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Abstract

This paper discusses the accelerating iterative methods for solving the implicit scheme
of nonlinear parabolic equations. Two new nonlinear iterative methods named by the
implicit-explicit quasi-Newton (IEQN) method and the derivative free implicit-explicit
quasi-Newton (DFIEQN) method are introduced, in which the resulting linear equations
from the linearization can preserve the parabolic characteristics of the original partial dif-
ferential equations. It is proved that the iterative sequence of the iteration method can
converge to the solution of the implicit scheme quadratically. Moreover, compared with
the Jacobian Free Newton-Krylov (JFNK) method, the DFIEQN method has some ad-
vantages, e.g., its implementation is easy, and it gives a linear algebraic system with an
explicit coefficient matrix, so that the linear (inner) iteration is not restricted to the Krylov
method. Computational results by the IEQN, DFIEQN, JFNK and Picard iteration meth-
ods are presented in confirmation of the theory and comparison of the performance of these
methods.

Mathematics subject classification: 65M06, 65M12.
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1. Introduction

For solving the implicit scheme of nonlinear parabolic problems from various applications,
iterative methods are used which adopt the inner-outer iteration mode. The inner iteration is the
linear iterative methods for the linearized systems, and the outer cycle is the nonlinear iterative
methods which will be discussed here. To a great extent the outer nonlinear iteration determines
the accuracy and efficiency of the total solution procedure. In the energy conservative equation
of the radiation hydrodynamics, the diffusion coefficients and the source term are nonlinear
with respect to the temperature (the temperatures of radiation, ion or electron). During the
construction of the linearization procedure, the key point is to preserve the characteristics of
the original nonlinear parabolic equations so as to achieve high efficient solution. In [1]-[5], it is
pointed out that the nonlinear convergence is tightly relevant to the selection of time step and
the precision of solution. The efficient nonlinear iteration within one time step can speed up
the convergence of the iteration solution greatly. So it is essential to find high efficient iterative
methods in solving the nonlinear parabolic problems.

There are at least three reasons to prevent Newton methods applied in the nonlinear par-
abolic problems from some large scale scientific computations. The first is that the nonlinear
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iteration methods with super-linear convergent order often have local convergent region. In
this regard, a common approach is to reduce the time step to ensure the nonlinear iteration
method convergent. Actually, Newton method is sensitive to the iterative initial value, and
can be regarded as a measure of the nonlinearity. However, reducing frequently the time step
will increase a lot of computational time. The second reason is that the Newton method may
change the features of the original partial differential equations, which makes the iteration hard
to be convergent. A iteration method of preserving the characteristics of the original PDEs
during the iteration process is more valuable than the one that possesses such property only at
the end of the iteration procedure. The iteration method of keeping the parabolic feature of the
nonlinear parabolic equations not only ensures the efficiency of the computation, but also keeps
the iteration solution to be positive (see [7] for detail). Keeping the positivity in the iterative
procedure is the foundation of the correct simulation of the physical problem. The third reason
is that the Newton iteration should form a Jacobian matrix, which is often time-consuming,
and is even impossible for some applications. For this issue, some papers (e.g. [4]-[6]) suggest
applying the JFNK (Jacobian Free Newton-Krylov) method to deal with such problems.

In this paper, we pay attention to the last two reasons due to their importance. The main
objective of this paper is that two new nonlinear iteration methods, called as the implicit-explicit
quasi-Newton (IEQN) method and the derivative free implicit-explicit quasi-Newton (DFIEQN)
method, are proposed. In these methods we construct a iterative (linearized) difference scheme
from the nonlinear implicit scheme, instead of simply applying the Newton method or JFNK
method to the nonlinear algebraic system of equations. In other words, the device of IEQN
and DFIEQN methods are based on the nonlinear implicit scheme for the nonlinear parabolic
equations, and not on the corresponding nonlinear algebraic system of equations. Moreover the
performance of the DFIEQN method is examined along with some existing iteration methods
including the semi-implicit method (SI), the fully implicit Picard method (FIP), fully implicit
partial Newton method (FIPN) and the JFNK (Jacobian Free Newton-Krylov) method. Like
JFNK method, the DFIEQN method is derivative free. But, unlike JFNK method our DFIEQN
method has the advantage of FIP, i.e., its implementation is simple, and it gives a linear algebraic
system with an explicit coefficient matrix, so that the inner iteration is not restricted to be
chosen as the Krylov method and it is more convenient and efficient to get a preconditioner.
Moreover we will prove the DFIEQN method is convergent quadratically, while the SI, FIP and
FIPN is convergent linearly (see [7]).

The paper is organized as follows. Some nonlinear iterative methods are constructed in fol-
lowing section 2. These include the known semi-implicit (SI) method, the fully implicit Picard
(FIP) method, and the fully implicit partial Newton (FIPN) method. And then we describe
the construction of the implicit-explicit quasi-Newton (IEQN) method and the derivative free
implicit-explicit quasi-Newton (DFIEQN) method. In the section 3 some assumptions and aux-
iliary lemmas are introduced, and the main convergence theorems are stated. In the section 4,
we study the convergence property of the constructed nonlinear iteration method, in particular
we will prove the 2nd order convergence of the IEQN and DFIEQN methods. In the last section,
numerical results are presented to show the performance of these methods.

2. Construction of the Iteration Sequences

2.1. The Problem and Some Notations

To present the idea of the construction of the nonlinear iteration, the following one dimen-
sional nonlinear parabolic problem is considered for simplicity here

ut − (A(x, t, u)ux)x = f(x, t, u), QT = {0 < x < l, 0 < t ≤ T } (2.1)

u(x, 0) = u0(x), 0 ≤ x ≤ l (2.2)

u(0, t) = u(l, t) = 0, 0 ≤ t ≤ T (2.3)
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where A(x, t, u) and f(x, t, u) are given functions of (x, t, u), u0(x) is a given function of x. For
simplicity, we only consider the homogeneous boundary conditions (2.3) except in the section
5.

Divide QT by using parallel lines x = xj (j = 0, 1, · · · , J) and t = tn (n = 0, 1, · · · , N),
where xj = jh, tn = nτ , and Jh = l,Nτ = T , J and N are some positive integers, h and τ are
the space and time step. For 0 ≤ n ≤ N denote the first order difference

δun
j+ 1

2

=
1

h

(

un
j+1 − un

j

)

, (j = 0, 1, · · · , J − 1)

and the second order difference

δ2un
j =

1

h

(

δun
j+ 1

2

− δun
j− 1

2

)

, (j = 1, · · · , J − 1).

For a discrete function {uj|j = 0, 1, · · · , J} (where u0 = uJ = 0) define some discrete norms
as follows

‖uh‖∞ = max
0≤j≤J

|uj|, ‖δuh‖∞ = max
0≤j≤J−1

|δuj+ 1
2
|,

‖uh‖
2
2 =

J−1
∑

j=1

|uj |
2h, ‖δuh‖

2
2 =

J−1
∑

j=0

|δuj+ 1
2
|2h.

2.2. Fully Implicit Scheme (FIS)

A classical difference scheme for solving the problem (2.1)–(2.3) is the following implicit
scheme

un+1
j − un

j

τ
=

1

h

(

An+1
j+ 1

2

δun+1
j+ 1

2

− An+1
j− 1

2

δun+1
j− 1

2

)

+ fn+1
j , 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1 (2.4)

u0
j = u0(xj) 0 ≤ j ≤ J (2.5)

un+1
0 = un+1

J = 0, 0 ≤ n ≤ N − 1 (2.6)

where
An+1

j+ 1
2

= A(xj+ 1
2
, tn+1, un+1

j+ 1
2

), fn+1
j = f(xj , t

n+1, un+1
j ),

and un+1
j+ 1

2

= 1
2 (un+1

j+1 + un+1
j ), xj+ 1

2
= 1

2 (xj+1 + xj). The basic properties of the implicit scheme

for the nonlinear parabolic equations have been studied in [8].

2.3. Semi-Implicit scheme (SI)

In this paper the semi-implicit scheme is referred to linearize the nonlinear equations (2.4)
by constructing the diffusion coefficients and the source term by the last iterative values on the
previous time level, i.e.,

un+1
j − un

j

τ
=

1

h

(

An
j+ 1

2

δun+1
j+ 1

2

− An
j− 1

2

δun+1
j− 1

2

)

+ fn
j , 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1 (2.7)

with the initial and boundary condition (2.5)–(2.6). When f = f(u) = uk, fn
j is often replaced

by un+1
j (un

j )k−1 or (kun+1
j − (k − 1)un

j )(un
j )k−1 or some other forms.

2.4. Fully Implicit Picard Iteration (FIP, usually called as the simple iteration)

For a fixed non-negative integer n (0 ≤ n ≤ N − 1), define a sequence of discrete functions

{
(s)
u n+1

j |j = 0, 1, · · · , J} (s = 0, 1, · · · ) by the following way: {
(s+1)

u n+1
j |j = 0, 1, · · · , J} is

obtained by the solution of the following linear system of equations

(s+1)
u n+1

j − un
j

τ
=

1

h

(

(s)

An+1
j+ 1

2

δ
(s+1)

u n+1
j+ 1

2

−
(s)

An+1
j− 1

2

δ
(s+1)

u n+1
j− 1

2

)

+
(s)

f n+1
j (2.8)
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1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1

(0)
u n+1

j = un
j 0 ≤ j ≤ J (2.9)

(s+1)
u n+1

0 =
(s+1)

u n+1
J = 0, 0 ≤ n ≤ N (2.10)

where s is the number of the iterations, and

(s)

An+1
j+ 1

2

= A(xj+ 1
2
, tn+1,

(s)
u n+1

j+ 1
2

),
(s)

f n+1
j = f(xj , t

n+1,
(s)
u n+1

j ).

When f = f(u) = uk,
(s)

f n+1
j can be taken as

(s+1)
u n+1

j (
(s)
u n+1

j )k−1 or (k
(s+1)

u n+1
j − (k −

1)
(s)
u n+1

j )(
(s)
u n+1

j )k−1.
For the diffusion equation of non-divergence type, the convergence of FIP method and the

contraction of the iteration sequence are proved in [9]. For more general iterative difference
schemes, it has been proved in [10] that the discrete solution converges to the solution of the
diffusion equation if the time step and space step tend to zero.

2.5. Fully Implicit Partial Newton Method (FIPN)

The following FIPN method differs from the FIP method in the way of linearization of the
nonlinear source term. It is defined by modifying the equation (2.8) into

(s+1)
u n+1

j − un
j

τ
=

1

h

(

(s)

An+1
j+ 1

2

δ
(s+1)

u n+1
j+ 1

2

−
(s)

An+1
j− 1

2

δ
(s+1)

u n+1
j− 1

2

)

+
(s)

f n+1
j +

(s)

f ′n+1
j (

(s+1)
u n+1

j −
(s)
u n+1

j ),

(2.11)
(1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1)

where
(s)

f ′n+1
j = f ′(xj , t

n+1,
(s)
u n+1

j ). The motivation to construct the method is that the diffusive
term and the source term should be managed separately for solving some practical problems.
For example in the two-dimensional 3-temperature simulation of radiation hydrodynamics, the
two nonlinear terms (A(u)ux)x and f(u) represent different physical peculiarities. In many
cases the energy exchange term f(u) has a strong stiffness, and the implicit method is required
to resolve it, and a superlinear iterative method is needed to make it converge nonlinearity as
fast as possible. When A(u) is independent of u, the usual Newton method is reduced to be

(2.11). Furthermore, in the Jacobian-Free method
(s)

f ′n+1
j v can be approximated by

f(xj , t
n+1,

(s)
u n+1

j + εv) −
(s)

f n+1
j

ε
where ε > 0 is a small parameter.

2.6. Implicit–Explicit Quasi–Newton Method (IEQN)

When the Newton iteration method and JFNK iteration method are used to solve the nonlin-
ear implicit scheme (2.4)–(2.6), people always consider the system (2.4)–(2.6) as a nonlinear al-

gebraic system os equations F(u) = 0, and then define the iterative sequence {
(s)
u : s = 0, 1, · · · }

by
(s)

J (
(s+1)
u −

(s)
u ) + F(

(s)
u ) = 0,

where J is the Jacobian matrix for Newton method or replacing derivatives with difference
quotients for JFNK method. As we know, the Newton-Krylov method and JFNK method (e.g.,
see [4]-[6]) never manage the term (A(u)ux)x and f(u) separately. When solving the nonlinear
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algebraic system equations by the Newton method, the parabolic properties of the original
partial differential equations was seldom considered for the discretized and linearized system of
equations. Following the argument method used in this paper, we can prove that FIPN and
FIP methods are of the first order convergence. The convergence order is not higher than one

since the term (A(u)ux)x is linearized simply by (A(
(s)
u )

(s+1)
u x)x. So how to construct a nonlinear

iteration method which is of superlinear convergence as well as preserving the parabolic property
is very interesting. The following IEQN method will serve as an example.

To show clearly the mechanism of the IEQN method, we consider the case f(u) ≡ 0 for
simplicity. To emphasize the character of the method, we omit the superscripts n + 1 and
subscripts j if no confusion occurs. We still use δ to stand for the first order of difference and
s stands for the number of iteration.

If A(u) is linearized by one order Taylor expansion, that is to replace
(s)

An+1
j+ 1

2

by
(s)

An+1
j+ 1

2

+

(s)

A′n+1
j (

(s+1)
u n+1

j −
(s)
u n+1

j ), we get the following system

(s+1)
u j − un

j

τ
= δ

(

(
(s)

A +
(s)

A′(
(s+1)

u −
(s)
u ))δ

(s+1)
u

)

, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1.

where
(s)

A′n+1
j+ 1

2

= f ′(xj+ 1
2
, tn+1,

(s)
u n+1

j+ 1
2

). Unfortunately, the system above is not linear, and can

not be solved directly by linear solver. Under the assumption that
(s)

A +
(s)

A′(
(s+1)

u −
(s)
u ) is always

positive, we can prove the 2nd order convergence of the above iteration. But we can not ensure

that
(s)

A +
(s)

A′(
(s+1)

u −
(s)
u ) be always positive in practical computation, unless the time steps are

chosen to be very small. Then we propose the following IEQN method:

(s+1)
u j − un

j

τ
= δ

(

(s)

Aδ
(s+1)

u

)

+ δ

(

(s)

A′(
(s+1)

u −
(s)
u ))δ

(s)
u

)

, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1. (2.12)

This method can be obtained from FIP (2.8) by adding the δ

(

(s)

A′(
(s+1)

u −
(s)
u ))δ

(s)
u

)

, which is

linear and one order difference with respect to
(s+1)

u . The resulting equations can preserve the
parabolic property, and can be solved quickly since the quadratic convergence will be proved in
the next section.

The IEQN method result from the nonlinear implicit scheme (2.4) instead of the correspond-
ing nonlinear algebraic system of equations, i.e., it is different from the Newton method in that
it gives a direct approach to form Jacobian matrix. Furthermore it enlighten us to propose
the following derivative free implicit–explicit quasi–Newton method (DFIEQN), which can be
applied in some scientific and engineering computations.

2.7. Derivative Free Implicit–Explicit Quasi–Newton Method (DFIEQN)

Now we describe the construction of DFIEQN iteration method. In the IEQN method (2.12)

we replace the derivative
(s)

A′ with the difference quotient

(s)

A′ ≈
(s)

A′
ε
≈

{

(s)

A′
ε

}

=











1
(s)
ε n+1

j+ 1
2

(

A(
(s)
u n+1

j+ 1
2

+
(s)
ε n+1

j+ 1
2

) − A(
(s)
u n+1

j+ 1
2

)

)











,

where
(s)
ε n+1

j+ 1
2

> 0 are small parameters. Then the DFIEQN iteration method is constructed as



Acceleration Methods of Nonlinear Iteration for Nonlinear Parabolic Equations 417

follows
(s+1)

u j − un
j

τ
= δ

(

(s)

Aδ
(s+1)

u

)

+ δ

(

(s)

A′
ε(

(s+1)
u −

(s)
u )δ

(s)
u

)

, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1 (2.13)

with the boundary condition (2.10). Note that the DFIEQN method (2.13) has same principal
part as the FIP (2.8), but they differ in that the FIP method is of linear convergence while
DFIEQN is of quadratic convergence for the parameters ε chosen properly. Moreover a linear
system of equations is formed for DFIEQN (2.13) while it is not for JFNK.

3. Assumptions, Auxiliary Lemmas and Main Theorems

3.1. Assumptions

Introduce the assumptions:
(H1) A ∈ C2(R), and there exists a constant σ > 0 such that A(v) ≥ σ (∀v ∈ R).
(H2) The nonlinear implicit scheme (2.4)–(2.6) has one and only one solution {un+1

j |1 ≤
j ≤ J − 1, 0 ≤ n ≤ N − 1}, and there exists a constant M > 0 such that

max
0≤n≤N−1

‖δun+1
h ‖∞ ≤ M.

(H3) Let
(0)
w n+1

j = un
j −un+1

j . Assume τ ≤ τ0 and ‖δ
(0)
w n+1

h ‖2
2 < c0, where τ0 > 0 and c0 > 0

are small constants to be determined in the following section.

3.2. Auxiliary Lemmas

We need some lemmas (see [8]) as follows:
Lemma 3.1. (The discrete Green formula) Let uj and vj be the discrete function defined on
{xj |j = 0, 1, · · · , J}, then

J−1
∑

j=0

uj(vj+1 − vj) = −

J−1
∑

j=1

(uj − uj−1)vj − u0v0 + uJ−1vJ .

Lemma 3.2. (The discrete Sobolev inequality) For any discrete function uh = {uj|j =
0, 1, · · · , J} (Jh = l), the following assertions hold.

(i) For all ε > 0, there are

‖uh‖
2
∞ ≤ ε‖δuh‖

2
2 +

C

ε
‖uh‖

2
2,

where C is a constant depending on l, and independent of ε, h and uh;
(ii) If u0 = uJ = 0, then

‖uh‖2 ≤ l‖δuh‖2, ‖uh‖∞ ≤ ‖δuh‖
1
2

2 ‖uh‖
1
2

2 ;

(iii) There exist a constant C independent of h and l, such that

‖δuh‖2 ≤ C
(

‖uh‖
1
2

2 ‖δ
2uh‖

1
2

2 + l−1‖uh‖2

)

.

In this paper, C refers to a positive constant independent of h, τ , and s (the number of
iteration), and may be different in different place.

3.3. Main Theorems

Let un+1
j be the solution of (2.4)–(2.6) with fn+1

j ≡ 0 for simplicity.
Theorem 1. If the assumptions (H1)–(H3) hold and τ is small enough, then for the sequence

{
(s)
u n+1

j } defined by the IEQN method (2.12) with (2.9) and (2.10) there hold

lim
s→∞

(

‖
(s+1)
w n+1

h ‖2 + ‖δ
(s+1)
w n+1

h ‖2

)

= 0, lim
s→∞

‖δ
(s+1)
w n+1

h ‖2

‖δ
(s)
w n+1

h ‖2
2

≤ C,
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where
(s)
w n+1

j =
(s)
u n+1

j − un+1
j .

Theorem 2. Assume (H1)–(H3) hold and τ is small enough. If the sequence {
(s)
u n+1

j } is defined

by the DFIEQN method (2.13) with (2.9) and (2.10), and let
(s)
w n+1

j =
(s)
u n+1

j − un+1
j , then we

have
(i) when

lim
s→∞

max
0≤j≤J−1

|
(s)
ε n+1

j+ 1
2

| = 0

is satisfied then there holds

lim
s→∞

‖δ
(s+1)
w n+1

h ‖2

‖δ
(s)
w n+1

h ‖2

= 0;

(ii) when

max
0≤j≤J−1

|
(s)
ε n+1

j+ 1
2

| = O(‖
(s)
w ‖2),

is satisfied then

lim
s→∞

‖δ
(s+1)
w n+1

h ‖2

‖δ
(s)
w n+1

h ‖2
2

≤ C.

4. Proof of Iteration Convergence

In this section, we will prove the 2nd order convergence of IEQN and DFIEQN iteration
methods, i.e., Theorem 1 and 2. For simplicity the discrete indices j and n + 1 will be omitted
if there is no confusion.

4.1. IEQN

For {
(s)
u n+1

j |j = 0, 1, · · · , J} (s = 0, 1, · · · ) defined by the IEQN method (2.12) with (2.9)–

(2.10) denote
(s)
w n+1

j =
(s)
u n+1

j − un+1
j . From (2.12) and (2.4) we have

(s+1)
w j

τ
= δ

(

(s)

Aδ
(s+1)
w

)

+ δ

[

(
(s)

A − A +
(s)

A′(
(s+1)

u −
(s)
u ))δu +

(s)

A′(
(s+1)

u −
(s)
u ))δ(

(s)
u − u)

]

, (4.1)

where the term in [ ] at the right of (4.1) is equal to the following
(

(s)

A∗(
(s)
u − u) +

(s)

A′(
(s+1)

u − u − (
(s)
u − u))

)

δu +
(s)

A′(
(s+1)

u − u − (
(s)
u − u))δ(

(s)
u − u)

=

(

(s)

A′′(
(s)
w )2 +

(s)

A′(s+1)
w

)

δu +
(s)

A′(
(s+1)
w −

(s)
w )δ

(s)
w ,

where the following abbreviations are used

(s)

A − A ≡ A(
(s)
u n+1

j+ 1
2

) − A(un+1
j+ 1

2

) =

∫ 1

0

A′(r
(s)
u n+1

j+ 1
2

+ (1 − r)un+1
j+ 1

2

)dr(
(s)
u n+1

j+ 1
2

− un+1
j+ 1

2

)

≡
(s)

A∗(
(s)
u n+1

j+ 1
2

− un+1
j+ 1

2

), where
(s)

A∗ =

∫ 1

0

A′(r
(s)
w n+1

j+ 1
2

+ un+1
j+ 1

2

)dr,

(s)

A′ = A′(
(s)
u n+1

j+ 1
2

)),
(s)

A′′ =

∫ 1

0

dr

∫ 1

0

dr̄

[

A′′(r̄(r − 1)
(s)
w n+1

j+ 1
2

+
(s)
u n+1

j+ 1
2

)(r − 1)

]

.
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At the moment we assume
∣

∣

∣

∣

A′(r
(s)
w n+1

j+ 1
2

+ un+1
j+ 1

2

)

∣

∣

∣

∣

≤ C′,

∣

∣

∣

∣

A′′(r̄(r − 1)
(s)
w n+1

j+ 1
2

+
(s)
u n+1

j+ 1
2

)

∣

∣

∣

∣

≤ C′′.

Here C′ and C′′ are positive constants to be determined later.

Multiplying (4.1) by
(s+1)
w jh, and summing up the products for j = 1, · · · , J − 1, we obtain

1

τ
‖
(s+1)
w ‖2

2 + σ‖δ
(s+1)
w ‖2

2

≤ C

J−1
∑

j=0

[

(|
(s)
w |2 + |

(s+1)
w |2)|δu| + |

(s+1)
w −

(s)
w ||δ

(s)
w |

]

|δ
(s+1)
w |h

≤
σ

2
‖δ

(s+1)
w ‖2

2 + C

(

‖
(s)
w ‖4

∞ + ‖
(s+1)
w ‖2

2 + ‖
(s+1)
w −

(s)
w ‖2

∞‖δ
(s)
w ‖2

2

)

,

where C ≥ 1 is a constant dependent on M . So we have

1 − Cτ

τ
‖
(s+1)
w ‖2

2 +
σ

2
‖δ

(s+1)
w ‖2

2

≤ C

[

‖δ
(s)
w ‖4

2 +

(

‖
(s+1)
w ‖2

∞ + ‖
(s)
w ‖2

∞

)

‖
(s)
w ‖2

2

]

≤ C

(

‖δ
(s)
w ‖4

2 + ‖
(s+1)
w ‖2‖δ

(s+1)
w ‖2‖

(s)
w ‖2

2

)

≤
σ

4
‖δ

(s+1)
w ‖2

2 + C‖δ
(s)
w ‖4

2

(

1 + ‖
(s+1)
w ‖2

2

)

.

Then, when 1−Cτ
τ ≥ 2, it can be deduced to

2‖
(s+1)
w ‖2

2 + ‖δ
(s+1)
w ‖2

2 ≤ C‖δ
(s)
w ‖4

2

(

1 + ‖
(s+1)
w ‖2

2

)

.

Assume by induction C‖δ
(s)
w ‖2

2 < 1. Then

2‖
(s+1)
w ‖2

2 + ‖δ
(s+1)
w ‖2

2 ≤
1

C

(

C‖δ
(s)
w ‖2

2

)2 (

1 + ‖
(s+1)
w ‖2

2

)

<
1

C

(

1 + ‖
(s+1)
w ‖2

2

)

.

It follows C‖δ
(s+1)
w ‖2

2 < 1. So we conclude that, if C‖δ
(0)
w ‖2

2 < 1, then C‖δ
(s)
w ‖2

2 < 1 (∀s ≥ 0).
Therefore

‖
(s+1)
w ‖2

2 + ‖δ
(s+1)
w ‖2

2 ≤ C‖δ
(s)
w ‖4

2 ≤ · · · ≤
1

C
(C‖δ

(0)
w ‖2

2)
2s+1

.

Under the conditions of Theorem 1 it is showed the following results hold

lim
s→∞

(

‖
(s+1)
w ‖2 + ‖δ

(s+1)
w ‖2

)

= 0, lim
s→∞

‖δ
(s+1)
w ‖2

‖δ
(s)
w ‖2

2

≤ C
1
2 .

The proof of Theorem 1 is completed.

4.2. DFIEQN

Now we give the proof of Theorem 2. Since it is similar to the argument of the above
subsection, we only state the difference between them. Now (4.1) should be changed into

(s+1)
w j

τ
= δ

(

(s)

Aδ
(s+1)
w

)

+ δ

[

(
(s)

A − A +
(s)

A′(
(s+1)

u −
(s)
u ))δu +

(s)

A′
ε(

(s+1)
u −

(s)
u )δ(

(s)
u − u)

]

+δ

[

(
(s)

A′
ε −

(s)

A′)(
(s+1)

u −
(s)
u ))δu

]

, (4.2)
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where
(s)

A′
ε =

1
(s)
ε n+1

j+ 1
2

(

A(
(s)
u n+1

j+ 1
2

+
(s)
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j+ 1
2
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(s)
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j+ 1
2

)

)

=

∫ 1

0
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(s)
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2
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(s)
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2
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(s)
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ε −

(s)
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0

(
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(s)
u n+1
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2

+ r
(s)
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j+ 1
2
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(s)
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2

)

)

dr

=
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0
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0
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(

A′′(r̄(
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2

+ r
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j+ 1
2
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(s)
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)
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(s)
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(
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2
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ε(

(s)
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2

+ r
(s)
ε n+1

j+ 1
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dr,

=

∫ 1

0

dr

∫ 1

0

dr̄

[

A′′(r̄(r − 1)
(s)
w n+1

j+ 1
2

+
(s)
u n+1

j+ 1
2

)

(

(r − 1)
(s)
w n+1

j+ 1
2

+ r
(s)
ε n+1

j+ 1
2

)]

.

From the proof in 4.1 we can see that as long as

lim
s→∞

max
0≤j≤J−1

|
(s)
ε n+1

j+ 1
2

| = 0, (4.3)

then we can obtain

lim
s→∞

‖δ
(s+1)
w n+1

h ‖2

‖δ
(s)
w n+1

h ‖2

= 0. (4.4)

Furthermore, if

max
0≤j≤J−1

|
(s)
ε n+1

j+ 1
2

| = O(‖
(s)
w n+1

h ‖2), (4.5)

then it follows

lim
s→∞

‖δ
(s+1)
w n+1

h ‖2

‖δ
(s)
w n+1

h ‖2
2

≤ C
1
2 . (4.6)

Therefore we have proved the Theorem 2.

5. Numerical Experiments

To compare the performance of the IEQN and DFIEQN with other methods, we give some
numerical experiments on a model problem. Consider a model problem of the following form

∂u

∂t
−

∂

∂x

(

κ
∂u

∂x

)

−
∂

∂y

(

κ
∂u

∂y

)

= S − u4, (5.1)

for (x, y) ∈ [0, 10]× [0, 10], t ∈ [0,∞)

where

κ = z3u3; z = z0 = 1, u(x, y, 0) = 1.d − 5

with the boundary conditions

1
4u − 1

6F = f, for x = 0, 0 < y < 8;
ux = 0, for x = 0, 8 < y < 10; ux = 0, for x = 10, 8 < y < 10
uy = 0, for 0 < x < 10, y = 10; uy = 0, for 0 < x < 10, y = 0
1
4u + 1

6F = 0, for x = 10, 0 < y < 8
where F = z3u3ux
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Figure 1: The computational domain with boundary conditions

Figure 2: The Robin boundary condition

The detail of the computational model is depicted in Figure 1.
For the boundary conditions, the following discretization is adopted. For simplicity, we

may consider a one dimensional case, the notions are listed in Figure 2. Since the boundary
condition is valid on the boundary, then it is equivalent to

1

4
(u1/2 − u1) +

1

4
u1 −

1

6
F1/2 = f

where u1/2 denotes the value on the boundary.

And we approximate the term 1
4 (u1/2 − u1) by

1

4
(u1/2 − u1) ≈ −

h1/2

4
ux = −

h1/2

4z3u3
1/2

F1/2

which is substituted into the discretized form of the boundary condition, and obtain

−(
h1/2

4z3u3
1/2

+
1

6
)F1/2 = f −

1

4
u1.

And replace the u1/2 by u1 on the left side of the equation, we obtain the discretized approxi-
mation to F1/2 as

F1/2 =
f − 1

4u1

−(
h1/2

4z3u3
1/2

+ 1
6 )

(5.2)

The equation (5.1) is integrated on a cell and discretized by finite volume methods, in which
the normal flux F~n can be replaced by (5.2) if the side of the cell is on the boundary of Ω.

In the present numerical experiments, we select

S = 1.D0; f = 10, z0 = 1
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and in each of the above two subdomains, the mesh size is 50 × 50. The problem is solved by
different nonlinear solvers different time steps.

This model shows the conduction of heat flow which is introduced from the left side, and
flows out on the right side. The process is shown by the following pictures.
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Figure 5. Energy
distribution

GMRES(10) is used as the linear solver, with the preconditioner ILUTP(10, 1.d− 10). For
the JFNK test examples, FGMRES(10) is used instead of the standard GMRES(10). The
program is written in FORTRAN, and run on a windows system. Two results of different time
steps are presented below.
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Figure 6. Iterative history of ex. 1
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Figure 7. Iterative history of ex. 2

The total time cost of each iterative method are listed in the following tablets.

METHODS FIP FIPN JFNK IEQN DFIEQN IEQN (high precision)
TIME(s) 51.8 37.0 - 16.4 16.5 20.1

Table 1. The time costs of the five methods (DT=τ = 5.d − 3)

METHODS FIP FIPN JFNK IEQN DFIEQN IEQN (high precision)
TIME(s) 113.6 110.8 208.8 62.9 63.1 90.0

Table 2. The time costs of the five methods (DT=τ = 1.d − 3)
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Since the exact solution of the problem is unavailable, we solve the problem with a higher
precision. It is converged if the residual of each nonlinear iteration is less than 1.d − 11. It is
solved by IEQN, and the time consumption is listed in the last column of the above two tablets.
And the solution is used as the approximate exact solution. Then we can get the following
results. The relative error is the maximum norm of the relative error vectors.
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Figure 8. Relative error of ex. 1
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Figure 9. Relative error of ex. 2

The first experiment adopts time step 5.d− 3. The nonlinear convergence judgement is the
residual norm is less than 1.d − 6. For this time step, we notice that JFNK failed, while the
others succeeded. JFNK seems very sensitive to the time step. However, if JFNK converges,
it converges fastest. And from the time and number of iterations, we find IEQN as well as
DFIEQN the best. On most time, IEQN (DFIEQN) converges the fastest and costs the least
time.

For the second experiment, we use a smaller time step. The nonlinear convergence judgement
is the residual norm is less than 1.d−6. In this experiment, JFNK converges the fastest. IEQN
in most place cost as many iterations as JFNK. But JFNK costs the most time. This is because
the equation is nonlinear, and the discretization costs much more time than a matrix vector
multiplication operation. For this point, though JFNK may be the fastest in convergence, it is
not the fastest in time of solution.

A third result is that DFIEQN and IEQN performs almost the same. In the two examples,
we approximate the derivative of the diffusion coefficients by

∂κ

∂u
≈

κ(u + ε) − κ(u)

ε
, where ε = 1.d − 6

and the results show that it almost doesn’t change the convergence property of the IEQN
method. And if we solve the practical problem, whose diffusion coefficients are often provided
by libraries, then DFIEQN can be used instead of IEQN to get good performance.

From the relative error of the problem (Fig 8 and Fig 9), we find for the large time step
problem, the relative error of IEQN and DFIEQN are better in the former part of the simulation
(T < 0.25) and a little larger in the latter part (where the IEQN only need two nonlinear
iteration to converge). And in the small time step problem, the relative error of IEQN and
DFIEQN is as good as FIP and FIPN, while worse than JFNK. But it takes still less time for
IEQN to reach the same precision as JFNK. It takes about 90 seconds for the second example.

In all, from the numerical examples, we find that IEQN (DFIEQN) are shown to yield good
convergence rate, stability and efficiency.
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