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Abstract

In this paper, we present a useful result on the structures of circulant inverse M-

matrices. It is shown that if the n×n nonnegative circulant matrix A = Circ[c0, c1, · · · , cn−1]

is not a positive matrix and not equal to c0I , then A is an inverse M-matrix if and only

if there exists a positive integer k, which is a proper factor of n, such that cjk > 0 for

j = 0, 1, · · · , [n−k

k
], the other ci are zero and Circ[c0, ck, · · · , cn−k] is an inverse M-matrix.

The result is then extended to the so-called generalized circulant inverse M-matrices.

Mathematics subject classification: 15A48, 15A29, 15A57.
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1. Introduction

A real matrix A is called positive (nonnegative), denoted by A > 0 ( A ≥ 0), if every entry

ai,j is positive (nonnegative). A real matrix is called a Z-matrix if all its off-diagonal entries

are nonpositive. A nonnegative square matrix is called an inverse M-matrix if it is invertible

and its inverse is a Z-matrix.

A square matrix A is called reducible if there is a permutation matrix P such that

PAPT =

[

A11 A12

0 A22

]

where A11 and A22 are non-empty square matrices. A matrix is irreducible if it is not reducible.

The following lemmas, which will be used later, involve zero and nonzero pattern or struc-

tures of inverse M-matrices.

Lemma 1.1. (Corollary 2.2 in [10]) If A is an irreducible inverse M-matrix, then A is positive.

Lemma 1.2. ([6]) Suppose that A is an inverse M-matrix, let k be a positive integer. Then the

(i, j) entry of Ak is zero if and only if the (i, j) entry of A is zero.

Lemma 1.3. Let A be a partitioned inverse M-matrix:

A =









A1,1 A1,2 . . . A1,r

A2,1 A2,2 . . . A2,r

. . . . . . . . . . . .

Ar,1 Ar,2 . . . Ar,r









.
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Assume that Ai,i (i = 1, 2, . . . , r) are positive square matrices. Then Ai,j also is positive if

Ai,j 6= 0 when i 6= j.

Proof. Let Ak have the same partition as A and denote the (i, j) block of Ak by A
(k)
i,j . If

Ai,j 6= 0 for some i 6= j, then

A
(2)
i,j =

r
∑

l=1

Ai,lAl,j ≥ Ai,iAi,j + Ai,jAj,j .

Since Ai,i, Aj,j are positive and Ai,j is nonnegative, we know from the inequality that A
(2)
i,j has

at least one positive row and one positive column. Thus

A
(3)
i,j =

r
∑

l=1

A
(2)
i,l Al,j ≥ A

(2)
i,i Ai,j + A

(2)
i,j Aj,j

must be positive. By Lemma 1.2, Ai,j is positive.

A matrix C is called a circulant matrix if it is of the form:

C =

















c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

...
. . .

. . .
. . .

...

c2 · · · cn−1 c0 c1

c1 c2 · · · cn−1 c0

















(1.1)

We will denote the circulant matrix C in (1.1) by Circ[c0, c1, · · · , cn−1] for notational conve-

nience.

Inverse M-matrices and circulant matrices are two classes of important matrices. Inverse

M-matrices often occur in systems of linear or non-linear equations or eigenvalues problems in a

wide variety of areas including finite difference methods for partial differential equations, input-

output production and growth models in economics, iterative methods in numerical analysis,

and Markov processes in probability and statistics. A number of properties of inverse M-

matrices have been given in [1], [6]-[9]. Circulant matrices are often used as preconditioner for

Toeplitz linear systems since they can be easily inverted and super-fast computed [2, 3].

In this paper, we present an interesting result on the structures of circulant inverse M-

matrices. We show that a nonnegative but not positive circulant matrix Circ[c0, c1, · · · , cn−1](6=

c0I) is an inverse M-matrix if and only if there exists a positive integer k, which is a proper

factor of n, such that cjk > 0 for j = 0, 1, . . . , [n−k
k

], the other ci (i.e., i 6= jk) are zero

and Circ[c0, ck, · · · , cn−k] is an inverse M-matrix. The result is then extended to so-called

generalized circulant inverse M-matrices.

In the next section, we review some definitions and basic properties of digraphs and introduce

a new digraph we will use in this paper. Section 3 presents our main result. The result then is

extended to so-called generalized circulant matrices in the last section.

2. Preliminaries

Let < n >= {1, 2, . . . , n}. The digraph G = (N, E) consists of the vertex set N , conveniently

labeled from 1 to n, and the set of directed edges (arcs) E = {(i, j)|i, j ∈ N}. A path in a
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digraph (N, E) is a sequence of vertices v1, v2, . . . , vk, vk+1 in N such that for i = 1, 2, . . . , k,

(vi, vi+1) ∈ E and all vertices are distinct except possibly v1 = vk+1. If v1 = vk+1 in the path

formed by the vertices v1, v2, . . . , vk, vk+1, then the path is called a cycle, which will be denoted

by {v1, v2, . . . , vk+1(= v1)}, its length is k. A graph is connected if there is a path from any

vertex to any other vertex; otherwise it is disconnected. It is easy to know that a cycle of length

n is connected. A subgraph of the digraph G = (VG, EG) is a digraph H = (VH , EH), where

VH ⊆ VG and EH ⊆ EG and that (u, v) ∈ EH requires u, v ∈ VH since H is a digraph.

The digraph of a matrix A = (ai,j) ∈ Rn×n is denoted by D(A) = (N, E) with the vertex

set N =< n > and the arc set E = {(i, j)|ai,j 6= 0}. Relabeling the vertices of the digraph of a

matrix corresponds to performing a permutation similarity transformation. Since the class of

inverse M-matrices is closed under permutation similarity, we are free to relabel the digraph of

an inverse M-matrix as desired. It is well known that a matrix A is irreducible if and only if

its digraph D(A) is connected.

In the following, in order to study the structure of the circulant matrices, we have to

introduce a new digraph and some notations. Let gcd(n, k) denote the greatest common divisor

of the two positive integers n and k. Let

x = x (mod n, but n = n), d = gcd(n, k), t =
n

d
. (2.1)

Definition 2.1. A digraph is called a Ck
n digraph if its vertex set is < n > and its edge set is

(1, k + 1), (2, k + 2), . . . , (n, k + n),

where 1 ≤ k ≤ n − 1.

According to the definition, we have

a) If A 6= αI (I is the unit matrix, α is a number) is a circulant matrix, then D(A) must

consist of some Ck
n as its subgraph;

b) The digraph C1
n is a cycle of length n, so if C1

n ⊆ D(A), then A is irreducible;

c) If Ck
n ∈ D(A), then Cn−k

n ∈ D(AT ).

The property c) suggests that we can restrict our discussion for Ck
n on 1 ≤ k ≤ [n

2 ]. Now

we present a most important property of the digraph Ck
n used in this paper.

Lemma 2.1. ([5]) The digraph Ck
n is composed of d independent cycles of length t, where d and

t are defined in (2.1).

Proof. Let G = (N, E) be the Ck
n digraph. Using the notation x of (2.1), the edge set of G

can be written as

E = {(i + (j − 1)k, i + jk)|1 ≤ i ≤ d; 1 ≤ j ≤ t}.

By noting that i + tk = i, it is not difficult to prove that the digraph G is composed by the

following d independent cycles of length t:

{1, 1 + k, 1 + 2k, · · · , 1 + (t − 1)k, 1 + tk}

{2, 2 + k, 2 + 2k, · · · , 2 + (t − 1)k, 2 + tk}

{3, 3 + k, 3 + 2k, · · · , 3 + (t − 1)k, 3 + tk}

· · · , . . . , · · · , · · · , · · ·

{d, d + k, d + 2k, · · · , d + (t − 1)k, d + tk}.

(2.2)

The proof of Lemma 2.1 is complete.
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Remark 2.1. The above lemma shows that the digraph Ck
n is a cycle graph, that is, it is

composed of the cycles in (2.2). But only one cycle also is possible even for k > 1 if n and k

have no common divisor larger than and equal to 2 or d = 1. In this case, t = n.

Remark 2.2. By using the above lemma, for any n×n matrix A, relabel the vertices of D(A)

according to (2.2), we can get a matrix that is a permutation similar to A. For example, let

A =















1 0 c1 0 0

0 1 0 c2 0

0 0 1 0 c3

c4 0 0 1 0

0 c5 0 0 1















.

Since C2
5 is a cycle of length 5, by relabeling the vertices 1, 3, 5, 2, 4 as 1, 2, 3, 4, 5, we know that

A is a permutation similar to

B =















1 c1 0 0 0

0 1 c3 0 0

0 0 1 c5 0

0 0 0 1 c2

c4 0 0 0 1















.

3. Structures of Circulant Inverse M-matrices

In this section, we present the structures of the circulant inverse M-matrices. In following

discussion, we first have to get rid of the two trivial cases: the circulant inverse M-matrix

Circ[c0, c1, . . . , cn−1] is positive or equal to c0I.

Lemma 3.1. If A = Circ[c0, c1, . . . , cn−1] is an inverse M-matrix and there is a positive integer

k such ck > 0 and d = gcd(k, n) = 1, then A is positive.

Proof. By assumption, Ck
n ⊂ D(A). Since d = 1, we know that Ck

n is a cycle of length n.

Thus A is irreducible and so positive by Lemma 1.1.

We remark that d = gcd(k, n) = 1 contains three cases: k = 1, n is a prime number and

k > 1, but k and n have no common divisor larger than or equal to 2.

Lemma 3.2. Let A be an n × n circulant matrix: Circ[c0, c1, . . . , cn−1] and n not a prime

number. Then there is a positive integer k ≥ 2 such that A is permutation similar to a block-

Toeplitz with circulant-block matrix:

B =



















B0 B1 B2 . . . Bd−1

B−1 B0 B1 . . . Bd−2

...
. . .

. . .
. . .

...

B−d+2
. . .

. . .
. . . B1

B−d+1 B−d+2 . . . B−1 B0



















, (3.1)

where all Bi are circulant matrices,
{

Bj = Circ[cj , cj+k, . . . , c
j+(t−1)k], j = 0, 1, . . . , d − 1,

B−d+j = Circ[cs, cs+k, . . . , c
s+(t−1)k], j = 1, 2, . . . , d − 1,

(3.2)
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where s = n − d + j. Furthermore, if A is an inverse M-matrix and k is the least integer such

that ck 6= 0, then B0 is a positive inverse M-matrix.

Proof. Since n is not a prime number, there is an integer k ≥ 2 such that d = gcd(n, k) ≥ 2.

By relabelling the vertices according to (2.2) and applying Lemma 2.1, we know that A is a

permutation similar to a d× d block matrix B = (Bi,j), where Bi,j are all t × t matrices. Now

we show that B is of the form (3.1).

Let D(Bi,i) = (Vi, Ei), i = 1, 2, . . . , d, then Vi = {i, i + k, . . . , i + (t − 1)k}. Note that

A = (ai,j) is a circulant matrix with

ai,j =

{

cj−i if j ≥ i

cn+j−i if j < i
;

by careful manipulation, it is not difficult to verify that for i, j = 1, 2, . . . , d − 1, Bi,j can be

written as Bj−i and Bl is of the form (3.2).

If A is an inverse M-matrix, then B0 is also an inverse M-matrix since B is permutation

similar to A and B0 (or Bi,i) is a principal submatrix of B. Since ck 6= 0 means that C1
t ⊆

D(B0), we know that B0 is irreducible and so positive by Lemma 1.1. This lemma is proved.

Remark 3.1. In (3.2), there is s ≥ 1 such that B−d+j = BjJ
s for j = 1, 2, . . . , d − 1, where

J =

















0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 0 1

1 0 . . . 0 0

















.

is a shift matrix. In particular, s = 1 if d = k.

Example 1. Let n = 15 and k = 6 in Lemma 3.2, we get d = 3, t = 5 from (2.1). Thus

A = Circ(c0, c1, . . . , c14) is permutation similar to the matrix (3.1) with

{

Bi = Circ[ci, ci+6, ci+12, ci+3, ci+9], i = 0, 1, 2;

B−i = Circ[c15−i, c6−i, c12−i, c3−i, c9−i], i = 1, 2.

It is easy to verify that B−3+i = BiJ
3 for i = 1, 2.

We easily deduce the following corollary from Lemma 3.2.

Corollary 3.1. Let A = Circ[c0, c1, . . . , cn−1] be an inverse M-matrix and n have proper fac-

torization: n = pq, (p ≥ 2, q ≥ 2). Then the circulant matrices

Circ[c0, cp, . . . , c(q−1)p], Circ[c0, cq, . . . , c(p−1)q]

are inverse M-matrices.

Now we readily give the main result of this paper.
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Theorem 3.1. Let A = Circ[c0, c1, . . . , cn−1] ≥ 0 be not positive and not c0I. Then A is an

inverse M-matrix if and only if there is a positive integer k, which is a proper factor of n, such

that
{

ci > 0 if i = jk

ci = 0 if i 6= jk
, j = 1, 2, . . . , [

n − k

k
], (3.3)

and the circulant matrix

C = Circ[c0, ck, . . . , c(t−1)k] (3.4)

is a positive inverse M-matrix.

Proof. Necessity. We know from Lemma 3.1 that A is an inverse M-matrix but not positive

means c1 = 0. Since A 6= c0I, we let k ≥ 2 be the least integer such that ck 6= 0 or Ck
n ⊆ D(A).

We show that k must be a proper factor of n since A is an inverse M-matrix.

Firstly, if k and n have no common divisor then since Ck
n is a cycle of length n, A is

irreducible and so positive. This contradicts c1 = 0. So d = gcd(n, k) ≥ 2. By Lemma 3.2,

A is permutation similar to the block-Toeplitz with circulant-block matrix B in (3.1) with a

positive inverse M-matrix B0 in (3.2).

Secondly, assume that k = sd. Then s ≤ t and gcd(s, t) = 1 since k ≤ n, d = gcd(n, k) and

n = td. Let u = min{j|t < js}, then it is obvious that u ≥ 2. We want to show that s = 1

by using contradiction. If s ≥ 2, then it is easy to verify that u ≤ t − 1 and usd = uk < k.

Since B0 is positive, we have cuk > 0. This contradicts the assumption of cl = 0 for 1 ≤ l < k.

So s = 1 or d = k or B0 in (3.2) is equal to C in (3.4). It follows from B0 > 0 that cjk > 0,

j = 0, 1, . . . , t − 1. The first equation of (3.3) is proved.

For the second equation of (3.3), since c1 = c2 = . . . = ck−1 = 0, we have B±1 = B±2 = . . . =

B±(d−1) = 0 by Lemma 1.3. Thus from (3.2) we see that ci = 0, if i 6= jk, j = 1, 2, . . . , d − 1.

Sufficiency. In terms of the assumption, it is obvious that n is not a prime number. So by

using Lemma 3.2 with d = k, A is a permutation similar to the block-Toeplitz matrix (3.1)

with the circulant-blocks (3.2).

If (3.3) holds, then the matrix B in (3.1) becomes a block diagonal matrix diag(B0, B0, . . . , B0),

which is an inverse M-matrix since B0 is. Thus it is easy to see that A is an inverse M-matrix

since it is a permutation similar to B.

The result of this theorem is very interesting: it shows that only when the subscripts of

the positive c’s is an arithmetic sequence it is possible that the nonnegative circulant matrix

A = Circ[c0, c1, . . . , cn−1] 6= c0I is an inverse M-matrix. This result also is very useful, as it can

be applied to judge more conveniently whether a nonnegative but not positive circulant matrix

is an inverse M-matrix.

4. Generalized Circulant Inverse M-matrices

In this section, we extend the result of Theorem 3.1 to more general matrices.

Definition 4.1. An n×n matrix A is called a generalized circulant matrix if the digraph D(A)

has the property: whenever D(A) contains an edge of some digraph Ck
n, D(A) contains all the

edges of the digraph Ck
n.
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For notational convenience, denote the vector (ci,1, ci,2, . . . , ci,n) by ~ci so that any n × n

matrix can be denoted by

Circ[~c0,~c1, · · · ,~cn−1]

















c0,1 c1,1 c2,1 . . . cn−1,1

cn−1,2 c0,2 c1,2 . . . cn−2,2

...
...

. . .
. . .

...

c2,n−1 . . . . . . c0,n−1 c1,n−1

c1,n c2,n . . . cn−1,n c0,n

















.

If A = Circ[~c0,~c1, · · · ,~cn−1] is a generalized circulant matrix, then each ~ci 6= 0 means that

every entry of ~ci is not zero by the definition.

For example, the matrix















1 0 c2,1 0 c4,1

c4,2 1 0 c2,2 0

0 c4,3 1 0 c2,3

c2,4 0 c4,4 1 0

0 c2,5 0 c4,5 1















(4.1)

is a generalized circulant matrix if all c2,i are nonzero and is denoted by Circ(~e, 0,~c2, 0,~c4),

where ~e = (1, 1, . . . , 1).

Theorem 4.1. Let A = Circ[~c0,~c1, . . . ,~cn−1] ≥ 0 be not positive and not a diagonal matrix.

Then A is an inverse M-matrix if and only if there is a positive integer k, which is a proper

factor of n, such that

{

~ci > 0 if i = jk

~ci = 0 if i 6= jk
, j = 1, 2, . . . , [

n − k

k
], (4.2)

and the generalized circulant matrices

Ci = Circ[~c
(i)
0 ,~c

(i)
k , . . . ,~c

(i)
(t−1)k], i = 1, 2, . . . , d, (4.3)

are positive inverse M-matrices, where ~c
(i)
j = [cj,i, cj,i+2k, . . . , cj,i+(t−1)k].

The proof of this theorem is similar to that of Theorem 3.1 and is omitted here. We give

an example to illustrate it.

Example 2. Applying Theorem 4.1, we know that the matrix in (4.1) is by no means an

inverse M-matrix. The generalized circulant matrix:

Circ[~e, 0,~c2, 0,~c4, 0,~c6, 0] =



























1 0 c2,1 0 c4,1 0 c6,1 0

0 1 0 c2,2 0 c4,2 0 c6,2

c6,3 0 1 0 c2,3 0 c4,3 0

0 c6,4 0 1 0 c2,4 0 c4,4

c4,5 0 c6,5 0 1 0 c2,5 0

0 c4,6 0 c6,6 0 1 0 c2,6

c2,7 0 c4,7 0 c6,7 0 1 c2,6

0 c2,8 0 c4,6 0 c6,8 0 1
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is an inverse M-matrix if and only if the two matrices:

Ci = Circ[~e,~c
(i)
2 ,~c

(i)
4 ,~c

(i)
6 ] =









1 c2,i c4,i c6,i

c6,i+2 1 c2,i+2 c4,i+2

c4,i+4 c6,i+4 1 c2,i+4

c2,i+6 c4,i+6 c6,i+6 1









, i = 1, 2

are inverse M-matrices.

Corollary 4.1. Let A = Circ[~c0,~c1, . . . ,~cn−1] be an inverse M-matrix and n have proper fac-

torization: n = pq, (p ≥ 2, q ≥ 2). Then the circulant matrices:

Circ[~a
(i)
0 ,~a(i)

p , . . . ,~a
(i)
(q−1)p], i = 1, 2, . . . , q

and

Circ[~b
(j)
0 ,~b(j)

q , . . . ,~b
(j)
(p−1)q], j = 1, 2, . . . , p

are inverse M-matrices, where

~a
(i)
j = [cj,i, cj,i+2p, . . . , cj,i+(q−1)p], ~b

(i)
j = [cj,i, cj,i+2q, . . . , cj,i+(p−1)q].
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