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Abstract

We prove that any linear multi-step method Gτ

1 of the form

m
∑

k=0

αkZk = τ

m
∑

k=0

βkJ
−1

∇H(Zk)

with odd order u (u ≥ 3) cannot be conjugate to a symplectic method Gτ

2 of order w

(w ≥ u) via any generalized linear multi-step method Gτ

3 of the form

m
∑

k=0

αkZk = τ

m
∑

k=0

βkJ
−1

∇H(

m
∑

l=0

γklZl).

We also give a necessary condition for this kind of generalized linear multi-step methods

to be conjugate-symplectic. We also demonstrate that these results can be easily extended

to the case when Gτ
3 is a more general operator.

Mathematics subject classification: 65L06.
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1. Introduction

For a Hamiltonian system

dZ

dt
= J−1∇H(Z), Z ∈ R

2n, (1.1)

where

J =

[

0n In

−In 0n

]

,

∇ stands for the gradient operator, and H : R
2n → R

1 is a smooth function (Hamiltonian), the

symplecticity of any compatible linear m-step method (LMSM)

m
∑

k=0

αkZk = τ

m
∑

k=0

βkJ−1∇H(Zk) with

m
∑

k=0

βk 6= 0 (1.2)

* Received September 1, 2005; final revised August 15, 2006; accepted December 27, 2006.
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can be defined via its step-transition operator (STO) G (also denoted by Gτ ): R
2n → R

2n

satisfying
m

∑

k=0

αkGk = τ

m
∑

k=0

βkJ−1 (∇H) ◦ Gk, (1.3)

where Gk stands for k-fold composition of G: G ◦ G · · · ◦ G.

Definition 1.1. ([4, 7, 12]) An LMSM (1.2) is said to be symplectic for the Hamiltonian system

(1.1) iff its STO G defined by (1.3) is symplectic, i.e.,

[

∂G(Z)

∂Z

]⊤

J

[

∂G(Z)

∂Z

]

= J (1.4)

for any Hamiltonian function H and any sufficiently small step-size τ .

Naturally, one can define an STO for any compatible difference scheme for any ordinarily

differential equation and expand the STO as a power series in τ [6, 14]. In particular, the STO

Gτ of any LMSM of order s was written as [12]:

Gτ (Z) =
+∞
∑

i=0

τ i

i!
Z [i] + aZ [s+1]τs+1 + O(τs+2), (1.5)

where

Z [0] = Z, Z [1] = J−1∇H(Z), Z [k+1] =
∂Z [k]

∂Z
Z [1] = Z [k]

z Z [1]

for k = 1, 2, · · · , a 6= 0 is a real number.

There have been some interesting negative results on the symplecticity of the STOs [7, 12]

or even in a weak sense the step-transition mappings [2] for LMSMs. We will concentrate on

the conjugate symplecticity of LMSMs and a kind of general linear methods in the sequel.

The following interesting relation was first found by Dahlquist [1] and was introduced to one

of the authors (Tang) by Feng [5], and by Scovel [11] in a stimulating discussion on symplectic

multistep methods.

For the general ordinary differential equation

dZ

dt
= f(Z), Z ∈ R

p, (1.6)

the 2nd-order trapezoidal rule (denoted by Gτ
tz : Z0 → Z1)

Z1 = Z0 +
τ

2
[f(Z1) + f(Z0)] (1.7)

is related to the 2nd-order mid-point rule (denoted by Gτ
mp : Z0 → Z1)

Z1 − Z0 = τf

(

Z1 + Z0

2

)

(1.8)

via the 1st-order Euler-forward scheme (denoted by Gτ
ef : Z0 → Z1)

Z1 = Z0 + τf(Z0). (1.9)

More precisely,

G
τ

2

ef ◦ Gτ
tz = Gτ

mp ◦ G
τ

2

ef . (1.10)
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It is known [3, 8, 10] that the midpoint rule Gτ
mp is a 2nd-order symplectic scheme for the

Hamiltonian system (1.1). In the sense of the step-transition operator, Eq. (1.10) shows that

the trapezoidal rule is also symplectic up to a coordinate transformation which is close to the

identity. We will call this kind of methods conjugate-symplectic schemes or schemes of conjugate

symplecticity.

Definition 1.2. ([6, 13]) If three difference schemes Gτ
1 , Gτ

2 and Gτ
3 compatible with Eq. (1.6)

satisfy

Gλτ
3 ◦ Gτ

1 = Gτ
2 ◦ Gλτ

3 (1.11)

for some real number λ and for any smooth function H and any sufficiently small step-size τ ,

then Gτ
1 and Gτ

2 are said to be a Dahlquist pair or a conjugate pair via Gτ
3 . We call Eq. (1.11)

a conjugate relation. A Dahlquist pair Gτ
1 and Gτ

2 is said to be symplectic if Gτ
1 or Gτ

2 is

symplectic for the Hamiltonian system (1.1). In this case when one of Gτ
1 and Gτ

2 is symplectic,

we also call the other conjugate-symplectic.

It has been shown [6, 13] that there is an order barrier for Dahlquist pairs: the orders of

Gτ
1 , Gτ

2 and Gτ
3 in (1.11) are 2, 2 and 1 respectively when both Gτ

1 and Gτ
3 are LMSMs, and

Gτ
2 is a symplectic method.

In the present paper, we study the case when Gτ
1 is an LMSM (1.2) or the following gener-

alized linear multi-step method (GLMSM):

m
∑

k=0

αkZk = τ

m
∑

k=0

βkJ−1∇H(

m
∑

l=0

γklZl) (1.12a)

with
m

∑

l=0

γkl = 1, k = 0, · · · , m, (1.12b)

Gτ
3 is a GLMSM and Gτ

2 is a symplectic method. We will obtain some negative results for

odd-order Gτ
1 .

2. Preliminary Lemmas

Assume that the orders of Gτ
1 , Gτ

2 and Gτ
3 are u, v and w− 1 respectively with u ≥ 1, v ≥ 1

and w ≥ 2 (due to the compatibility). We write their expansions as follows:

Gτ
1(Z) =

+∞
∑

i=0

τ i

i!
Z [i] + τu+1A(Z) + O(τu+2), (2.1)

Gτ
2(Z) =

+∞
∑

i=0

τ i

i!
Z [i] + τv+1M(Z) + O(τv+2), (2.2)

Gτ
3(Z) =

+∞
∑

i=0

τ i

i!
Z [i] + τwB(Z) + O(τw+1), (2.3)

where A(Z) 6= 0, M(Z) 6= 0 and B(Z) 6= 0.

Lemma 2.1. If u = v = w, then expanding both sides of Eq. (1.11) yields

λwBzZ
[1] + A = M + λwZ [1]

z B. (2.4)
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Remark 2.1. In Lemma 2.1, if the condition u = v = w is removed, then Eq. (2.4) will be

changed too. More precisely,

• if u = v < w, then (2.4) changes to

A = M ; (2.5a)

• if u = w < v, then (2.4) changes to

A + λwBzZ
[1] = λwZ [1]

z B; (2.5b)

• if v = w < u, then (2.4) changes to

λwBzZ
[1] = λwZ [1]

z B + M ; (2.5c)

• if u < v < w or u < w < v, then (2.4) changes to

A = 0; (2.5d)

• if v < u < w or v < w < u, then (2.4) changes to

M = 0; (2.5e)

• if w < u < v or w < v < u, then (2.4) changes to

λwBzZ
[1] = λwZ [1]

z B. (2.5f)

Definition 2.1. A transformation W : R
2n → R

2n is said to be infinitesimally symplectic iff

its Jacobian Wz satisfies WT
z J + JWz = 0.

Lemma 2.2. In (2.2), if Gτ
2 : R

2n → R
2n is symplectic, then M : R

2n → R
2n is infinitesimally

symplectic.

Lemma 2.3. ([12]) In the expansion (2.2), if v is odd and

M = · · · + κZ [1]
z Z [1]

z · · ·Z [1]
z Z [1] + · · ·

with κ 6= 0, then M cannot be infinitesimally symplectic and Gτ
2 cannot be symplectic.

Lemma 2.4. ([7, 12]) Under Definition 1.1, any LMSM (1.2) cannot be symplectic for the

Hamiltonian system (1.1).

3. Results and Conjecture

Theorem 3.1. It is impossible for an LMSM with odd order u (≥ 3) to be conjugate to a

symplectic method with order v (≥ u) via any GLMSM.

Proof. We suppose that Eq. (1.11) is satisfied with Gτ
2 being symplectic. Since A(Z) 6= 0,

M(Z) 6= 0 and w ≥ 2, the cases (2.5d) and (2.5e) are impossible. When λ 6= 0, it is easy to

check that the case (2.5f) is impossible; when λ = 0, Eq. (1.11) becomes Gτ
1(Z) = Gτ

2(Z), that
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means that the LMSM Gτ
1 is also symplectic which contradicts Lemma 2.4. If v ≥ u, we need

only to consider the cases (2.4), (2.5a) and (2.5b). We know from (1.5),

A = aZ [u+1] = · · · + aZ [1]
z Z [1]

z · · ·Z [1]
z Z [1] + · · ·

with a 6= 0. Consequently, Eq. (2.5b) cannot be satisfied. Moreover, for both cases (2.4) and

(2.5a), we have

M = · · · + aZ [1]
z Z [1]

z · · ·Z [1]
z Z [1] + · · ·

with a 6= 0, M cannot be infinitesimally symplectic according to Lemma 2.3, which contradicts

the assumption that Gτ
2 is symplectic. Thus both cases (2.4) and (2.5a) are also impossible.

This completes the proof of this theorem.

Theorem 3.2. It is impossible for a GLMSM of form (1.12) with odd order u (≥ 3) satisfying

m
∑

k=0

[

βk

m
∑

l=0

γkll
u

u!
− αk

ku+1

(u + 1)!

]

6= 0 (3.1)

to be conjugate to a symplectic method with order v (≥ u) via another GLMSM.

Proof. Similarly, any GLMSM of form (1.12) can be characterized by the corresponding

step-transition operator G satisfying

m
∑

k=0

αkGk = τ

m
∑

k=0

βkJ(∇H) ◦ (

m
∑

l=0

γklG
l). (3.2)

Since (1.12) is of order u, one can write (see [12])

Gk(Z) =

u+1
∑

i=0

kiZ [i]

i!
τ i + kΘ(Z)τu+1 + O(τu+2), k = 1, 2, · · · ,

and,

m
∑

k=0

αk

[

u+1
∑

i=0

kiZ [i]

i!
τ i + kΘ(Z)τu+1 + O(τu+2)

]

= τ

m
∑

k=0

βkJ(∇H) ◦





m
∑

j=0

γkj

[

u+1
∑

i=0

jiZ [i]

i!
τ i + jΘ(z)τu+1 + O(τu+2)

]





= τ

m
∑

k=0

βkJ(∇H) ◦



Z +
u

∑

i=1

m
∑

j=0

γkjj
i

i!
Z [i]τ i + O(τu+1)



 . (3.3)

Consequently,

m
∑

k=0

kαkΘ(Z) = · · · +

m
∑

k=0

[

βk

m
∑

l=0

γkll
u

u!
− αk

ku+1

(u + 1)!

]

Z [1]
z Z [1]

z · · ·Z [1]
z Z [1] + · · · . (3.4)

Since
∑m

k=0 kαk 6= 0 is required by the compatibility of scheme (1.12), the condition (3.1) means

that in (2.4) or (2.5a) M(Z) cannot be infinitesimally symplectic because it contains the term

Z
[1]
z Z

[1]
z · · ·Z

[1]
z Z [1] (“u + 1”-fold “Z [1]”).
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Remark 3.1. The results of Theorems 3.1 and 3.2 may not be true for even u. When u = 4

and A = aZ [u+1] or simply Z [5], we set

λwB = bZ
[1]
z3 (Z [1])3 + 3cZ

[1]
z2 (Z [1]Z [2]) + dZ [1]

z Z [3].

Then in (2.4)

M = Z [u+1] + λw(BzZ
[1] − Z [1]

z B)

= (1 + b)Z
[1]
z4 (Z [1])4 + 3(2 + b + c)Z

[1]
z3 [(Z [1])2Z [2]] + 3(1 + c)Z

[1]
z2 (Z [2])2

+(4 + 3c + d)Z
[1]
z2 (Z [1]Z [3]) + (1 − b + d)Z [1]

z Z
[1]
z3 (Z [1])3

+3(1 − c + d)Z [1]
z Z

[1]
z2 (Z [1]Z [2]) + Z [1]

z Z [1]
z Z [3], (3.5)

and

Mz = (1 + b)(Z [1]
z )z4(Z [1])4 + 4(1 + b)(Z [1]

z )z3(Z [1])3Z [1]
z

+3(2 + b + c)(Z [1]
z )z3 [(Z [1])2Z [2]] + 6(2 + b + c)(Z [1]

z )z2(Z [1]Z [2])Z [1]
z

+3(2 + b + c)(Z [1]
z )z2(Z [1])2(Z [1]

z )zZ
[1] + 3(2 + b + c)(Z [1]

z )z2(Z [1])2Z [1]
z Z [1]

z

+3(1 + c)(Z [1]
z )z2(Z [2])2 + 6(1 + c)(Z [1]

z )zZ
[2](Z [1]

z )zZ
[1]

+6(1 + c)(Z [1]
z )zZ

[2]Z [1]
z Z [1]

z + (4 + 3c + d)(Z [1]
z )z2(Z [1]Z [3])

+(4 + 3c + d)(Z [1]
z )zZ

[3]Z [1]
z + (4 + 3c + d)(Z [1]

z )zZ
[1](Z [1]

z )z2(Z [1])2

+2(4 + 3c + d)(Z [1]
z )zZ

[1](Z [1]
z )zZ

[1]Z [1]
z + (4 + 3c + d)(Z [1]

z )zZ
[1](Z [1]

z )zZ
[2]

+(4 + 3c + d)(Z [1]
z )zZ

[1]Z [1]
z (Z [1]

z )zZ
[1] + (4 + 3c + d)(Z [1]

z )zZ
[1]Z [1]

z Z [1]
z Z [1]

z

+(1 − b + d)(Z [1]
z )z[Z

[1]
z3 (Z [1])3] + (1 − b + d)Z [1]

z (Z [1]
z )z3(Z [1])3

+3(1 − b + d)Z [1]
z (Z [1]

z )z2(Z [1])2Z [1]
z + 3(1 − c + d)(Z [1]

z )z [Z
[1]
z2 (Z [1]Z [2])]

+3(1 − c + d)Z [1]
z (Z [1]

z )z2(Z [1]Z [2]) + 3(1 − c + d)Z [1]
z (Z [1]

z )zZ
[2]Z [1]

z

+3(1 − c + d)Z [1]
z (Z [1]

z )zZ
[1](Z [1]

z )zZ
[1] + 3(1 − c + d)Z [1]

z (Z [1]
z )zZ

[1]Z [1]
z Z [1]

z

+(Z [1]
z )z(Z

[1]
z Z [3]) + Z [1]

z (Z [1]
z )zZ

[3] + Z [1]
z Z [1]

z (Z [1]
z )z2(Z [1])2

+2Z [1]
z Z [1]

z (Z [1]
z )zZ

[1]Z [1]
z + Z [1]

z Z [1]
z (Z [1]

z )zZ
[2] + Z [1]

z Z [1]
z Z [1]

z (Z [1]
z )zZ

[1]

+Z [1]
z Z [1]

z Z [1]
z Z [1]

z Z [1]
z . (3.6)

It can be verified that if

b = −
5

6
, c = −

5

6
, d = −

5

2
, (3.7)

then M is infinitesimally symplectic.

Nevertheless, to make the result of Theorem 3.1 be untrue for even u, besides the conditions

mentioned above, there are more equations to be satisfied. So we still believe that the result is

true for even u. In particular, we have

Conjecture 3.1. If a GLMSM of form (1.12) with order u (≥ 1) is conjugate-symplectic via

another GLMSM, then it must be conjugate to the 2nd-order mid-point rule (1.8).

Remark 3.2. It is easy to check from the proofs that the results of Theorems 3.1 and 3.2 are

also true when Gτ
3 is a more general operator, say, a general linear method or a B-series (for

the details about general linear methods and B-series, see [8, 9].
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