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Abstract

In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes

with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve

Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes

from the original WENO schemes, however both the function and its first derivative values

are evolved in time and are used in the reconstruction. One major advantage of HWENO

schemes is its compactness in the reconstruction. We explore the possibility in avoiding the

nonlinear weights for part of the procedure, hence reducing the cost but still maintaining

non-oscillatory properties for problems with strong discontinuous derivative. As a result,

comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK)

of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW

schemes are their saving of computational cost and their compactness in the reconstruction.

Extensive numerical experiments are performed to illustrate the capability of the method.
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1. Introduction

In this paper, we study an alternative method for time discretization, namely the Lax-
Wendroff type time discretization [11], to the popular TVD Runge-Kutta time discretization in
[21], for Hermite weighted essentially non-oscillatory (HWENO) schemes [17, 18, 19], termed
HWENO-LW schemes, for solving the Hamilton-Jacobi (HJ) equations

{
φt + H(∇xφ) = 0,

φ(x, 0) = φ0(x),
(1.1)

where x = (x1, · · · , xd) are d−spatial variables. The HJ equations appear often in applications,
such as in control theory, differential games, geometric optics and image processing. The
solutions to (1.1) typically are continuous but with discontinuous derivatives, even if the initial
condition φ0(x) ∈ C∞. It is well known that the HJ equations are closely related to conservation
laws, hence successful numerical methods for conservation laws can be adapted for solving
the HJ equations. Along this line we mention the early work of Osher and Sethian [13] and
Osher and Shu [14] in constructing high order ENO (essentially non-oscillatory) schemes for
solving the HJ equations. Central high resolution schemes were developed in [2, 10]. Finite
element methods suitable for arbitrary triangulations were developed in [1, 3, 6]. The WENO

* Received May 11, 2006; accepted August 31, 2006.
1) Research partially supported by NNSFC grant 10371118, SRF for ROCS, SEM and Nanjing University

Talent Development Foundation.



132 J.X. QIU

schemes for solving the HJ equations were constructed in [8] by Jiang and Peng, based on
the WENO schemes for solving conservation laws [12, 9, 23], and further Zhang and Shu [24]
developed high order WENO schemes on unstructured meshes for solving two-dimensional HJ
equations. Finally, most relevant to our work, we mention the HWENO schemes for solving
the HJ equations by Qiu and Shu [19], based on the HWENO schemes for solving conservation
laws [17, 18].

WENO or HWENO is a spatial discretization procedure, namely, it is a procedure to ap-
proximate the spatial derivative terms in (1.1). The time derivative term there must also be
discretized. There are mainly two different approaches to approximate the time derivative.
The first approach is to use an ODE solver, such as a Runge-Kutta or a multi-step method, to
solve the method of lines ODE obtained after spatial discretization. The second approach is a
Lax-Wendroff type time discretization procedure, which is also called the Taylor type referring
to a Taylor expansion in time or the Cauchy-Kowalewski type referring to the similar Cauchy-
Kowalewski procedure in PDE. This approach is based on the idea of the classical Lax-Wendroff
scheme [11], and it relies on converting all the time derivatives in a temporal Taylor expansion
into spatial derivatives by repeatedly using the PDE and its differentiated versions. The spatial
derivatives are then discretized by, e.g. the HWENO approximations.

The Lax-Wendroff type time discretization, usually produces the same high order accuracy
with a smaller effective stencil than that of the first approach, and it uses more extensively the
original PDE. The original finite volume ENO schemes in [5] used this approach for the time
discretization. More recently, a Lax-Wendroff type time discretization procedure for high order
finite difference WENO schemes was developed by Qiu and Shu [15]. This approach was also
used by Titarev and Toro [22] and Schwartzkopff, et al. [20], termed ADER (arbitrary high
order schemes utilizing higher order derivatives), to construct a class of high order schemes for
conservation laws in finite volume version. The Lax-Wendroff type time discretization was also
used in the discontinuous Galerkin method [4, 16].

In this paper, based on the WENO-LW methodology for conservation laws in [15] and
HWENO schemes for HJ equation in [19], we develop HWENO-LW schemes to solve the HJ
equations. Comparing with the HWENO-RK schemes of Qiu and Shu [19], the major advan-
tages of HWENO-LW schemes are their saving of computational cost and their compactness in
the reconstruction.

The organization of this paper is as follows. In Section 2, we describe in detail the con-
struction and implementation of the HWENO-LW schemes, for one and two-dimensional HJ
equations (1.1). In Section 3 we provide extensive numerical examples to demonstrate the
behavior of the schemes and to perform a comparison with the HWENO-RK schemes for HJ
equations by Qiu and Shu [19]. Concluding remarks are given in Section 4.

2. The Construction of HWENO-LW Schemes for the
Hamilton-Jacobi Equations

In this section we will present the details of the construction of HWENO-LW schemes for
both one and two-dimensional Hamilton-Jacobi equations.

2.1. One-dimensional Case

We first consider the one dimensional HJ equation (1.1). For simplicity, we assume that the
grid points {xi+1/2} are uniformly distributed with the cell size xi+1/2 − xi−1/2 = ∆x and cell
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centers xi = 1
2 (xi−1/2 +xi+1/2). We also denote the cells by Ii = [xi− 1

2
, xi+ 1

2
]. This assumption

is not essential: the method can be easily defined for non-uniform meshes.
Letting u = φx, and taking the x derivative of (1.1), we obtain the conservation law:

{
ut + H(u)x = 0,

u(x, 0) = u0(x).
(2.1)

We denote φi = φ(xi, t) and the cell averages of u as ui = 1
∆x

∫
Ii

u(x, t)dx, and denote φ(r) and
u(r) by the r-th order time derivative of φ and u, respectively. We also use φ′, φ′′, φ′′′ and u′,
u′′, u′′′ to denote the first three time derivatives of φ and u, respectively. By a temporal Taylor
expansion we obtain

φ(x, t + ∆t) = φ(x, t) + ∆tφ′ +
∆t2

2
φ′′ +

∆t3

6
φ′′′ +

∆t4

24
φ(4) + . . . , (2.2)

u(x, t + ∆t) = u(x, t) + ∆tu′ +
∆t2

2
u′′ +

∆t3

6
u′′′ +

∆t4

24
u(4) + . . . . (2.3)

If we would like to obtain k-th order accuracy in time, we would need to approximate the
first k time derivatives: φ′, . . . , φ(k) and u′, . . . , u(k). Although the procedure can be naturally
extended to any higher orders, we will proceed up to fourth order in time in this paper, and
obtain:

φn+1
i = φi + ∆tφ′i +

∆t2

2
φ′′i +

∆t3

6
φ′′′i +

∆t4

24
φ

(4)
i , (2.4)

un+1
i = ui + ∆tu′i +

∆t2

2
u′′i +

∆t3

6
u′′′i +

∆t4

24
u

(4)
i , (2.5)

where

φ′ = −H(u), φ′′ = −H ′(u)φ′x, (2.6)

φ′′′ = −H ′′(u)(φ′x)2 −H ′(u)φ′′x, (2.7)

φ(4) = −H ′′′(u)(φ′x)3 − 3H ′′(u)(φ′x)φ′′x −H ′(u)φ′′′x , (2.8)

and
u

(l)
i =

1
∆x

(φ(l)
i+1/2 − φ

(l)
i−1/2), l = 1, 2, 3, 4. (2.9)

After extensive numerical tests, we have found the following Lax-Wendroff procedure which pro-
duces the best balance between cost reduction and ensuring essentially non-oscillatory properties
to reconstruct φx, φ′x, φ′′x, φ′′′x , and φ′, φ′′, φ′′′, φ(4).

Step 1. The reconstruction of the first time derivative φ′ = −H(u).
We approximate φ′i = −H(u)i and φ′i+1/2 = −H(u)i+1/2 by the following schemes

φ′i = −H̃i, φ′i+1/2 = −Ĥi+1/2, (2.10)

where the numerical fluxes H̃i and Ĥi+1/2 in (2.10) are subject to the usual conditions for
numerical fluxes, such as monotonicity, Lipschitz continuity and consistency with the physical
flux H(u). For choices of numerical fluxes suitable for the HJ equations we refer to, e.g. [14].
In this paper we use the simple Lax-Friedrichs flux defined by:

H̃i = H

(
u−i + u+

i

2

)
− α

2
(
u+

i − u−i
)
, (2.11)

Ĥi+1/2 =
1
2

(
H(u−i+1/2) + H(u+

i+1/2)− α(u+
i+1/2 − u−i+1/2)

)
, (2.12)
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where u±i and u±i+1/2 are the numerical approximations to the point values of u(xi, t) and
u(xi+1/2, t) respectively from left and right, and α = maxu |H ′(u)|. Then the numerical ap-
proximations to the point values of u(xi, t) and u(xi+1/2, t) are taken as (u+

i + u−i )/2 and
(u+

i+1/2 + u−i+1/2)/2, respectively. The reconstruction of {u±i } and {u±i+1/2} from {φi} and {ui}
is obtained by the fifth order HWENO procedure, for the details we refer to [19], and will not
repeat it here.

Step 2. In order to reconstruct the second time derivative φ′′ = −H ′(φx)φ′x, we only need to
reconstruct φ′x. The reconstruction of φ′x is obtained as following. Notice that we will only need
an approximation of order four, one order lower than before, because of the extra ∆t factor.
We can use a simple fifth order central difference formulae to approximate the derivative φ′x at
the point (xi, t

n) and (xi+1/2, t
n). We use the following central difference approximation:

(φ′x)i ≈ 1
30∆x

(9(φ′i−1 − φ′i+1) + ∆x(u′i−1 + 46u′i + u′i+1)), (2.13)

(φ′x)i+1/2 ≈
1

30∆x
(−φ′i−1 − 45φ′i + 45φ′i+1 + φ′i+2 − 9∆x(u′i + u′i+1)). (2.14)

Then we get an approximation of φ′′i and u′′i from (2.6) and (2.9). In fact, we only need
an approximation of order four, because of the extra ∆t factor, but we would like to use
simple central differences which are all of odd order. It seems that a more costly HWENO
approximation is not needed here to control spurious oscillations, presumably because this
term is multiplied by an extra ∆t anyway.

Step 3. The third time derivative φ′′′ = −H ′′(φx)(φ′x)2 − H ′(φx)φ′′x. Similar to step 2,
we only need to reconstruct φ′′x. We get the approximation of φ′′x by the third order central
difference formulae:

(φ′′x)i ≈ 1
6∆x

(φ′′i−1 − φ′′i+1) + 8∆xu′′i ), (2.15)

(φ′′x)i+1/2 ≈
1

6∆x
(−8φ′′i + 8φ′′i+1 −∆x(u′′i + u′′i+1)). (2.16)

Then, we get an approximation of φ′′′ at the points xi and xi+1/2 from (2.7), and obtain
u′′′ on the cell Ii from (2.9). Again, it seems that a more costly HWENO approximation is not
needed here to control spurious oscillations.

Step 4. The fourth time derivative φ(4) = −H ′′′(φx)(φ′x)3 − 3H ′′(φx)φ′′xφ′x − H ′(φx)φ′′′x is
obtained in a similar fashion. We can use the following third order approximation:

(φ′′′x )i ≈ 1
6∆x

(φ′′′i−1 − φ′′′i+1) + 8∆xu′′′i ), (2.17)

(φ′′′x )i+1/2 ≈
1

6∆x
(−8φ′′′i + 8φ′′′i+1 −∆x(u′′′i + u′′′i+1)). (2.18)

Then, we get an approximation of φ(4) at the points xi and xi+1/2 from (2.8), and obtain
u(4) on the cell Ii from (2.9). Again, it seems that a more costly HWENO approximation is
not needed here to control spurious oscillations.

If we require higher order accuracy in time this procedure can be continued in a similar
fashion. The final approximation at the next time step is then given by (2.4) and (2.5).

2.2. Two-dimensional Case

We now proceed to consider the two dimensional HJ equation (1.1). For simplicity of
presentation, we again assume that the mesh is uniform with the cell sizes xi+ 1

2
− xi− 1

2
= ∆x,

yj+ 1
2
− yj− 1

2
= ∆y and the cell centers (xi, yj) =

(
1
2 (xi+ 1

2
+ xi− 1

2
), 1

2 (yj+ 1
2

+ yj− 1
2
)
)
. This
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assumption is again non-essential: the algorithm can be easily defined for tensor product non-
uniform meshes. We denote the cells by Iij = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]. Let u = ∂φ

∂x , v = ∂φ
∂y .

Taking the derivatives of (1.1), we obtain{
ut + Hx = 0,

u(x, y, 0) = ∂φ0(x,y)
∂x ;

(2.19)

{
vt + Hy = 0,

v(x, y, 0) = ∂φ0(x,y)
∂y .

(2.20)

We denote φij(t) = φ(xi, yj , t), and the x cell average of u as uij(t) = 1
∆x

∫ xi+1/2

xi−1/2
u(x, yj , t)dx,

the y cell average of v as vij(t) = 1
∆y

∫ yj+1/2

yj−1/2
v(xi, y, t)dy. Similar to the procedure in one di-

mensional case, we again proceed up to the fourth order in time by a temporal Taylor expansion
to obtain

φn+1
ij = φij + ∆tφ′ij +

∆t2

2
φ′′ij +

∆t3

6
φ′′′ij +

∆t4

24
φ

(4)
ij , (2.21)

un+1
ij = uij + ∆tu′ij +

∆t2

2
u′′ij +

∆t3

6
u′′′ij +

∆t4

24
u

(4)
ij , (2.22)

vn+1
ij = vij + ∆tv′ij +

∆t2

2
v′′ij +

∆t3

6
v′′′ij +

∆t4

24
v
(4)
ij , (2.23)

with

φ′ = −H, φ′′ = −H1φ
′
x −H2φ

′
y, (2.24)

φ′′′ = −H11(φ′x)2 − 2H12φ
′
xφ′y −H22(φ′y)2 −H1φ

′′
x −H2φ

′′
y , (2.25)

φ(4) = −H111(φ′x)3 − 3H112(φ′x)2φ′y − 3H122φ
′
x(φ′y)2 −H222(φ′y)3 (2.26)

−3H11φ
′
xφ′′x − 3H12(φ′′xφ′y + φ′xφ′′y)− 3H22φ

′
yφ′′y −H1φ

′′′
x −H2φ

′′′
y ,

where Hi is the partial derivative of H with respect to ith argument, Hij is the second partial
derivative of H with respect to ith and jth arguments and Hijk is the third partial derivative
of H with respect to ith , jth and kth arguments, and

u
(l)
ij =

1
∆x

(φ(l)
i+1/2,j − φ

(l)
i−1/2,j), l = 1, 2, 3, 4, (2.27)

v
(l)
ij =

1
∆y

(φ(l)
i,j+1/2 − φ

(l)
i,j−1/2), l = 1, 2, 3, 4. (2.28)

Similar to the one dimensional case, what we want to do is to reconstruct φx, φy, φ′x, φ′y, φ′′x,

φ′′y , φ′′′x , φ′′′y and φ′, φ′′ , φ′′′, φ(4) from point values {φij = φ(xi, yj , t
n)} and cell averages {uij}

and {vij} respectively.
Similar to Step 1 in the one dimensional case, we approximate φ′ij = −H(u)ij , φ′i+1/2,j =

−H(u)i+1/2,j and φ′i,j+1/2 = −H(u)i,j+1/2 by the following Lax-Friedrichs flux:

H̃ij = H

(
u−ij+u+

ij

2 ,
v−ij+v+

ij

2

)
− αx

2

(
u+

ij − u−ij
)− αy

2

(
v+

ij − v−ij
)
,

Ĥi+1/2,j = 1
2

(
H(u−i+1/2,j , v

−
i+1/2,j) + H(u+

i+1/2,j , v
+
i+1/2,j)− αx(u+

i+1/2,j − u−i+1/2,j)
)

,

Ĥi,j+1/2 = 1
2

(
H(u−i,j+1/2, v

−
i,j+1/2) + H(u+

i,j+1/2, v
+
i,j+1/2)− αy(v+

i,j+1/2 − v−i,j+1/2)
)

,

(2.29)
where u±ij , u±i+1/2,j and v±i+1/2,j are the numerical approximations to the point values of u(xi, yj ,

t), u(xi+1/2, yj , t) and v(xi+1/2, yj , t) respectively from left and right, and v±ij , u±i,j+1/2 and
v±i,j+1/2 are the numerical approximations to the point values of v(xi, yj , t), u(xi, yj+1/2, t) and
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v(xi, yj+1/2, t) respectively from bottom and top. The constants αx and αy are defined by
αx = maxu,v | ∂

∂uH(u, v)| and αy = maxu,v | ∂
∂v H(u, v)|.

The values u±ij , u±i+1/2,j , v±ij and v±i,j+1/2 can be reconstructed by the one dimensional re-
construction methods presented in the previous subsection with the grid index for the other
dimension fixed. The reconstruction procedure of u±i,j+1/2 and v±i+1/2,j from {φij , uij , vij} can
be based either on the fourth order HWENO reconstruction or on the fourth order linear recon-
struction, for the details of reconstruction we refer to [19]. In this paper we use the following
formula:

u−i,j+1/2 =
1

144
{ 1
∆x

[19 (φi−1,j−1 − φi+1,j−1) + 2 (φi−1,j − φi+1,j)− 45 (φi−1,j+1 − φi+1,j+1)]

+4 (ui−1,j−1 + ui+1,j−1 − ui−1,j + 30uij − ui+1,j − 2ui−1,j+1 − 2ui+1,j+1)

+6 (vi−1,j−1 − vi+1,j−1 + vi−1,j+1 − vi+1,j+1)}. (2.30)

The reconstruction for u+
i,j+1/2 is mirror symmetric of that for u−i,j+1/2 with respect to yj+1/2,

and reconstruction for v±i+1/2,j is the same as that for u±i,j+1/2 with i and j interchanged.
While HWENO reconstruction is important for the main terms u±ij , u±i+1/2,j , v±ij and v±i,j+1/2

in each dimension, there is reason to believe that the cross terms u±i,j+1/2 and v±i+1/2,j play a
lesser role towards spurious oscillations and a linear reconstruction for those terms might be
enough. This is indeed verified by our extensive numerical experiments in next section.

After the u± and v± are obtained by the HWENO reconstruction procedure, we get an
approximation of φx and φy by φx ≈ (u+ + u−)/2 and φy ≈ (v+ + v−)/2, respectively.

On the other hand, as in the one dimensional situation, the derivatives φ′x, φ′′x, φ′′′x at (xi, yj)
and (xi+1/2, yj) and φ′y, φ′′y , φ′′′y at (xi, yj) and (xi, yj+1/2) etc., can be approximated by simple
central differences of suitable orders of accuracy described in previous subsection, again in
a dimension by dimension fashion. The φ′x at (xi, yj+1/2) is approximated by ((u′)+i,j+1/2 +
(u′)−i,j+1/2)/2, where (u′)+i,j+1/2 is computed by (2.30) with φ, u and v replaced by φ′, u′ and
v′, respectively. The computation of (u′)+i,j+1/2 is mirror symmetric of that for (u′)−i,j+1/2 with
respect to yj+1/2, and computation for (v′)±i+1/2,j is the same as that for (u′)±i,j+1/2 with i and
j interchanged. The φ′′x and φ′′′x at (xi, yj+1/2) are approximated by

(φ′′x)i,j+1/2 =
1
48
{ 1
∆x

[
4

(
φ′′i+1,j − φ′′i−1,j + φ′′i+1,j+1 − φ′′i−1,j+1

)]

+2
(−u′′i−1,j − u′′i−1,j+1 + 10u′′i,j + 10u′′i,j+1 − u′′i+1,j − u′′i+1,j+1

)

+3
(
v′′i+1,j − v′′i−1,j − v′′i+1,j+1 + v′′i−1,j+1

)}, (2.31)

and

(φ′′′x )i,j+1/2 =
1
48
{ 1
∆x

[
4

(
φ′′′i+1,j − φ′′′i−1,j + φ′′′i+1,j+1 − φ′′′i−1,j+1

)]

+2
(−u′′′i−1,j − u′′′i−1,j+1 + 10u′′′i,j + 10u′′′i,j+1 − u′′′i+1,j − u′′′i+1,j+1

)

+3
(
v′′′i+1,j − v′′′i−1,j − v′′′i+1,j+1 + v′′′i−1,j+1

)}, (2.32)

respectively. Similarly, φ′′y and φ′′′y at (xi+1/2, yj) are approximated by (2.31) and (2.32) with i

and j interchanged, respectively. Finally, the approximation of φ′′ , φ′′′, φ(4) are obtained from
(2.24)-(2.26) respectively.

3. Numerical Results

In this section we present the results of our numerical experiments for the fifth order
HWENO schemes for one-dimensional and two-dimensional examples with the fourth order
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Table 3.1: CPU time (in seconds) for the HWENO-LW and HWENO-RK schemes. Total CPU time

for N=10, 20, 40, 80, 160 and 320 cells is recorded

Example 3.1 Example 3.2 Example 3.3

HWENO-LW 0.53125 0.0625 36.75

HWENO-RK 1.484375 0.1875 115.703125

Table 3.2: φt + φx = 0. φ(x, 0) = sin(πx). HWENO-LW and HWENO-RK schemes with periodic

boundary conditions. t = 2. L1 and L∞ errors and numerical orders of accuracy. Uniform meshes with

N cells

HWENO-LW HWENO-RK

N L1 error order L∞ error order L1 error order L∞ error order

10 3.22E-02 4.50E-02 2.51E-02 3.49E-02

20 1.42E-03 4.50 2.09E-03 4.43 1.13E-03 4.47 1.78E-03 4.29

40 5.04E-05 4.82 7.97E-05 4.71 4.46E-05 4.67 7.23E-05 4.62

80 1.63E-06 4.95 2.59E-06 4.94 1.54E-06 4.86 2.48E-06 4.87

160 3.73E-08 5.45 6.09E-08 5.41 3.62E-08 5.41 5.95E-08 5.38

320 3.22E-10 6.86 5.31E-10 6.84 3.18E-10 6.83 5.26E-10 6.82

Lax-Wendroff time discretization. A uniform mesh is used for all the test cases. The CFL
number is taken as 0.6 for all test cases except for some accuracy tests where a suitably reduced
time step is used to guarantee that spatial error dominates. The original HWENO scheme with
the fourth order Runge-Kutta time discretization method for HJ equations by Qiu and Shu [19]
with the same Lax-Friedrichs flux is used for comparison.

We first remark on the important issue of CPU timing and relevant efficiency of HWENO-
LW schemes compared with HWENO-RK schemes. In general, the HWENO-LW schemes have
smaller CPU cost for the same mesh and same order of accuracy in our implementation. For
example, in Table 3.1, we provide a CPU time comparison between HWENO-LW and HWENO-
RK schemes for accuracy tests in Examples 3.1, 3.2 and 3.3. We can see that the CPU cost
for the HWENO-LW schemes is about one third of that for the HWENO-RK schemes. The
computations are performed on a Dell OptiPlex(TM) GX620nSF, P4-3.2 with 1GB ram.

3.1. Accuracy tests

We first test the accuracy of the schemes on linear and nonlinear problems.

Example 3.1. We solve the following linear equation

φt + φx = 0 (3.1)

with the initial condition φ(x, 0) = sin(πx), and a 2-periodic boundary condition. We compute
the solution up to t = 2, i.e. after one period by the HWENO-LW scheme and the HWENO-RK
scheme. The numerical results are shown in Table 3.2. We can see that both schemes achieve
their designed order of accuracy with comparable errors for the same mesh.

Example 3.2. We solve the following nonlinear scalar Burgers’ equation

φt +
(φx + 1)2

2
= 0 (3.2)

with the initial condition φ(x, 0) = − cos(πx), and a 2-periodic boundary condition. When
t = 0.5/π2 the derivative of solution is still smooth. The errors and numerical orders of accuracy
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Table 3.3: Burgers’ equation φt + (φx + 1)2/2 = 0 with initial condition φ(x, 0) = − cos(πx) by

HWENO-LW and HWENO-RK schemes with periodic boundary conditions. t = 0.5/π2. L1 and L∞
errors and numerical orders of accuracy. Uniform meshes with N cells

HWENO-LW HWENO-RK

N L1 error order L∞ error order L1 error order L∞ error order

10 1.49E-03 5.53E-03 1.66E-03 7.80E-03

20 9.31E-05 4.00 7.22E-04 2.94 1.04E-04 4.00 9.02E-04 3.11

40 4.48E-06 4.38 4.53E-05 3.99 4.59E-06 4.50 5.25E-05 4.10

80 1.63E-07 4.78 2.10E-06 4.43 1.65E-07 4.80 2.25E-06 4.54

160 4.02E-09 5.34 7.08E-08 4.89 4.08E-09 5.34 7.32E-08 4.94

320 8.25E-11 5.61 1.38E-09 5.68 8.31E-11 5.62 1.41E-09 5.70

Table 3.4: Two-dimensional Burgers’ equation φt + (φx + φy + 1)2/2 = 0 with the initial condition

φ(x, y, 0) = − cos(π(x + y)/2) by HWENO-LW and HWENO-RK schemes with periodic boundary

conditions. t = 0.5/π2. L1 and L∞ errors and numerical orders of accuracy. Uniform meshes with

Nx ×Ny cells

HWENO-LW HWENO-RK

Nx ×Ny L1 error order L∞ error order L1 error order L∞ error order

10× 10 1.74E-03 5.78E-03 2.99E-03 8.96E-03

20× 20 9.82E-05 4.15 4.44E-04 3.70 1.07E-04 4.81 7.63E-04 3.55

40× 40 4.42E-06 4.47 3.90E-05 3.51 4.73E-06 4.50 5.72E-05 3.74

80× 80 1.58E-07 4.80 1.84E-06 4.41 1.65E-07 4.84 2.33E-06 4.62

160× 160 4.41E-09 5.17 6.30E-08 4.87 5.93E-09 4.80 7.61E-08 4.94

320× 320 1.01E-10 5.46 1.22E-09 5.69 1.62E-10 5.19 1.60E-09 5.57

by the HWENO-LW scheme and the HWENO-RK scheme are shown in Table 3.3. We also
can see that both schemes achieve their designed order of accuracy. In fact, the HWENO-LW
scheme has smaller errors than the HWENO-RK schemes for all meshes.

Example 3.3. We solve the following nonlinear scalar two-dimensional Burgers’ equation

φt +
(φx + φy + 1)2

2
= 0, (3.3)

with the initial condition φ(x, y, 0) = − cos(π(x + y)/2), and a 4-periodic boundary condition.
When t = 0.5/π2 the solution is still smooth. The errors and numerical orders of accuracy by
the HWENO-LW scheme and the HWENO-RK scheme are shown in Table 3.4. We also can
see that both schemes achieve their designed order of accuracy, and the HWENO-LW scheme
has smaller errors than the HWENO-RK scheme for the same mesh.

3.2. Test cases with discontinuous derivatives

Example 3.4. We solve the same nonlinear Burgers’ equation (3.2) as in Example 3.2 with the
same initial condition φ(x, 0) = − cos(πx), except that we now plot the results at t = 3.5/π2

when discontinuous derivative has already appeared in the solution. In Figure 3.1, the solutions
of the HWENO-LW scheme and the HWENO-RK scheme with N = 40 and N = 80 cells are
shown. We can see that both schemes give good results for this problem.

Example 3.5. We solve the nonlinear equation with a non-convex flux:
φt − cos(φx + 1) = 0 (3.4)
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Fig. 3.1. Burgers’ equation. t = 3.5/π2. Left:N = 40. Right: N = 80. Solid lines: the exact solution;

Square symbols: the HWENO-LW scheme; Plus symbols: the HWENO-RK scheme

with the initial data φ(x, 0) = − cos(πx) and periodic boundary conditions. We plot the results
at t = 1.5/π2 when the discontinuous derivative has already appeared in the solution. In Figure
3.2, the solutions of the HWENO-LW scheme and the HWENO-RK scheme with N = 40 and
N = 80 cells are shown. We also can see that both schemes give good results for this problem.
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Fig. 3.2. Problem with the non-convex flux H(u) = − cos(u + 1). t = 1.5/π2. Left:N = 40. Right:N =

80. Solid lines: the exact solution; Square symbols: the HWENO-LW scheme; Plus symbols: the

HWENO-RK scheme

Example 3.6. We solve the one-dimensional Riemann problem with a non-convex flux:
{

φt − 1
4 (φ2

x − 1)(φ2
x − 4) = 0, −1 < x < 1,

φ(x, 0) = −2|x|. (3.5)

This is a demanding test case, for many schemes have poor resolutions or could even converge
to a non-viscosity solution for this case. We plot the results at t = 1 by the HWENO-LW scheme
and the HWENO-RK scheme with N = 40 and N = 80 cells in Figure 3.3. We also can see
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that both schemes give good results for this problem again.
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Fig. 3.3. Problem with the non-convex flux H(u) = 1
4
(u2−1)(u2−4). t = 1. Left:N = 40. Right:N = 80.

Solid lines: the exact solution; Square symbols: the HWENO-LW scheme; Plus symbols: the HWENO-

RK scheme

Example 3.7. We solve the same two-dimensional nonlinear Burgers’ equation (3.3) as in
Example 3.3 with the same initial condition φ(x, 0) = − cos(π(x + y)/2), except that we now
plot the results at t = 1.5/π2 when the discontinuous derivative has already appeared in the
solution. The solution of the HWENO-LW scheme with Nx ×Ny = 40× 40 cells are shown in
Figure 3.4. We observe good resolution for this example.
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Fig. 3.4. Two-dimensional Burgers’ equation. t = 1.5/π2 by the HWENO-LW scheme with Nx×Ny =

40× 40 cells. Left: contours of the solution. Right: surface of the solution

Example 3.8. The two-dimensional Riemann problem with a non-convex flux:{
φt + sin(φx + φy) = 0, −1 < x, y < 1,

φ(x, y, 0) = π(|y| − |x|). (3.6)

The solution of the WENO-LW scheme with Nx ×Ny = 40 × 40 cells are shown in Figure
3.5. We observe good resolution for this example.
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Example 3.9. A problem from optimal control is defined in −π < x, y < π
{

φt + sin(y)φx + (sinx + sign(φy))φy − 1
2 sin2 y − (1− cos x) = 0,

φ(x, y, 0) = 0,
(3.7)

with periodic conditions, see [14]. The solution of the HWENO-LW scheme with Nx × Ny =
60× 60 cells and the optimal control ω = sign(φy) are shown in Figure 3.6.
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Fig. 3.6. The optimal control problem. t = 1 by the HWENO-LW scheme with Nx × Ny = 60 × 60

cells. Left: surfaces of the solution. Right: the optimal control ω = sign(φy)

Example 3.10. A two-dimensional eikonal equation with a non-convex Hamiltonian, which
arises in geometric optics [7], is given by

{
φt +

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1
4 (cos(2πx)− 1)(cos(2πy)− 1)− 1.

(3.8)

The solutions of the HWENO-LW scheme with Nx×Ny = 80× 80 cells is shown in Figure 3.7.
Good resolution is observed.
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Fig. 3.7. Eikonal equation with a non-convex Hamiltonian. t = 1 by the HWENO-LW scheme with

Nx ×Ny = 80× 80 cells. Left: contours of the solution. Right: surface of the solution

Example 3.11. The problem of a propagating surface [13] is governed by
{

φt − (1− εK)
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1− 1
4 (cos(2πx)− 1)(cos(2πy)− 1),

(3.9)

where K is the mean curvature defined by

K = −φxx(1 + φ2
y)− 2φxyφxφy + φyy(1 + φ2

x)

(1 + φ2
x + φ2

y)
3
2

,

and ε is a small constant. A periodic boundary condition is used. The approximation of the
second derivative terms φxx, φxy, φyy and the extra terms of time derivatives φ′xx, φ′xy, φ′yy, etc.,
are constructed by the methods similar to that of the first derivative terms, but we only use
linear weights in the reconstruction. The results of ε = 0 (pure convection) and ε = 0.1 by the
HWENO-LW scheme with Nx ×Ny = 50 × 50 cells are presented in Figure 3.8. The surfaces
at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted downward in order to
show the detail of the solution at later time.

4. Concluding Remarks

In this paper, a class of Hermite weighted essentially non-oscillatory (HWENO) schemes
with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, for solving
one and two-dimensional Hamilton-Jacobi equations has been constructed. This is an alter-
native method for time discretization to the popular TVD Runge-Kutta time discretizations.
We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence
reducing the cost but still maintaining non-oscillatory properties for problems with strong dis-
continuous derivative. As a result, comparing with the original HWENO with Runge-Kutta
time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations,
the major advantages of HWENO-LW schemes are their saving of computational cost and their
compactness in the reconstruction. HWENO-LW has smaller errors than or is comparable with
that given by HWENO-RK at same meshes for all cases we have computed.
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