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Abstract

Subdivision algorithm (Stationary or Non-stationary) is one of the most active and
exciting research topics in wavelet analysis and applied mathematical theory. In multidi-
mensional non-stationary situation, its limit functions are both compactly supported and
infinitely differentiable. Also, these limit functions can serve as the scaling functions to gen-
erate the multidimensional non-stationary orthogonal or biorthogonal semi-multiresolution
analysis (Semi-MRAs). The spectral approximation property of multidimensional non-
stationary biorthogonal Semi-MRAs is considered in this paper. Based on nonstationary
subdivision scheme and its limit scaling functions, it is shown that the multidimensional
nonstationary biorthogonal Semi-MRAs have spectral approximation order r in Sobolev
space H

s(Rd), for all r ≥ s ≥ 0.
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Key words: Nonstationary subdivision algorithm, Biorthogonal Semi-MRAs, Wavelets,
Spectral approximation, Sobolev space.

1. Introduction

Subdivision algorithm, resulting from several fields of applied mathematics and signal pro-
cessing, is an iterative method to generate smooth curves and surfaces. For example, to con-
struct planar curves, such a scheme begins with the initial control points f0(k) defined on the
integer lattice Z, and then expends the control points to the fine lattice Z/2 := {j/2|j ∈ Z} via
a specified mask hj,k = {hj,k(l)}l∈Z. Usually, we assume that the mask hj,k is a finite sequence,
i.e. for every j ≥ 0 and each k ∈ Z, the set {l| ∈ Z, hj,k(l) 6= 0} only contains finite elements.
After j iterative steps, it derives a new sequence fj(2

−jk). The iterative procedure satisfies the
following linear rule:

fj(2
−jk) = 2

∑

n∈k+2Z

hj,k(n)fj−1(2
−j(k − n)) . (1.1)

If mask hj,k is independent of both scale j and position k, namely hj,k(l) = hl, then this
subdivision scheme is said to be stationary, otherwise to be nonstationary. In the case of
stationary subdivision algorithm, (1.1) can be rewritten as:

fj(2
−jk) = 2

∑

n

hk−2nfj−1(2
−j+1n) .
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The convergence of above stationary subdivision scheme is closely connected with the existence
of the solution to the refinement equation as follows.

f(x) = 2
∑

n∈Z

hnf(2x − n) .

Thereby, the stationary subdivision schemes play an important role in the wavelet theory [7,
10, 11, 12, 13].

However, stationary multiresolution analysis based on a compactly supported refinable func-
tion is limited to generators (scaling functions) with a finite degree of smoothness. So, one
cannot build a C∞ refinable function which is also compactly supported in stationary case.

More recently, attention has been given to nonstationary subdivision schemes [3, 4, 5, 6].
Since the masks may vary from different scale j or different position k, it is possible to con-
struct a nonstationary Semi-MRA which is generated by C∞ compactly supported scaling
functions. In fact, by virtue of Rvachev[8] up-function method, N. Dyn and A. Ron[4] con-
structed a compactly supported scaling function in C∞ and the corresponding nonstationary
Semi-MRA {Vj}j≥0. The constructed scaling function ϕj(x) is defined in the Fourier domain
by

ϕ̂j(ω) =
+∞∏

k=1

(
1 + e−i2−kω

2

)k+j

, j ≥ 0, (1.2)

The length of its support is Lj =
∑
k≥1

(k + j)2−k = j + 2. The scaling space is defined as:

Vj := Span{ϕj(2
jx − k)}k∈Z

From equation (1.2), it yields that

ϕ̂j(ω) = mj+1(ω/2)ϕ̂j+1(ω/2) , (1.3)

where

mj+1(ω/2) =

(
1 + e−iω

2

)j+1

.

It also concludes from (1.3) that the spaces Vj are embeded, namely,

Vj ⊂ Vj+1, for all j ≥ 0.

In addition, the investigation of the spectral approximation order in L2 or Sobolev space is also
gaining considerable attention because of its powerful theoretical analysis for approximation
theory. Encouraging results have been reported in some literatures [4, 5], [14]-[17]. More
details, the paper [4] showed that its constructed nonstationary Semi-MRA {Vj}j≥0 has spectral
approximation property in L2(R), i.e., for all r ≥ 0 and f(x) ∈ Hr(R), lim

j→+∞
2jr‖Pjf−f‖0 = 0.

Cohen and Dyn [5] exploited a technique introduced in [14] to generalize these results to some
nonstationary subdivision schemes in one dimensional case. de Boor, DeVore and Ron [14] are
concerned with approximation in the L2 norm from shift-invariant spaces. Cohen and Dyn [5]
adapted their technique to the derivation of density orders in Sobolev norms. Approximation
orders in Sobolev norms by shift-invariant spaces are studied in paper [15] and [16]. Yoon
[17] considered the spectral approximation orders in Sobolev space using radial basis function
interpolation.

In paper [18], we previously obtained some results on the convergence of multidimensional
nonstationary subdivision algorithm and properties of its limit functions. We also exploited
these results to generate multidimensional nonstationary biorthogonal Semi-MRAs [19]. The
goal of this paper is to prove that the multidimensional nonstationary biorthogonal Semi-MRAs
constructed in [19] have spectral approximation order r in Sobolev space Hs(Rd).

To this end, some multi-index notations are given as follows:
• Multi-index m = (m1, · · · , md) ∈ N

d
0, |m| := m1 + · · · + md;
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• x , y ∈ R
d , x · y :=

d∑
i=1

xiyi ‖x‖ := (x · x)1/2, xm :=
d∏

i=1

xmi

i ;

• C∞
0 (Rd) denotes the space of all functions which are both infinity differentiable and

compactly supported in space R
d;

• Multi-derivative Dm := (∂m1/∂xm1

1 ) · · · (∂md/∂xmd

d );

• sinc(x) := sin x
x :=

d∏
i=1

sin xi

xi
:=

d∏
i=1

sinc(xi) , x ∈ R
d;

• rk :=
∏d

i=1[−rk(i), rk(i)]
⋂

Z
d, where k > 0, rk(i) ∈ Z+, 0 ≤ i ≤ d;

• T d := [−π , π]d, Ed := {2d vertices of square box [0, 1]d}.
The rest of this paper is organized as follows. In section 2, some properties on limit function

of nonstationary subdivision algorithm are proposed. Nonstationary biorthogonal Semi-MRAs
are reported in Section 3. Finally, Section 4 shows the main theorem on spectral approximation
in Sobolev space.

2. Multidimensional Nonstationary Subdivision Algorithm

In this section, we briefly introduce some results on multidimensional nonstationary subdi-
vision algorithm. Details can be found in paper [18].

Let {hk}k>0 be a finite mask, the corresponding filter function mk(ω)(k > 0) are defined by

mk(ω) :=
∑

l∈rk

hk(l)e−il·ω =

rk(1)∑

l1=−rk(1)

· · ·
rk(d)∑

ld=−rk(d)

hk(l)e−il·ω , ω ∈ R
d .

The nonstationary algorithm associated with this mask is

fj(2
−jk) = 2d

∑

l∈Zd

hj(k − 2l)fj−1(2
−j+1l) , k ∈ Z

d , j ≥ 1 . (2.1)

It shows in [18] that if the input data is a Dirac sequence f0(k) = δk,0 in the nonstationary
subdivision algorithm (2.1), then after n times iterative procedure, the generated sequence data
on the lattice 2−n

Z
d can be interpolated by a function ϕ[n](x), where ϕ[n](x) is a band-limited

function defined by ϕ̂[n](ω) =

n∏

k=1

mk(2−kω) · χT d(2−nω).

Theorem 2.1 If {mk(ω)}k>0 are uniformly bounded(assuming the bound M ≥ 1), {uk :=
|mk(0) − 1|}k>0 is l1 sequence, and for all 1 ≤ i ≤ d , rk(i) = O(k), then ϕ̂[n](ω) converges
uniformly on any compact set to ϕ̂(ω) and ϕ[n](x) converges to ϕ(x) in the sense of tempered
distributions with

suppϕ(x) ⊆
d∏

i=1

[−Li, Li], Li =
∑

k>0

2−krk(i), i = 1, · · · , d.

Theorem 2.2 Assume that the hypotheses of theorem 2.1 are satisfied and |mk(ω)| ≤ (1+ ak) ·
|m(ω)|k with

∑

k>0

|ak| < ∞, m(ω) :=

d∏

i=1

(
cos

ωi

2

)βi

· m̃(ω), for some βi ∈ R+,

where m̃(ω) satisfies the following conditions:
• m̃(ω) is bounded and m̃(0) = 1;
• m̃(ω) is Hölder continuous at the origin;

• For some fixed λ > 0, σλ := sup
ω

λ∏

k=1

∣∣m̃(2−kω)
∣∣ < 2λL, L := min

1≤i≤d
{βi}. Then ϕ(x) ∈

C∞
0 (Rd) and for all m ∈ Zd

+, Dmϕ[n](x) converges uniformly to Dmϕ(x).
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3. Nonstationary Biorthogonal Semi-MRAs

By virtue of the results stated in section 2, we formerly constructed the nonstationary
biorthogonal Semi-MRAs [19]. Details can be found in paper [19]. Let {hk}k>0 and {h̃k}k>0

be two group finite masks, their associated filter functions are {mk(ω)}k>0 and {m̃k(ω)}k>0

respectively, which all satisfy the conditions stated in theorem 2.2. Then we can define two
sequences of scaling functions ϕj(x) and ϕ̃j(x) ∈ C∞

0 (Rd), their Fourier transformations are
given respectively as follows:

ϕ̂j(ω) =

∞∏

k=1

mk+j(2
−kω) , ˆ̃ϕj(ω) =

∞∏

k=1

m̃k+j(2
−kω) , (3.1)

where j ≥ 0, ω ∈ R
d. Hence from (3.1), we have

ϕ̂j(ω) = mj+1(ω/2)ϕ̂j+1(ω/2) , ˆ̃ϕj(ω) = m̃j+1(ω/2)ˆ̃ϕj+1(ω/2). (3.2)

We know from (3.2) that ϕj(x) and ϕ̃j(x) satisfy a series of recursive refinement equations
respectively as follows:

ϕj(x) = 2d
∑

n∈rj+1

hj+1(n)ϕj+1(2x − n). (3.3)

ϕ̃j(x) = 2d
∑

n∈r̃j+1

h̃j+1(n)ϕ̃j+1(2x − n). (3.4)

It is thus natural to define two semi-MRAs {Vj}j≥0 and {Ṽj}j≥0 respectively by

Vj := span{2jd/2ϕj(2
jx − k)} , Ṽj := span{2jd/2ϕ̃j(2

jx − k)} (3.5)

By (3.3) and (3.4), it is easy to verify that

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, (j ≥ 0) .

Theorem 3.1 Assume conditions stated in theorem 2.2 are satisfied, then {Vj}j≥0 and {Ṽj}j≥0

are biorthogonal Semi-MRAs if and only if for all ω ∈ R
d, ∀ j ≥ 1, it holds that

∑

ν∈Ed

mj(ω + νπ)m̃j(ω + νπ) = 1, a.e. (3.6)

4. Main Theorem on Spectral Approximation

This section will prove the main theorem that multidimensional nonstationary biorthogonal
semi-MRAs {Vj}j≥0 and {Ṽj}j≥0 have spectral approximation properties in Sobolev space
Hs(Rd). We first give some definitions as follows.
Definition 4.1 For 0 ≤ s ≤ r and f ∈ Hr(Rd), distance d(f, Vj)s is defined by d(f, Vj)s :=

inf
g∈Vj

‖f−g‖s, where ‖·‖s is the norm of Sobolev space Hs(Rd), i.e., ‖f‖2
s := 1

(2π)d

∫
Rd |f̂(ω)|2(1+

‖ω‖2)sdω .
Definition 4.2 For 0 ≤ s ≤ r and f ∈ Hr(Rd), if 2(r−s)jd(f, Vj)s is bounded as j → +∞, then
we say that Vj has approximation order r in Hs(Rd); If 2(r−s)jd(f, Vj)s → 0 as j → +∞, then
it is to say that Vj has spectral approximation order r in Hs(Rd).
Definition 4.3 Qj := 2j[−t, t]d , Qc

j := R
d −Qj, where t ∈ (0, π) is assigned to the value such

that statements (i) and (ii) in lemma 4.1 hold simultaneously.
Definition 4.4 Pj : L2 → Vj is projection operator, i.e., for all f(x) ∈ L2(Rd)

Pjf(x) =
∑

k∈Zd

〈f(·)|ϕ̃jk(·)〉ϕjk(x) = 2dj
∑

k∈Zd

〈f(·)|ϕ̃j(2
j · −k)〉ϕj(2

jx − k) .
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Definition 4.5 The operator Sj is defined by (FSjf)(ω) = f̂(ω)·χQj
(ω), P̃j and S̃j are defined

respectively by
P̃j := I − Pj , S̃j := I − Sj ,

where I is identity operator.
Lemma 4.1 Assume mk(ω) and m̃k(ω) satisfy all the conditions stated in theorem 2.2, then
there exists t ∈ (0, π) such that for all r, v ≥ 0, the following two statements hold simultaneously.

(i) sup
ω∈[−t,t]d

‖ω‖−2r

∣∣∣∣∣∣

∑

n6=0

ϕ̂j(ω + 2nπ)ˆ̃ϕj(ω + 2nπ)

∣∣∣∣∣∣

2

→ 0 , (j → +∞) ;

(ii) sup
ω∈[−t,t]d

‖ω‖−2r
∣∣∣ ˆ̃ϕj(ω)

∣∣∣
2∑

n6=0

‖ω + 2nπ‖2v|ϕ̂j(ω + 2nπ)|2 → 0 , (j → +∞) .

Proof. First, we define two functions g(ω) and h(ω) respectively by

g(ω) :=

∞∏

k=1

|m(2−kω)| , h(ω) :=

∞∏

k=1

|m(2−kω)|k , (4.1)

then

|ϕ̂j(ω)| ≤ αh(ω)[g(ω)]j , α =

∞∏

k=1

(1 + |αk|) . (4.2)

It yields from (4.1) that

g(ω) =

d∏

i=1

sincβi(ωi/2)g0(ω) , g0(ω) =

∞∏

k=1

|m̃(2−kω)| (4.3)

From the hypotheses stated in theorem 2.2, we obtain that for all l ≥ 0 and 2l ≤ ‖ω‖ ≤ 2l+1,

g0(ω) = g0(2
−lω)

l∏

k=1

|m̃(2−kω)|

≤ sup
‖ω‖≤2

[g0(ω)] · (sup
ω

|m̃|)λ−1 · (σλ)[l/λ]

≤ K1‖ω‖
log2 σλ

λ ≤ K1‖ω‖L . (4.4)

Also, for all ω ∈ R
d, we have the following estimate:

d∏

i=1

|sinc(ωi/2)|βi ≤
d∏

i=1

∣∣∣∣
2 sin(ωi/2)

ωi

∣∣∣∣
L

≤
[ |2 sin(ωi0/2)|

|ωi0 |

]L

, (|ωi0 | = max{|ωi|, 1 ≤ i ≤ d})

≤
[
|2
√

d sin(ωi0/2)| + 1√
d|ωi0 | + 1

]L

≤
[

2
√

d + 1

‖ω‖ + 1

]L

= (2
√

d + 1)L · (‖ω‖ + 1)−L = D1 · (‖ω‖ + 1)−L.

Thereby for all ω ∈ R
d, it yields that

g(ω) ≤ K2(1 + ‖ω‖)−ε , where ε = L − log2 σλ

λ
> 0 . (4.5)

As n ∈ Z
d − {0}, ω ∈ [−π, π]d, we have

d∏

i=1

|sinc(niπ + ωi/2)|βi ≤
d∏

i=1

∣∣∣∣
sin(niπ + ωi/2)

niπ + ωi/2

∣∣∣∣
L

≤
∣∣∣∣

sin(niπ + ωi/2)

maxi |niπ + ωi/2|

∣∣∣∣
L

≤ |ωi|L
maxi |2niπ + ωi|L

≤ C · ‖ω‖L

‖2nπ + ω‖L
.
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Hence,

g(ω + 2nπ) ≤ K3‖ω‖L , n ∈ Z
d − {0} , ω ∈ [−π, π]d . (4.6)

Moreover m(ω) is Hölder continuous at the origin, thereby g(ω) is also Hölder continuous
at origin with g(0) = 1 and g(ω) has the same Hölder index as m(ω). It implies that h(ω) can
be expressed as

h(ω) =

∞∏

k=0

g(2−kω).

From (4.5), we know that for any η ∈ (0, 1), there exists ωη > 0, such that g(ω) < η as
‖ω‖ > ωη.
So, for all l ≥ 0 and 2lωη ≤ ‖ω‖ ≤ 2l+1ωη, we have:

h(ω) = h(2−l−1ω)

l∏

k=0

g(2−kω)

≤
(

sup
‖ω‖≤ωη

h(ω)

)
· ηl+1 ≤

(
sup

‖ω‖≤ωη

h(ω)

)
· 2(l+1) log2 η

≤ D(η) · ‖ω‖log2 η (4.7)

Since η ∈ (0, 1) is arbitrary, (4.7) shows that h(ω) has rapid decay at infinity. Hence for any
given v ≥ 0,

A(v) := sup
ω∈T d

∑

n∈Zd

‖ω + 2nπ‖2v|h(ω + 2nπ)|2 < +∞ (4.8)

Apparently, {m̃k(ω)}k>0 has the above similar results.
Therefore, as ω ∈ T d, it derives from (4.2) and (4.6) and (4.8) that:

∑

n6=0

|ϕ̂j(ω + 2nπ)|2 ≤ α2
∑

n6=0

|h(ω + 2nπ)|2|g(ω + 2nπ)|2j

≤ α2(K3‖ω‖L)2j
∑

n6=0

|h(ω + 2nπ)|2 ≤ α2A(0)(K3‖ω‖L)2j

= K4(K3‖ω‖L)2j ,

Then, for any given r ≥ 0 and for all ω ∈ T d, we have:

I1(j) := ‖ω‖−2r

∣∣∣∣∣∣

∑

n6=0

ϕ̂j(ω + 2nπ)ˆ̃ϕj(ω + 2nπ)

∣∣∣∣∣∣

2

≤ ‖ω‖−2r
∑

n6=0

|ϕ̂j(ω + 2nπ)|2
∑

n6=0

∣∣∣ ˆ̃ϕj(ω + 2nπ)
∣∣∣
2

≤ ‖ω‖−2rK4(K3‖ω‖L)2j · K̃4(K̃3‖ω‖L̃)2j

= C1

(
C2‖ω‖L+L̃−r/j

)2j

.

If ω ∈ [−t, t]d, then ‖ω‖ ≤
√

d t, it yields that ‖ω‖ < 1 as 0 < t < 1/
√

d. In addition,

L + L̃ − r/j ≥ (L + L̃)/2 as j is sufficiently large. So,

I1(j) ≤ C1

(
C2‖ω‖(L+L̃)/2

)2j

≤ C1

(
C3 · t(L+L̃)/2

)2j

.

From the above estimate, we set t = t1 such that 0 < t1 < 1/
√

d and C3 · t(L+L̃)/2
1 < 1, then

lim
j→+∞

I1(j) = 0.
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It shows from (4.2) and (4.5) and (4.7) and (4.8) that as ω ∈ T d, we have

∣∣∣ ˆ̃ϕj(ω)
∣∣∣
2

≤ α̃2|h̃(ω)|2 · [g̃(ω)]2j ≤ α̃2D̃(1/2)‖ω‖−2 · K̃2j
2 (1 + ‖ω‖)−2jε ≤ C4K̃

2j
2 ‖ω‖−2.

By (4.2) and (4.6), we have the following estimate:
∑

n6=0

‖ω + 2nπ‖2v |ϕ̂j(ω + 2nπ)|2 ≤
∑

n6=0

‖ω + 2nπ‖2v|h(ω + 2nπ)|2|g(ω + 2nπ)|2j

≤ (K3‖ω‖L)2j
∑

n6=0

‖ω + 2nπ‖2v|h(ω + 2nπ)|2

≤ A(v)(K3‖ω‖L)2j .

Consequently, for any r ≥ 0 and ∀ω ∈ R
d, we obtain:

I2(j) := ‖ω‖−2r
∣∣∣ ˆ̃ϕj(ω)

∣∣∣
2

·
∑

n6=0

‖ω + 2nπ‖2v|ϕ̂j(ω + 2nπ)|2

≤ C4A(v)‖ω‖−2(r+1)(K3K̃2‖ω‖L)2j

= D2(D3‖ω‖L−(r+1)/j)2j .

Similarly, as ω ∈ [−t, t]d and 0 < t < 1/
√

d, then ‖ω‖ < 1. Let j be sufficiently large such that
L − (r + 1)/j ≥ L/2. This yields that

I2(j) ≤ D2

(
D3‖ω‖L/2

)2j

≤ D2

(
D4 · tL/2

)2j

.

So if choose t = t2 such that 0 < t2 < 1/
√

d and D4 · tL/2
2 < 1, then it demonstrates that

lim
j→+∞

I2(j) = 0.

Based on the above analysis, we set t = min{t1, t2}, then as ω ∈ [−t, t]d, the statements (i)
and (ii) hold simultaneously.

Having above lemma 4.1, we can prove the following main theorem on spectral approxima-
tion orders of multidimensional nonstationary biorthogonal Semi-MRAs {Vj}j≥0 and {Ṽj}j≥0

in Sobolev space.

Theorem 4.1 Assume {mk(ω)}k>0 and {m̃k(ω)}k>0 satisfy the conditions stated in theorem
2.2 and equation (3.6), {ϕj}j≥0 and {ϕ̃j}j≥0 are scaling functions defined by (3.1), then the

nonstationary biorthogonal Semi-MRAs {Vj}j≥0 and {Ṽj}j≥0 (see(3.5)) generated by these two
group scaling functions have property of spectral approximation, namely for all r ≥ s ≥ 0,
{Vj}j≥0 and {Ṽj}j≥0 have spectral approximation order r in Sobolev space Hs(Rd).

Proof. It is sufficient to show that for all f(x) ∈ Hr(Rd),

d(f, Vj)s ≤ ‖PjSjf − f‖s ≤ C · 2j(s−r)‖f‖r · ε(f, j),

and lim
j→+∞

ε(f, j) = 0.

For the approximation error ‖PjSjf − f‖s, we have estimate as follows:

‖PjSjf − f‖s ≤ ‖S̃jf‖s + ‖PjSjf − Sjf‖s

≤ ‖S̃jf‖s + ‖S̃jPjSjf + SjPjSjf − S2
j f‖s

≤ ‖S̃jf‖s + ‖SjP̃jSjf‖s + ‖S̃jPjSjf‖s.

Hence, we need to estimate these three terms on the right side of above inequality separately.



88 W.S. CHEN, C. XU AND W. LIN

For the first item, we have:

‖S̃jf‖2
s = (2π)−d

∫

Qc
j

|f̂(ω)|2(1 + ‖ω‖2)sdω

= (2π)−d

∫

Qc
j

|f̂(ω)|2(1 + ‖ω‖2)r(1 + ‖ω‖2)s−rdω

≤ (2π)−d(2
√

d 2jt)2(s−r)

∫

Qc
j

|f̂(ω)|2(1 + ‖ω‖2)rdω

≤ C · 22j(s−r)‖f‖2
r · ε1(f, j) .

where ε1(f, j) =

∫
Qc

j

|f̂(ω)|2(1 + ‖ω‖2)rdω

‖f‖2
r

→ 0 (j → +∞) .

For the second term, we have:

‖SjP̃jSjf‖2
s = (2π)−d

∫

Qj

|FP̃jSjf(ω)|2(1 + ‖ω‖2)sdω

≤ (2π)−d
[
1 + (

√
d 2jt)2

]s ∫

Qj

|FP̃jSjf(ω)|2dω

≤ C · 22js‖SjP̃jSjf(ω)‖2
0 .

Before estimating the term ‖SjP̃jSjf(ω)‖2
0, it notices that

FPjSjf(ω) = ϕ̂j(2
jω) ·

∑

k∈Zd

〈Sjf(·)|ϕ̃j(2
j · −k)〉e−i2−jk·ω

= ϕ̂j(2
jω) · (2j+1π)−d

∑

k∈Zd

〈FSjf(·)|ˆ̃ϕj(2
−j ·)e−i2−j k·〉e−i2−jk·ω .

(4.9)

The above sum defines a 2j+1πZ
d-periodic function, which coincides on square box 2jT d with

f̂(ω) · ˆ̃ϕj(2
−jω) · χQj

(ω).

So as ω ∈ 2jT d, we have

FPjSjf(ω) = ϕ̂j(2
jω) · ˆ̃ϕj(2

−jω)f̂(ω) · χQj
(ω).

From above equation, it derives that:

‖SjP̃jSjf(ω)‖2
0 = (2π)−d

∫

Qj

|f̂(ω) −FPjSjf(ω)|2dω

= (2π)−d

∫

Qj

|f̂(ω)|2
∣∣∣1 − ϕ̂j(2

jω) · ˆ̃ϕj(2
−jω)

∣∣∣
2

dω

≤ (2π)−d

∫

Qj

∣∣∣1 − ϕ̂j(2
jω) · ˆ̃ϕj(2

−jω)
∣∣∣
2

‖ω‖2r
· |f̂(ω)|2‖ω‖2rdω

≤ (2π)−d · 2−2jr sup
ω∈[−t,t]d

∣∣∣1 − ϕ̂j(ω) · ˆ̃ϕj(ω)
∣∣∣
2

‖ω‖2r
· ‖f‖2

r

= C · 2−2jr‖f‖2
r · ε2(j) .

Thereby,

‖SjP̃jSjf‖2
s ≤ C · 22j(s−r)‖f‖2

r · ε2(j) .
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Combining (3.6) with statement (i) in lemma 4.1, we obtain

ε2(j) = sup
ω∈[−t,t]d

∣∣∣1 − ϕ̂j(ω) · ˆ̃ϕj(ω)
∣∣∣
2

‖ω‖2r

= sup
ω∈[−t,t]d

‖ω‖−2r

∣∣∣∣∣∣

∑

n6=0

ϕ̂j(ω + 2nπ)ˆ̃ϕj(ω + 2nπ)

∣∣∣∣∣∣

2

→ 0 (j → +∞) .

Finally, for the last term ‖S̃jPjSjf‖s, we notice from (4.9) that
as ω ∈ Qj + 2j+1nπ, n 6= 0, we have

FPjSjf(ω) = ϕ̂j(2
jω) · ˆ̃ϕj(2

−jω − 2nπ)f̂(ω − 2j+1nπ) ,

and FPjSjf(ω) = 0 for ω ∈ 2jT d − Qj. Hence

‖S̃jPjSjf‖2
s = (2π)−d

∫

ω∈Qc
j

|FPjSjf(ω)|2(1 + ‖ω‖2)sdω

= (2π)−d
∑

n6=0

∫

Qj+2j+1nπ

|FPjSjf(ω)|2(1 + ‖ω‖2)sdω

≤ C
∑

n6=0

∫

Qj

|FPjSjf(ω + 2j+1nπ)|2‖ω + 2j+1nπ‖2sdω

= C
∑

n6=0

∫

Qj

∣∣∣ϕ̂j(2
−jω + 2nπ)ˆ̃ϕj(2

−jω)f̂(ω)
∣∣∣
2

‖ω + 2j+1nπ‖2sdω

= C

∫

Qj

|f̂(ω)|2
∣∣∣ ˆ̃ϕj(2

−jω)
∣∣∣
2∑

n6=0

‖ω + 2j+1nπ‖2s|ϕ̂j(2
−jω + 2nπ)|2dω

≤ C sup
Qj


‖ω‖−2r

∣∣∣ ˆ̃ϕj(2
−jω)

∣∣∣
2∑

n6=0

‖ω + 2j+1nπ‖2s|ϕ̂j(2
−jω + 2nπ)|2


 ‖f‖2

r

≤ C · 22(s−r)j sup
[−t,t]d


‖ω‖−2r

∣∣∣ ˆ̃ϕj(ω)
∣∣∣
2∑

n6=0

‖ω + 2nπ‖2s|ϕ̂j(ω + 2nπ)|2

 ‖f‖2

r

= C · 22(s−r)j‖f‖2
r · ε3(j) .

Combining above estimate with statement (ii) of lemma 4.1 in the case of v = s, we have

ε3(j) = sup
[−t,t]d



‖ω‖−2r
∣∣∣ ˆ̃ϕj(ω)

∣∣∣
2∑

n6=0

‖ω + 2nπ‖2s|ϕ̂j(ω + 2nπ)|2


→ 0 (j → +∞).

The above three estimates show that

d(f, Vj)s ≤ ‖PjSjf − f‖s ≤ C · 2j(s−r)‖f‖r · ε(f, j), where lim
j→∞

ε(f, j) = 0.

It indicates that {Vj}j≥0 has spectral approximation order r in Sobolev space Hs(Rd). Similarly,

we can also show that {Ṽj}j≥0 has property of spectral approximation for all Sobolev norms.
This concludes the proof of the theorem.
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and K. Jeller, eds., Birkhäuser, Basel, (1990), 69-90.

[14] C.D.Boor,R.DeVore and A.Ron, Approximation from shift-invariant subspaces of L
2(Rd), Report

CMS TSR 92-2,University of Wisconsin, Madison, WI. (1993).

[15] K.Zhao, Simultaneous approximation from PSI space, J. Approx. Theory, 81 (1995), 166-184.

[16] A.Ron, Approximation orders of and Approximation maps from local principal shift invariant

spaces, J. Approx. Theory, 81 (1995), 38-65.

[17] Jungho Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev

space, SIAM J. Math Anal., 33:4 (2001), 946-958.

[18] Wensheng Chen, On the convergence of multidimensional nonstationary subdivision schemes, Ap-

plicable Analysis, 72 (1999), 179-189.

[19] W.S.Chen and X.B.Zhou, A sufficient and necessary condition of multidimensional nonstationary

biorthogonal Semi-MRAs, Acta scientiarum naturalium universitatis SunYa Seni, 40:3 (2001),

18-20.


