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Abstract

The high frequency CV curves of MOS capacitor have been studied. It is shown that
semiclassical model is a good approximation to quantum model and approaches to classical
model when the oxide layer is thick. This conclusion provides us an efficient (semiclassi-
cal) model including quantum mechanical effects to do parameter extraction for ultrathin
oxide device. Here the effective extracting strategy is designed and numerical experiments
demonstrate the validity of the strategy.
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1. Introduction

Metal-Oxide-Semiconductor (MOS) structure is the core of MOS technology. This structure
becomes a capacitor with one side relating to the metal and the other side to semiconductor.
Its capacity depends on the gate voltage. This structure is very important for the building
technique of MOS integrated circuits. In fact CV(capacity and gate voltage) curve is often
measured to estimate the performance of the integrated circuits. The important parameters,
such as the thickness of the oxide layer, the doping profile of the substrate is determined by
fitting CV curve. Due to the high nonlinearity of the mathematical model, it is difficult to
obtain an analytical solution. So we have to resort to numerical method.

For large scale MOS structure, much work about the classical model has been described
in [1, 12]. As MOS devices are scaled to deep sub-micro dimensions, aggressive scaling of
gate dielectric thickness has continued. According to the National Technological Roadmap for
semiconductor (NTRS) [2], the scaling trend for gate dielectrics is such that for sub-100 nm
generation device, an equivalent gate oxide thickness of less than 3.0 nm will be required [10].
The combination of thin gate dielectrics and high level gate bias results in deep submicron
(< 0.25µm) MOS device in large transverse electric fields at the interface. When the transverse
electric fields become large enough to cause the formation of a 2-D electron (or hole) gas, the
modelling of quantum mechanical (QM) effects in inversion and accumulation layers becomes
very important. QM effects result in decreased inversion layer charge density in the inversion
layer at a given gate voltage (compared to classical calculations which ignore QM effects)
[5]. An accurate model should be the completely coupled Poisson equation and Schrödinger
equation. The electrostatic potential and quantum energy levels of an accumulated n-type
semiconductor is fully self-consistently calculated in [9]. According to physical characteristic,
additional boundary condition is set to Poisson equation and shooting method is applied the
initial problem. Schrödinger equation is solved by shifting energy to make sure the wave function
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not to distort physical properties in oxide layer. Finite difference method is used to solve
Poisson and Schrödinger equations self-consistently for accumulated layers [7] and applied to the
calculation of tunnelling current. The fully self-consistent QM treatment of the inversion layer
and accumulation layer is time-consuming and too cumbersome for practical device simulation.
To do parameter extraction for ultrathin oxide gate device, it is important to choose an efficient
model including QM effects. QM effects is obvious only in the potential well at the interface
of oxide layer and Si layer, so it is not necessary to include QM effect in the global region. In
this paper, the semiclassical model is presented, quantum region is located at the beginning of
the Si layer, which is set large enough to include QM effects and other regions are considered
classically.

The main purpose of this paper is to analyze the different scale mathematical models and
extract important parameters. The physical model and mathematical models are introduced
in section 2. Numerical method is presented and which is used to identify the phenomena for
different models in section 3. In section 4, inverse strategy is designed and inverse result is
given. Finally, we draw the conclusion in section 5.

2. Physical and Mathematical Model of 1-D MOS Capacitor

1-D MOS capacitor consists of three layers: Poly-Si (metal), Sio2 layer (oxide) and Si layer
from the left to the right as shown in figure 1. QM effects are obvious at the beginning of
the Si layer. As we mentioned in the previous section, our approach aims at self-consistently
solving the Schrödinger and Poisson equations. Although the same procedure is applicable to
any semiconductor-insulator combination, as an example of illustration, we shall consider the
case of n-type Si/Sio2/Poly-Si structure.

Vg


Poly-Si
 SiO
2
 Si


x1
 x2
0
 x3

x


Quantum field


Figure 1: The structure of MOS capacitor

The following is a list of physical parameters to be used in our MOS capacitor model.
• k is Boltzman constant k = 1.38066× 10−23J/K
• ~ is Plank constant ~ = 1.05457266× 10−34J.s
• m0 is electron mass m0 = 9.109 × 10−31kg
• Eg is the length of band gap in Si Eg = 1.12ev
• q is electron charge q = 1.60218× 10−19C
• T is room temperature T = 300K
• Qit is the interface-trapped charge density; Qit = 3 × 1010cm−2

• ni is intrinsic carrier concentration; ni = 1.45 × 1010cm−3

• tpoly is thickness of Poly-Si layer tpoly = 0.01µm = 10nm
• tsi are thickness of Si layers. tsi = 0.2µm = 200nm.

2.1. Poisson Equation

Poisson Equation is the fundamental equation which governs the electrostatic potential and
the charge distribution:

− d

dx

(

ε(x)
dφ(x)

dx

)

= ρ(φ(x), x) = q(p(x) − n(x) +Nd(x)) (1)
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with the boundary conditions:











φ|x=0 = φ0 + φBpoly = φ0 +
kT

q
ln (

N0poly

ni
)

φ|x=x3
= φB =

kT

q
ln (

Nconst

ni
),

(2)

where x is the depth from the left boundary of the device, φ(x) is the electrostatic potential
at x, ε(x) is the material’s dielectric number and is a constant in three layers respectively.
The effective gate potential φ0 is the difference of the gate potential Vg and the flatten band
potential Vfb: φ0 = Vg−Vfb. ρ(x) is the total charge density composed of electron density n(x),
hole density p(x) and doping density Nd(x) . In Poly-Si layer, the doping profile is approached
as

Npoly(x) = N0poly[1 − exp(
x− Tpoly

σ1
)].

In oxide layer, Nd(x) = 0. In Si layer, Gaussian function was selected to describe the doping
profile [6]:

Nsi(x) = N0si exp[−(
x− x0√

2σ2

)2] +Nconst.

Different scale models have different charge density form [4]. With free charge approximation,
classical model has the charge density:

ρ(φ(x), x) =















































q

[

ni exp

(−q(φ(x) − φ0)

kT

)

− ni exp

(

q(φ(x) − φ0)

kT

)

+Npoly(x)

]

in Poly-Si

−Qitδ(x2) in Sio2

q

[

ni exp

(−qφ(x)

kT

)

− ni exp

(

qφ(x)

kT

)

+Nsi(x)

]

in Si layer.

(3)
As the device scale decreases, QM effects can not be ignored. To include QM effects, the cou-
pled Poisson equation and Schrödinger equation must be solved self-consistently. Electrostatic
potential φ(x) determines the potential function for Schrödinger equation while charge density
function ρ(x) is dependent on the solution of Schrödinger equation. In semiclassical model, it
is assumed that charges are trapped in the potential well at the beginning of Si layer and the
charge density of semiclassical model is:

ρ(φ(x), x) =


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
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[

ni exp

(−q(φ(x) − φ0)

kT

)

− ni exp

(

q(φ(x) − φ0)

kT

)

+Npoly(x)

]

in Poly-Si

−Qitδ(x2) in Sio2

q

[

pqm(x) − nqm(x) +Nsi(x)

]

in QM region

q

[

ni exp

(−qφ(x)

kT

)

− ni exp

(

qφ(x)

kT

)

+Nsi(x)

]

elsewhere in Si.

(4)
In fact, electrons and holes possibly penetrate into the oxide layer. To describe the charge

distribution correctly, it is necessary to include QM effects in the total Oxide layer and Si layer.
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So the quantum model’s charge density is:

ρ(φ(x), x) =



























q

[

ni exp

(−q(φ(x) − φ0)

kT

)

− ni exp

(

q(φ(x) − φ0)

kT

)

+Npoly(x)

]

in Poly-Si

q

[

pqm(x) − nqm(x) +Nd(x)

]

in Sio2 and Si

(5)
pqm(x) and nqm(x) are the hole density and electron density of the quantum region with the
index qm to denote quantum effect. Before pqm(x) and nqm(x) are computed, stationary
Schrödinger equation must be considered.

2.2. Schrödinger Equation

For semiclassical model, it is assumed that the potential barrier at the interface of oxide layer
and Si layer is infinite and charge are trapped in the narrow potential well. So it is reasonable
to set zero boundary condition to Schrödinger equation at quantum region boundary:















[

− ~
2

2m∗

d2

dx2
+ qV ∗(x)

]

ψj(x) = Ejψj(x)

ψj(x2) = 0

ψj(x2 + Lq) = 0

(6)

where Lq is the width of the quantum region. The barrier height is about 3.2ev for electrons
and 4.8ev for holes at the interface of oxide layer and Si layer. Electrons and holes possibly
penetrate into oxide layer [8]. Thus, wave functions should penetrate into oxide layer. Complete
quantum model describes it correctly. The corresponding Schrödinger equation is:















[

− ~
2

2m∗(x)

d2

dx2
+ qV ∗(x)

]

ψj(x) = Ejψj(x)

ψj(x1) = 0

ψj(x3) = 0

(7)

The wave function and velocity are continuous at the interface of oxide layer and Si layer:

ψ(x−2 ) = ψ(x+
2 )

1

mox

∂ψ(x−2 )

∂x
=

1

msi

∂ψ(x+
2 )

∂x
.

m∗ is the effective mass of charge and space dependent (mox = 0.5m0 in oxide layer). V ∗(x) is
the potential function, linear dependent on static potential in oxide layer for quantum model.
Index ∗ indicates different value of m∗ and V ∗(x) according to different charge (hole or electron)
and different degeneration in Si.
For electron,

V ∗(x) = Ve(x) =
Eg

2q
− (φ(x) − φB) Ve(x

−

2 ) = Ve(x
+
2 ) + 3.2.

For Hole,

V ∗(x) = Vh(x) =
Eg

2q
+ (φ(x) − φB) Vh(x−2 ) = Vh(x+

2 ) + 4.8.

The density state of 2-D electron (hole) gas is constant N(E) =
m

π~2
. Energy occupation is

governed by the Fermi-Dirac distribution f(E,EF , T ):

f(E,EF , T ) = [exp(
E − EF

kT
) + 1]−1.
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Thus, the density of charge per unit area is given by

n =

∫

N(E)f(E,EF , T )dE.

After computing Ej and ψj(x) and superposing different degenerations, nqm(x) and pqm(x) can
be deduced [4]:

nqm(x) =
kT

π~2

2
∑

i=1

geimeDi

∑

j

ln

[

1 + exp

(−EF − Eeij

kT

)]

∣

∣ψeij(x)
∣

∣

2
, (8)

pqm(x) =
kT

π~2

3
∑

i=1

ghimhDi

∑

j

ln

[

1 + exp

(

EF − Ehij

kT

)]

∣

∣ψhij(x)
∣

∣

2
. (9)

where meDi is effective mass of electron’s state density with value meD1 = 0.19m0, meD2 =
0.417m0, and mhDi effective mass of hole’s state density with value mhD1 = 0.645m0, mhD2 =
0.251m0, mhD3 = 0.29m0. EF is the Fermi energy which is set to −φB.
The MOS gate capacitance Cg equals the series combination of the capacitances of Cpoly, Csio2

and Csi [1]:
1

Cg

=
1

Cpoly

+
1

Csio2

+
1

Csi

(10)

where


























Cpoly =
dQpoly

dUpoly

Csio2
=

εox
tsio2

Csi =
dQsi

dUsi

,

(11)

where Qpoly and Qsi are the electric charge, Upoly,Usi is the potential drop of the Poly-Si layer
and Si layer. The stationary capacitance is the ratio of the total charge to the total voltage. In
our case the capacitance of MOS structure is a nonlinear function of voltage, so the definition
of differential capacitance is the ratio of charge difference to potential difference.

We use eight parameters in our mathematical model to characterize the device, which will
be extracted in our inverse method. The following is the standard values for the study.

•p1 : N0poly = 1 × 1021cm−3 •p2 : σ1 = 0.002µm
•p3 : Nconst = 0.1 × 1017cm−3 •p4 : N0si = 5.0 × 1017cm−3

•p5 : x0 = 0.0µm •p6 : σ2 = 0.2µm;
•p7 : tsio2

= 2.5nm •p8 : Vfb = 0.15v

N0poly, σ1 are the parameters in the doping profileNpoly(x) of the Poly-Si layer, andNconst, N0si,
x0, σ2 are the parameters in the doping profile N0si(x) of the Si layer. tsio2

is the thickness of
the Oxide layer. Vfb is the flatten band potential.

3. Numerical Method and Model Analyzing

3.1. Solution of Poisson Equation

In this paper, finite element method is used to solve Poisson equation and it leads to a
nonlinear system. Relaxation Newton method is applied to solve the nonlinear problem. For
classical model, Newton iteration is:

[− d

dx

(

ε(x)
d

dx

)

−βq(pn(x)+nn(x))](∆φ) =
d

dx

(

ε(x)
dφn(x)

dx

)

+q(pn(x)−nn(x)+Nd(x)), (12)
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where β =
kT

q
. In quantum region, it is tedious to compute Jacobi matrix and classical form

is taken as an approximation:

[− d

dx

(

ε(x)
d

dx

)

−βq(pn
qm(x)+nn

qm(x))](∆φ) =
d

dx

(

ε(x)
dφn(x)

dx

)

+q(pn
qm(x)−nn

qm(x)+Nd(x)).

(13)
The (n+1)th iteration is computed from the nth iteration using

Φn+1 = Φn + ω∆Φ

0 < ω < 0.1 is empirically chosen to speed up convergence.

3.2. Solution of Schrödinger Equation

Finite volume method is used for solving Schrödinger equation and leads to a formal algebra
eigenvalue problem AΨ = EΨ. It is not necessary to compute all the eigenvalues, because charge
density (8), (9) is exponentially dependent on the eigenvalues and only small eigenvalues are
important. Small eigenvalues of the Hamiltonian are computed using sturm sequencing and
bisection and the eigenvectors are found by performing inverse iteration.

3.3. CV Simulation Process

The calculation starts with an initial guess for the electrostatic potential φ(x) according to
the gate bias Vg and the Schrödinger equation can be solved. Once the eigenenergies and the
corresponding wave functions have been obtained, the charge density throughout the quantum
region is calculated. The Poisson equation is solved to get the electrostatic potential. The
whole process is repeated until the input and the output potential agree within preestablished
convergence limits. After attaining the electrostatic potential distribution, electric charge Qpoly

and Qsi can be computed by Qpoly(si) =
∫

tpoly(tsi)
ρ(φ(x), x)dx. At last, The gate capacitor Vg

is calculated by (10) and (11). The whole process can be formulated by a general form :

Cg = F (Vg , P̄ ), (14)

where P̄ = (p1, p2...) represents the considered parameters.
To make sure the solution precise, the quantum region is divided as finely as possible for

semiclassical model. It leads to large computation if Poisson and Schrödinger equations are
solved on the same mesh. It is improved by only solving Schrödinger equation on fine mesh.
Poisson equation and Schrödinger equation exchange values of potential ψ(x) and charge density
ρ(x) by interpolation. hp, hs denote the mesh size for Poisson equation and Schrödinger equation
separately. In table 1, the L2 norm of CV(40 points) relative error and CPU time are presented.
It is easily seen that the interpolation method saves 10 seconds with small lost of accuracy. It

mesh size (nm) hp = hs = 0.1 hp = 0.2, hs = 0.1 hp = hs = 0.2
relative error 0.002 0.0053 0.0094
CPU time (s) 50 40 25

Table 1: Relative error and CPU time on different mesh

is more important to save time for the inverse work, so interpolation method can make the
inverse process efficient.

3.4. Model Analysis
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CV curve is more easily measured with high frequency (HF) gate voltage than with low
frequency gate voltage , so we are interested the CV curve of HF mode. Minority charge can
not be detected, therefore hole density p(x) for N-type Si is neglected. Based on experimental
result, the quantum region of semiclassical model is set Lq = 0.01µm. Fig.2-7 are the CV curves
of different scale models.
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Figure 2: CV for different models, Tox=1nm.
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Figure 3: CV for different models,Tox=2nm
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Figure 4: CV for different models, Tox=4nm.
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Figure 5: CV for different models,Tox=8nm

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
5

10

15

20

25

30

35

40

45
Tox=10nm

classical
semiclassical
quantum

Figure 6: CV for different models,Tox=10nm
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Figure 7: CV for different models,Tox=15nm

It is shown semiclassical model approximates quantum model perfectly. Semiclassical model
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and quantum model are approaching classical model as oxide layer increases. To compute 40
CV points, semiclassical model consumes about 40 seconds while it takes quantum model nearly
half hour. Semiclassical model not only saves the computing time greatly, but also includes
QM effects correctly, so it is a good model to do the inverse work.

Apparently, large quantum region of semiclassical model decreases the difference of semiclas-
sical model and quantum model at the cost of computing time. To compare the precision and
CPU time of variant quantum region of semiclassical model, 40 points CV curve for different
quantum region are computed and compared to quantum model. Fig. 8 shows L2 norm of the
relative error and CPU time. It is seen that the precision decrease slowly while the CPU time
increases sharply when the quantum region is larger than 0.01µm . So it is reasonable to set
Lq = 0.01µm.
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Figure 8: Relative error and CPU time of CV for
different quantum region.Tox=1nm

4. Inverse Method and Results

Parameters are extracted by fitting CV curve. It will be useful for the inverse process to
know the considered parameters’ effects on CV curve. By observing the CV curves of each
parameter when it deviates from the standard value, the 3rd is the least sensitive to the CV
curve while the 7th is the most sensitive one. The scales of the parameters are greatly different.
In order to compare their effects on CV curve in the same scale, we normalize them by setting
the standard values as the base and the multiplying coefficients as the new parameters. To
describe parameters’ effects on CV curve by quantity, sensitivity of the parameter is defined as
following:

Si =

√

√

√

√

41
∑

j=1

[
F (V gj , P̄i) − F (V gj, P̄ )

0.01
]2,

where V gj = −2.0+ j× 0.1, P̄i denotes the ith parameter deviates 1% from the standard value
while others fixed at the standard values. Let

aij = [
F (V gj , P̄i) − F (V gj , P̄ )

0.01
],
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where A = (aij)8×41,M = AA′ and A′ is the transfer matrix of A. Condition number of matrix
M reflects the property of the inverse problem. Here the condition number (CN) of M and
sensitivity of the parameters are presented in Table 2: It is obvious that P3(Nconst) is the least

S1 S2 S3 S4 S5

0.1548 0.1355 0.0106 0.5065 0.9910
S6 S7 S8 CN

0.0467 3.8880 0.4066 1.8717× 1012

Table 2: Parameter sensitivities in semiclassical model of HF mode

sensitive parameter. It may cause much trouble in inverse process. CN of HF model reaches
1012 which may cause much difficulty to extract the parameters simultaneously. Some technique
is needed to do the inverse work.

For a group {Cgi
}n

i=1 measured at {Vgi
}n

i=1 correspondingly, the inverse problem is to confirm
P̄ which minimize the difference of {Cgi

}n
i=1 to {F (Vgi

, P̄ )}n
i=1 at some sense. It is convenient

to use L2 norm for the fitting problem. If the Newton method is used to solve the least square
problem directly, the large condition number 1012 of Jacobi matrix undoubtedly makes the in-
verse problem ill-conditioned. Here we implement the Levenberg-Marquardt (LM) optimization
method to overcome this trouble. The object function is:

G(P̄ ) =

n
∑

i=1

[
Cgi

− F (Vgi
, P̄ )

Cgi

]2 + β||P̄ ||2.

Newton method is used to determine P̄ to minimize G(P̄ ) as β → 0. The total error is set to
be :

E(P̄ ) =

n
∑

i=1

[
Cgi

− F (Vgi
, P̄ )

Cgi

]2.

Table 3 gives the considered parameters’ standard values as the exact values and deviate up
10% as the initial values for numerical simulation. In Table 4, the inverse results are presented
when parameters are extracted simultaneously.

parameter P1 P2 P3 P4

exact value 1.0 0.002 0.1 5.0
initial value 1.1 0.0022 0.11 5.5
parameter P5 P6 P7 P8

exact value 0.0 0.1 0.0025 0.15
initial value 0.1 0.11 0.00275 0.0165

Table 3: The standard values and the initial values

The inverse results verify the correctness of the prediction by the CN analysis. The 3rd
parameter Nconst can not come back to its standard value. We should add some technique to
the inverse process. From the sensitivity analysis, the 3rd parameter is the least sensitive one.
Our idea is to freeze the 3rd one firstly. After extracting the other parameters to some extent,
put the 3rd into the inverse process. This method improves the precision of the inverse result
greatly. In table 5, the inverse results with this technique are presented.
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parameter P1 P2 P3 P4

inverse value 0.99811438 0.00199548 0.14281769 4.95687738
relative error 0.00188562 0.00226 0.4281769 0.00862456
parameter P5 P6 P7 P8

inverse value 0.00005649 0.09944950 0.00250001 0.14999929
relative error 0.00005649 0.005505 0.000004 0.000007

Table 4: Inverse results for semiclassical model of HF mode

parameter P1 P2 P3 P4

inverse value 1.00025734 0.00200062 0.10855365 4.99036102
relative error 0.00025734 0.00031 0.0855365 0.0019278
parameter P5 P6 P7 P8

inverse value 0.00001437 0.09987529 0.0025000 0.14999860
relative error 0.00001437 0.0012471 0.000000 0.000009

Table 5: Inverse results with order technique

We did a lot of inverse experiments with different initial cases. If the initial values deviate
not more than 20%, the inverse result is satisfied. It is acceptable for practical device design.

5. Conclusion

This paper mainly analyzes different scale models of 1-D MOS capacitor. Numerical results
show that semiclassical model includes QM effect as exactly as quantum model. Semiclassical
model is not time-consuming, so it is a good choice to do parameters extraction for ultrathin
oxide device. With semiclassical model, the parameters’ effects to the CV curve is firstly
considered. It is very helpful for us to propose an efficient inverse strategy. When the initial
values offset is less than 20%, our strategy can give good inverse results. By a measured CV
curve, we can use simplified model to give a guess value for sensitive parameters which differs
not more than 20% from the exact value. So our strategy is applicable for practical problem.

As the thickness of the oxide layer decreases to sub-2.0nm, the tunnelling current increases
in a nearly exponential manner. This increase in current adversely affects the MOS device
performance [3, 10]. Thus, it is important to predict the tunnelling current for the development
of advanced MOS device. The device decreases equally in each dimension, 2-D model must be
considered for smaller dimension device. We will consider these in future work.
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