (l′, 1) × (0, 1)2, we can deduce similar results by analogous Fourier analysis.

5. Numerical Examples

In this section, we present some numerical results of generalized additive Schwarz algorithm
(including classical additive Schwarz algorithm) when it is applied to solve the discretization of
the boundary value problem (4.1) with

Ω = (0, 1) × (0, 1), f = π2 sinπx · sinπy.

We use finite element method to discrete the problem and let h be the mesh-size. In the
algorithm, we choose the initial point u0 = 0. The stopping criterion is that the maximum
norm of the iterative error is less than ǫ = 10−5. We let

Ω1 = (0, 0.5 + δ/2) × (0, 1) Ω2 = (0.5 − δ/2, 1) × (0, 1)

and
Ω1 = (0, 0.5 + h) × (0, 1) Ω2 = (0.5, 1)× (0, 1),

respectively
The iterative numbers of the generalized Schwarz additive algorithm are listed in the fol-

lowing tables.

Table 1: Iterative numbers of the algorithm with different α for the case of h = 2−5

l\α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

h 109 14 5 8 13 19 27 32 65 139

0.625 15 8 3 6 7 8 11 13 15 16
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Table 2: Iterative numbers for the case of δ = 0.25
l\h 2−3 2−4 2−5 2−6

α = 1 15 15 15 15

α = 0.8 5 4 3 4

Table 3: Iterative numbers for the case of δ = h
l\h 2−3 2−4 2−5 2−6

α = 1 28 55 109 215

α = 0.8 4 4 5 5

From the tables we may see that
(1) With an appropriate choice of α, the performances of the generalized additive Schwarz

algorithm is much better than the performance of the classical additive Schwarz algorithm (see
Table 1 and Fig. 3). We also see that generalized additive Schwarz algorithm with appropriate
α can accelerate the convergence rate dramatically.

(2) For the case of δ = 0.25, the iterative numbers seems independent of the mesh-size h for
generalized and classical Schwarz algorithms (see Table 2.)

(3) For the case of δ = h, the iterative numbers become very large as the mesh-size h is small
for classical additive Schwarz algorithms. However, the iterative numbers are not sensitive to
the mesh-size for generalized additive Schwarz algorithm with α 6= 1(see Table 3). Since it
can save much time in solving subproblems for small overlapping case, we prefer to use small
overlapping in generalized additive Schwarz algorithm.
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Figure 3: Approximating convergence rate (||ǫk||/||ǫ0 ||)1/k.



646 J.P. ZENG AND G.J. CHEN

References

[1] Y. Achodou, C. Japhet, Y. Maday and F. Nataf, A new cement to glue non-conforming grids with

Robin interface conditions:the finite volume case, Numer. Math., 92 (2002), 593–620.

[2] J. Douglas and C.S. Huang, Accelerated domain decomposition iterative procedures for mixed

methods based on Robin transmission conditions, Calcolo, 35 (1998), 131–147.

[3] J. Douglas and C.S. Huang, An accelerated domain decomposition procedure based on Robin

transmission conditions, BIT, 37 (1997), 678–686.

[4] J. Douglas P.J. Paes Leme, J. E. Roberts and J. Wang, A parallel iterative procedure applicable

to the approximate solution of second order partial differential equations by mix finite element

methods, Numer. Math., 65 (1993), 95–108.

[5] S. Huosheng and W.P. Tang, An overdetermined Schwarz alternating method, SIAM J. Sci. Com-

put., 17 (1996), 884–905.

[6] C.L. Li, J.P. Zeng and S. Z. Zhou, Convergence analysis of the generalized Schwarz algorithms for

obstacle problems with T-monotone operator, Computers Math. Applic., 48 (2004), 373–386.

[7] P.L. Lions, On the Schwarz alternating method III: A variant for nonoverlapping subdomains,

Third International Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, Ed T. F. Chan et al, SIAM, Philadelphia, 1990, 202–231.
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