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Abstract

In this paper, some V-cycle multigrid algorithms are presented for the coupling system
arising from the discretization of the Dirichlet exterior problem by coupling the natural
boundary element method and finite element method. The convergence of these multigrid
algorithms is obtained even with only one smoothing on all levels. The rate of convergence
is found uniformly bounded independent of the number of levels and the mesh sizes of all
levels, which indicates that these multigrid algorithms are optimal. Some numerical results
are also reported.
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1. Introduction

In many fields of scientific and engineering computing, it is necessary to solve boundary
values problems of partial differential equations over unbounded domains. The standard tech-
niques such as the finite element method, which is effective for problems in bounded domain,
may meet some difficulties for unbounded domain problems and in particular the corresponding
computing cost may be very high. So for problems of this kind, it is a good choice to use the
method that combines the boundary element method and finite element method. This treat-
ment enables us to combine the advantages of boundary element method for treating domains
extended to infinity with those of finite element method in treating the complicated bounded
domain problems. Research in this direction is of great importance in both theory and practical
computation.

The procedure of this kind of coupling can be briefly described as follows. The unbounded
domain is divided into two subregions, i.e., a bounded inner one and an unbounded outer one,
by introducing an artificial common boundary. Then, the problem is reduced to an equivalent
one in the bounded region. There are many approaches to accomplish this reduction (refer
to [6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20, 24, 26] and references therein). Natural boundary
reduction method is one of them.
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Natural boundary reduction method and its coupling with finite element method, which is
also known as the exact artificial boundary condition method, were suggested and developed
first by Feng in 1980, Yu in 1982 and Han in 1985. And a very similar method, the so-called
DtN method, was devised by Keller and Givoli in 1989. In this reduction, the problem over
unbounded exterior domain is reduced to an bounded problem with a hyper-singular integral
equation on the artificial boundary by using a Green function to get the exact artificial boundary
condition with hyper-singular integrals. It is fully compatible with the variational principle over
the domain, and the boundary elements are also fully compatible with the domain elements.
This coupling is natural and direct. Moreover, the coupled bilinear form preserves automatically
the symmetry and coerciveness of the original bilinear form. As a result, the analysis of the
discrete problem is simplified, and also the error estimates and the numerical stability are
restored (see [11, 23, 24]). In this paper, we follow this approach.

With a discretization scheme, the construction of efficient algorithms for solving the resulting
discrete system is of great importance. So, our goal is to construct efficient algorithms for the
discrete system obtained from the coupling of natural boundary element method and finite
element method.

It is well known that multigrid algorithms are among the most efficient methods for solving
discretization equations arising from various finite element approximations of boundary value
problem on bounded domain (for multigrid method, refer to [1, 2, 3, 4, 13, 21] and references
therein). During the last three decades, there has been intensive research toward multigrid
methods. The purpose of this paper is to construct multigrid algorithms for discretization
equations arising from the coupling of the natural boundary element method and finite element
method for the Dirichlet exterior problem and to investigate their convergence.

In the following sections, some V-cycle multigrid algorithms are constructed. We will in-
vestigate the convergence of these multigrid algorithms even with only one smoothing on all
levels. The rate of convergence is shown to be uniformly bounded independent of the number
of levels and the mesh sizes of all levels, which indicates that the proposed multigrid algorithms
are optimal.

The remainder of this paper is organized as follows: In section 2, we present our model prob-
lem and introduce the natural boundary reduction method. Multigrid algorithm is described
and analyzed in section 3. And some numerical results are reported in section 4.

2. Model Problem and Natural Boundary Reduction

We adopt the standard notations for Sobolev space, with their norms and semi-norms as
presented in [5, 9]. Let Ω be a Lipschitz bounded domain in R

2, Ωc = R
2 \(Ω∪∂Ω), f ∈ L2(Ωc)

be a given compactly supported function. We consider the following model problem{
−�u = f, in Ωc,

u = 0, on ∂Ω, (2.1)

subject to the asymptotic conditions

u(x, y) = α+O(1/r), |∇u(x, y)| = O(1/r2),

as r =
√
x2 + y2 → ∞ where α is a constant. Define

H1
�(Ωc) = {v| v√

r2 + 1 ln(r2 + 2)
,
∂v

∂x
,
∂v

∂y
∈ L2(Ωc) , v|∂Ω = 0}

and

a(w, v) =
∫ ∫

Ωc

∇w · ∇vdxdy , ∀w, v ∈ H1
�(Ωc) .
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Figure 1: Artificial boundary

Then the corresponding variational form of (2.1) can be written as: Find u ∈ H1
�(Ωc) such

that
a(u, v) = (f, v) , ∀v ∈ H1

�(Ωc) . (2.2)

According to the hypothesis on f , we choose a circle disc Ω0 containing Ω̄ and supp f . Let
Ω1 = Ωc ∩ Ω0, Ω2 = Ωc

0 = R
2 \ (Ω0 ∪ ∂Ω0) and Γ = ∂Ω0 (see Figure 1). Then we have

a(u, v) = a1(u, v) + a2(u, v), (2.3)

where ai(u, v) =
∫ ∫

Ωi
∇u · ∇vdxdy, i = 1, 2.

Next, we introduce the natural boundary reduction method and derive a coupled variational
form equivalent to (2.3). From Green’s formula on Ω2, we have

a2(u, v) =
∫

Γ

∂

∂n
u(z) · v(z)dz +

∫ ∫
Ω2

fvdxdy . (2.4)

Let V (z, z′) be the Green’s function for the Laplace operator on the domain Ω2, which satisfies{
−�V (z, z′) = δ(z − z′), ∀z, z′ ∈ Ω2,
V (z, z′)|z∈Γ = 0, ∀z′ ∈ Ω2,

subject to the same asymptotic conditions as u. By taking w = V (z, z′), v = u in Green’s
second formula ∫ ∫

Ω2

(w�v − v�w)dz′ =
∫

Γ

(w
∂v

∂n
− v

∂w

∂n
)dz′ ,

we get (refer to [23, 24])

u(z) =
∫ ∫

Ω2

f(z′)V (z, z′)dz′ −
∫

Γ

∂

∂n′ V (z, z′)u(z′)dz′ , ∀z ∈ Ω2 ,

where n and n′ denote the exterior normal vectors on Γ (viewed as the boundary of Ω2) at the
respective points z and z′. Thus we obtain

∂u

∂n
(z) =

∫ ∫
Ω2

f(z′)
∂

∂n
V (z, z′)dz′ −

∫
Γ

∂2

∂n∂n′ V (z, z′)u(z′)dz′ , ∀z ∈ Γ . (2.5)
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Let

Ku(z) = −
∫

Γ

∂2

∂n∂n′V (z, z′)u(z′)dz′ , z ∈ Γ . (2.6)

Then, it follows from (2.4)-(2.6) and the fact supp f ⊂ Ω0 that

a2(u, v) =
∫

Γ

Ku(z) · v(z)dz. (2.7)

Define H1
∗ (Ω1) = {v| v ∈ H1(Ω1), v|∂Ω = 0} and

b(u, v) = a1(u, v)+ < Ku, v >Γ, (2.8)

where < ·, · >Γ denotes the L2 inner product on Γ. With (2.3) and (2.7), we can rewrite the
variation form (2.2) as: Find u ∈ H1∗ (Ω1) such that

b(u, v) =
∫ ∫

Ω1

fvdxdy, ∀v ∈ H1
∗ (Ω1). (2.9)

Remark 2.1. The operator K : H
1
2 (Γ) �→ H− 1

2 (Γ) is shown to be just the Dirichlet-Neumann
operator (Steklov-Poincaré operator) for Ω2 in [22]. So, it is symmetric and semi-positive
definite with respect to the inner product < ·, · >Γ (see [23, 24]), which indicates that b(·, ·) is
symmetric, bounded and coercive in H1

∗ (Ω1). Thus, it follows from the well known Lax-Milgram
Theorem that the variational problem (2.9) has unique solution u ∈ H1

∗ (Ω1).

Remark 2.2. As Γ is a circle, the Green’s function V (z, z′) can be expressed explicitly. For
example, in the case that the center of the circle Γ is the origin and its radius is R,

V (z, z′) =
1
4π

ln
R4 + r2r′2 − 2R2rr′ cos(θ − θ′)
R2(r2 + r′2 − 2rr′ cos(θ − θ′))

, z = (r, θ), z′ = (r′, θ′) ∈ Ω2.

Moreover, we have (refer to [23, 24])

∂2

∂n∂n′V (z, z′) =
1

4π sin2((θ − θ′)/2)
, z = (r, θ), z′ = (r′, θ′) ∈ Γ.

It is worth pointing out that these explicit expressions ensure the practical use of the natural
boundary reduction method. Moreover these expressions also imply another advantage of the
natural boundary reduction method compared over many other approaches: we need not to
solve any boundary integral equation associated with the unbounded subdomain. Instead only
calculation of certain singular integrations is needed.

Remark 2.3. In order to show how to calculate the singular integrations involved in the
bilinear form, we divide the artificial boundary Γ into m circular arcs with the same length.
Let {φi}m

i=1 be the set of the nodal basis functions on Γ. Noticing that, in polar coordinates
(r, θ), the nodal basis functions associated with Γ are piecewise linear with respect to the
variable θ, we can obtain (refer to [23, 24])

< Kφi, φj >Γ = − 1
4π

∫ 2π

0

∫ 2π

0
φi(θ)φj(θ

′)
sin2((θ−θ′)/2)dθdθ

′

= 4m2

π3

∞∑
k=1

1
k3 sin4 kπ

m cos 2k(i−j)π
m , i, j = 1, · · · ,m .

From this expression, we can easily find that the stiffness matrix ofK is symmetric and circulant,
which also enhances efficiency and implies only small memory storage is needed for the stiffness
matrix. Moreover, since the series converges quickly, a suitable short finite sum can be used to
simplify the calculation.
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3. Multigrid Algorithm

In this section, we introduce a multigrid algorithm and analyze its convergence.
First, we introduce some multi-level triangulations and notations. Because of the appearance

of curved triangles, if we use the usual approach to refine mesh by obtaining the k + 1 level
triangulation Tk+1 by dividing the triangle in the k level into four by connecting the midpoint
of each edge and construct the corresponding finite element space, then, unfortunately, the
resulting spaces are not nested. And obviously non-nested spaces will cause some additional
difficulty and trouble for the analysis of the convergence of the multigrid algorithm. In order to
avoid this additional difficulty caused by non-nested spaces, we do not use the usual approach to
refine mesh. Instead, we introduce another approach by employing the initial triangulation as
a parametrization of Ω1 and obtain the refinement step from subdividing the reference triangle
which leads to a sequence of nested spaces(refer to [18]).

More precisely, let Γ be parameterized by a 1-periodic function ψ : [0, 1] → Γ such that

β(z) := |ψ′(z)| > 0

for all z ∈ [0, 1]. And let 0 = z
(1)
0 < z

(1)
1 < · · · < z

(1)
N1

= 1, N1 ∈ N, be a uniform partition of

[0, 1] with z(1)
i − z

(1)
i−1 = h1 := 1/N1, i = 1, 2, · · · , N1. We denote by Ωh1 the polygonal domain

whose vertices on Γ are ψ(z(1)
0 ), ψ(z(1)

1 ), · · · , ψ(z(1)
N1

). Let T1 be a regular triangulation of Ω̄h1

by triangles of diameter satisfying diam τi ≤ h1 supz∈[0,1] β(z) for all τi ∈ T1. Then there exists
affine mapping Gi such that Gi(τ̂ ) = τi for each τi ∈ T1 where τ̂ = �((0, 0), (1, 0), (0, 1)) is
the reference triangle. Next, we replace each triangle τi ∈ T1 with two vertices on Γ by the
corresponding curved triangle. Without loss of generality we may suppose that the vertices
p0, p1, p2 of a curved triangle τi satisfy p1 = ψ(z(1)

j ), p2 = ψ(z(1)
j+1), respectively. Then, a

C∞-mapping G̃i with G̃i(τ̂ ) = τi is given by (refer to [25])

G̃i = Gi + Ui

with
Ui(t) =

t1
1 − t2

[ψ((1 − t2)z
(1)
j + t2z

(1)
j+1) − (1 − t2)ψ(z(1)

j ) − t2ψ(z(1)
j+1)] .

We denote this initial triangulation with non-curved and curved triangles by T̃1. Subdividing
in the usual way the reference triangle τ̂ in 4, 16, 64, · · · triangles yields a sequence of meshes

T̃1 ⊂ T̃2 ⊂ T̃3 ⊂ · · ·
with step width diam τi ≤ hj supz∈[0,1] β(z) for all τi ∈ T̃j , where hj = 2−(j−1)h1.

The finite element spaces on these meshes are considered to be piecewise linear and contin-
uous. Let the degrees of freedom on the mesh T̃j be Ñj and denote the corresponding nodal
basis function by φj,k, k = 1, 2, · · · , Ñj . With the notation Wj = span {φj,k, k = 1, · · · , Ñj}
for j = 1, 2, · · · , J , we obtain

W1 ⊂W2 ⊂ · · · ⊂WJ ⊂ H1
∗ (Ω1) .

Then the corresponding J-level discrete variational problem of (2.9) is: Find uJ ∈WJ such
that

b(uJ , v) =
∫ ∫

Ω1

fvdxdy , ∀v ∈ WJ . (3.1)

It is not difficult to see that (3.1) has a unique solution (see [23, 24]). Moreover the corre-
sponding error estimates in H1, L2 and L∞ norm can also be found in [23, 24].

In what follows, we denote c or C with or without subscript a generic positive constant,
which can take different values in different occurrences but always be independent of the mesh
size and the number of levels.
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Define operators Ak : Wk �→ Wk, Âk : Wk �→ Wk, Sk : WJ �→ Wk, Ŝk : WJ �→ Wk and
Tk : WJ �→Wk, k = 1, 2, · · · , J , by

(Akw, v) = b(w, v), ∀w, v ∈ Wk, (3.2)
(Âkw, v) = a1(w, v), ∀w, v ∈ Wk, (3.3)
b(Skw, v) = b(w, v), ∀w ∈WJ , v ∈Wk, (3.4)

a1(Ŝkw, v) = a1(w, v), ∀w ∈WJ , v ∈Wk, (3.5)
(Tkw, v) = (w, v), ∀w ∈WJ , v ∈Wk. (3.6)

From above definitions, we can easily obtain

TkAJ = AkSk, (3.7)

and
TkÂJ = ÂkŜk. (3.8)

Let Qk be a certain smoother, then the V-cycle multigrid algorithm can be described as
follows:
Algorithm 3.1.

Set B1 = A−1
1 . For k > 1 define Bk : Wk �→Wk in terms of Bk−1 as follows:

Let g ∈Wk,
1. Set x0 = 0.
2. Define xi for i = 1, 2, · · · ,m(k) by

xi = xi−1 +Qt
k(g −Akxi−1).

3. Set ym(k) = xm(k) + qk, where qk is defined by

qk = Bk−1Tk−1(g −Akxm(k)).

4. Define yi for i = m(k) + 1,m(k) + 2, · · · , 2m(k) by

yi = yi−1 +Qk(g −Akyi−1).

5. Set Bkg = y2m(k).

In step 2 above, Qt
k denotes the adjoint of Qk with respect to the inner product (·, ·) and

we take m(k) = 1 for all k which is sufficient in our analysis. The case m(k) > 1 and the cases
with only pre-smoothing or post-smoothing can be analyzed similarly.

Let Pk = I −QkAk, k = 1, · · · , J , Dk = QkAkSk for k > 1 and D1 = S1. Then it is easy to
check that the error operator associated with the discretization equation

Aku = f (3.9)

is given by
Ẽk = I −BkAkSk = EkE

∗
k , (3.10)

where the superscript ∗ denotes the adjoint with respect to b(·, ·) and

Ek = (I −Dk)(I −Dk−1) · · · (I −D1). (3.11)

In order to analyze the convergence of the multigrid algorithm, we make some assumptions,
which will be verified later. Let D̃k = AkSk/λk = TkAJ/λk for k > 1 and D̃1 = S1, where λk

denotes the largest eigenvalue of Ak.
(A1) There exists a constant Cb > 0 independent of k such that

b(v, v) ≤ Cb

J∑
k=0

b(D̃kv, v), ∀v ∈ WJ . (3.12)
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(A2) There exist 0 < ζ < 1 and C̃ > 0 independent of k such that

b(D̃kw,w) ≤ (C̃ζk−j)2b(w,w), ∀w ∈ Wj , j ≤ k. (3.13)

For the smoother Qk, we assume the following two condition are satisfied.
(A3) There exits a constant CQ ≥ 1 independent of k such that

(v, v)
λk

≤ CQ(Q̄kv, v), ∀v ∈ Wk, (3.14)

where Q̄k = (I − P ∗
kPk)A−1

k .
(A4) There exists a positive constant σ < 2 independent of k such that

b(Dkv,Dkv) ≤ σb(Dkv, v), ∀v ∈WJ . (3.15)

With these assumptions, we can obtain the convergence theorem of multigrid algorithm by
following the frame work of [3]. For the self-containedness of this paper, we still provide a proof
here.

Theorem 3.1. If the assumptions (A1)-(A4) are satisfied, then there exists a positive constant
δ < 1 independent of h and J such that

0 ≤ b((I −BJAJ )v, v) ≤ δb(v, v), ∀v ∈WJ . (3.16)

Proof. From (3.10), it is obvious that the lower inequality holds since

b((I −BJAJ )v, v) = b(E∗
Jv,E

∗
Jv) := |||E∗

Jv|||2 ≥ 0 .

And by the fact that |||E∗
Jv||| = |||EJv|||, we only need to estimate |||EJv||| for the upper

inequality. From (3.11), we get
Ek = (I −Dk)Ek−1, (3.17)

from which yields

b(Ekv,Ekv) = b(Ek−1v,Ek−1v) − 2b(Ek−1v,DkEk−1v) + b(DkEk−1v,DkEk−1v),

or equivalently,

b(Ek−1v,Ek−1v) − b(Ekv,Ekv) = b((2I −Dk)Ek−1v,DkEk−1v). (3.18)

Let E0 = I. Then it follows from (3.18) that

b(v, v) − b(EJv,EJv) =
J∑

i=1

b((2I −Dk)Ek−1v,DkEk−1v). (3.19)

Define D̄k = Q̄kAkSk = (I − P ∗
kPk)Sk for k > 1 and D̄k = S1. From Pk = I −QkAk and the

definition of P ∗
k , it is easy to check that P ∗

k = I −Qt
kAk. Combining this with (3.2), (3.4) and

the definition of Dk, we have

b(D̄kEk−1v,Ek−1v)
= b((I − (I −Qt

kAk)(I −QkAk))SkEk−1v,Ek−1v)
= b((Qt

k +Qk)AkSkEk−1v,Ek−1v) − b(Qt
kAkQkAkSkEk−1v,Ek−1v)

= b((Qt
k +Qk)AkSkEk−1v, SkEk−1v) − b(Qt

kAkQkAkSkEk−1v, SkEk−1v)
= ((Qt

k +Qk)AkSkEk−1v,AkSkEk−1v) − (Qt
kAkQkAkSkEk−1v,AkSkEk−1v)

= 2(AkSkEk−1v,QkAkSkEk−1v) − (AkQkAkSkEk−1v,QkAkSkEk−1v)
= b((2I −Dk)Ek−1v,DkEk−1v).

(3.20)

Thus, (3.19) and (3.20) imply

b(v, v) − b(EJv,EJv) =
J∑

i=1

b(D̄kEk−1v,Ek−1v). (3.21)
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From (A1), (3.2), (3.4), the triangle inequality, the fact D̃1 = D̄1 = S1 and E0 = I, we have

b(v, v) ≤ Cb

J∑
i=1

b(D̃kv, v)

= Cb[b(D̃1v, v) +
J∑

i=2

b(AkSkv, v)/λk] = Cb[b(D̃1v, v) +
J∑

i=2

‖AkSkv‖2
0/λk]

≤ Cb[b(D̃1v, v) + 2
J∑

i=2

(‖AkSkEk−1v‖2
0 + ‖AkSk(I − Ek−1)v‖2

0)/λk]

= Cb[b(D̄1E0v,E0v) + 2
J∑

i=2

‖AkSkEk−1v‖2
0/λk + 2

J∑
i=2

b(AkSk(I − Ek−1)v, (I − Ek−1)v)/λk]

≤ 2Cb[b(D̄1E0v,E0v) +
J∑

i=2

‖AkSkEk−1v‖2
0/λk +

J∑
i=2

b(D̃k(I − Ek−1)v, (I − Ek−1)v)].

(3.22)
For k = 2, 3, · · · , J , (A3), (3.2) and (3.4) imply that

J∑
i=2

‖AkSkEk−1v‖2
0/λk ≤ CQ

J∑
i=2

(Q̄kAkSkEk−1v,AkSkEk−1v)

= CQ

J∑
i=2

b(Q̄kAkSkEk−1v,Ek−1v) = CQ

J∑
i=2

b(D̄kEk−1v,Ek−1v).
(3.23)

Let ṽ = (I − Ek−1)v. Noting (3.17), we get Ei−1 − Ei = DiEi−1, from which follows

I − Ek =
k∑

i=1

DiEi−1 . (3.24)

Let wi = DiEi−1v. By (3.24), (3.2), (3.4), Cauchy-Schwarz inequality, (A2) and (A4), it follows

J∑
k=2

b(D̃kṽ, ṽ) ≤
J∑

k=2

k−1∑
i=1

k−1∑
j=1

b(D̃kDiEi−1v,DjEj−1v)

=
J∑

k=2

k−1∑
i=1

k−1∑
j=1

(AkSkDiEi−1v,AkSkDjEj−1v)/λk

≤
J∑

k=2

k−1∑
i=1

k−1∑
j=1

‖AkSkDiEi−1v‖0‖AkSkDjEj−1v‖0/λk

=
J∑

k=2

k−1∑
i=1

k−1∑
j=1

b(D̃kwi, wi)1/2b(D̃kwj , wj)1/2

≤ C̃2
J∑

k=2

k−1∑
i=1

k−1∑
j=1

ζ2k−i−jb(wi, wi)1/2b(wj , wj)1/2

≤ C̃2
J∑

k=2

k−1∑
i=1

k−1∑
j=1

ζ2k−i−j [b(wi, wi) + b(wj , wj)]/2

= C̃2
J∑

k=2

k−1∑
i=1

k−1∑
j=1

ζk−jζk−ib(wi, wi) ≤ ζC̃2

1−ζ

J∑
k=2

k−1∑
i=1

ζk−ib(wi, wi)

= ζC̃2

1−ζ

J−1∑
i=1

J∑
k=i+1

ζk−ib(wi, wi) ≤ ζ2C̃2

(1−ζ)2

J−1∑
i=1

b(DiEi−1v,DiEi−1v)

≤ σζ2C̃2

(1−ζ)2

J−1∑
i=1

b(DiEi−1v,Ei−1v) .

(3.25)

On the other hand, from (3.20) and (A4), we have

b(D̄kEi−1v,Ei−1v) = b((2I −Dk)Ei−1v,DkEi−1v)
≥ (2 − σ)b(DkEi−1v,Ei−1v) .

(3.26)

Note b(D̄JEJ−1v,EJ−1v) = (Q̄JAJEJ−1v,AJEJ−1v) ≥ 0. This, together with (3.25) and
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(3.26), yields
J∑

k=2

b(D̃kṽ, ṽ) ≤ σζ2C̃2

(1−ζ)2

J−1∑
i=1

b(DiEi−1v,Ei−1v)

≤ σ
2−σ ( ζ

1−ζ )2C̃2
J−1∑
k=1

b(D̄kEk−1v,Ek−1v)

≤ σ
2−σ ( ζ

1−ζ )2C̃2
J∑

k=1

b(D̄kEk−1v,Ek−1v) .

(3.27)

Thus, from (3.22), (3.23), (3.27) and (3.21), it follows

b(v, v) ≤ Cm

J∑
k=1

b(D̄kEk−1v,Ek−1v) = Cm[b(v, v) − b(EJv,EJv)],

where Cm = 2Cb[CQ + σ
2−σ ( ζ

1−ζ )2C̃2]. Let δ = 1 − 1/Cm < 1. Then

b(EJv,EJv) ≤ (1 − 1/Cm)b(v, v) = δb(v, v) .

This completes the proof.
With Theorem 3.1, it is obvious that we only need to verify (A1)-(A4) to achieve the con-

vergence of the multigrid algorithm. To this end, we still need some more notations. Let
D̂k = ÂkŜk/λ̂k = TkÂJ/λ̂k for k > 1 and D̂1 = Ŝ1, where λ̂k denotes the largest eigenvalue
of Âk. It is well known that (A1) and (A2) hold for a1(·, ·) which are denoted as (A1D) and
(A2D) respectively here (refer to [3]).

(A1D) There exists a constant Ca > 0 independent of k such that

a1(v, v) ≤ Ca

J∑
k=0

a1(D̂kv, v), ∀v ∈ WJ , (3.28)

(A2D) There exist 0 < ζa < 1 and C̃a > 0 independent of k such that

a1(D̂kw,w) ≤ (C̃aζ
k−j
a )2a1(w,w), ∀w ∈Wj , j ≤ k. (3.29)

Next, we show that (A.1) and (A.2) also hold for b(·, ·). First, some lemmas are needed.
Let ŵ denote the discrete harmonic extension of w|Γ, which is defined by{

a1(ŵ, v̂) = 0, ∀v̂ ∈ W 0
J ,

ŵ|∂Ω = 0, ŵ|Γ = w|Γ,

where W 0
J = {v| v ∈ WJ , v|Γ = 0}.

Lemma 3.1. [16] For any w ∈WJ , we have

< Kw,w >Γ≤ |ŵ|1,Ω1 . (3.30)

With this lemma, we can obtain the following result.

Lemma 3.2. For any w ∈WJ , we have

a1(w,w) ≤ b(w,w) ≤ C0a1(w,w). (3.31)

Proof. Since the lower inequality is obvious, we only need to prove the upper one. To this
end, let w̃ ∈WJ be the discrete harmonic extension of w|Γ, which is defined by{

a1(w̃, ψ) = 0, ∀ψ ∈W 0
J ,

w̃|∂Ω = 0, w̃|Γ = w|Γ.
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Set w1 = w − w̃ ∈ W 0
J . Then we get

a1(w,w) = |w1|21,Ω1
+ |w̃|21,Ω1

, (3.32)

and
b(w,w) = |w1|21,Ω1

+ |w̃|21,Ω1
+ < Kw,w >Γ . (3.33)

With (3.32), (3.33) and Lemma 3.1, we obtain

b(w,w) = |w1|21,Ω1
+ |w̃|21,Ω1

+ < Kw,w >Γ

≤ |w1|21,Ω1
+ 2|w̃|21,Ω1

≤ C0a1(w,w).

This completes the proof.
The following two lemmas can be found in [3].

Lemma 3.3. Suppose Ā and Ã are two symmetric positive definite operators on WJ . Then for
all w ∈WJ ,

C1(Āw,w) ≤ (Ãw,w) ≤ C2(Āw,w) (3.34)

if and only if
C1(Ã−1w,w) ≤ (Ā−1w,w) ≤ C2(Ã−1w,w), (3.35)

where C1 and C2 are the same constants in both inequalities.

Lemma 3.4. Assume that two symmetric positive definite operators Ā and Ã on WJ with
corresponding bilinear forms ā(·, ·) and ã(·, ·) sstisfy

C1ã(w,w) ≤ ā(w,w) ≤ C2ã(w,w) ∀w ∈WJ . (3.36)

Then (A1) holds for Ã if and only if (A1) holds for Ā.

With the help of Lemma 3.2, Lemma 3.4 and (A1D), we obtain

Theorem 3.2. (A1) holds for b(·, ·).

Next, we show that the assumption (A2) also holds for b(·, ·).

Theorem 3.3. (A2) holds for b(·, ·).

Proof. For k = 1, there is nothing to prove. For k > 1, with (3.2)-(3.5), (3.7) and (3.8), we
have

a1(D̂kw,w) = λ̂−1
k ‖ÂkŜkw‖2

0 = λ̂−1
k ‖TkÂJw‖2

0, (3.37)

and
b(D̃kw,w) = λ−1

k ‖AkSkw‖2
0 = λ−1

k ‖TkAJw‖2
0 . (3.38)

Then, from (3.37) and (A2D), we have

λ̂−1
k ‖TkÂJw‖2

0 = a1(D̂kw,w) ≤ (C̃aζ
k−j
a )2a1(w,w)

= (C̃aζ
k−j
a )2(Â−1

J ÂJw, ÂJw) .
(3.39)

Set v = ÂJw. Then, it follows

λ̂−1
k ‖Tkv‖2

0 ≤ (C̃aζ
k−j
a )2(Â−1

J v, v) .

From the above inequality, Lemmas 3.2 and 3.3, we obtain

λ−1
k ‖Tkv‖2

0 ≤ λ̂−1
k ‖Tkv‖2

0 ≤ (C̃aζ
k−j
a )2(Â−1

J v, v)
≤ C2(C̃aζ

k−j
a )2(A−1

J v, v) .
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Setting C̃ = C
1/2
2 C̃a, ζ = ζa and v = AJw in the above inequality, we obtain from (3.38) that

b(D̃kw,w) = λ−1
k ‖TkAJw‖2

0 ≤ (C̃ζk−j)2b(w,w).

This completes the proof.
Next, we introduce some smoothers such that (A3) and (A4) are satisfied. Due to the

appearance of the term< Kw,w >Γ, it makes the nodal basis function on the artificial boundary
does not have local support. As a result, smoothers constructed in [3] can not be used directly
because they may not satisfy (A3) or (A4) any more. Therefore, the smoothers have to be
choosen and checked carefully to overcome this difficulty.

Before presenting some smoothers satisfying (A3) and (A4), we make some observations for
smoothers of the form Qk = µ

λk
I, where µ is a parameter. In the following, we will discuss the

condition under which (A3) and (A4) are satisfied by this kind of smoothers.
First, we check the assumption (A3). Noting that for this kind of smoother, we have

Pk = I − µ
λk
Ak and

b((I − P ∗
kPk)v, v) = b(v, v) − b(Pkv, Pkv)

= b(v, v) − [b(v, v) − 2µ
λk
b(Akv, v) + µ2

λ2
k
b(Akv,Akv)]

= 2µ
λk

‖Akv‖2
0 − µ2

λ2
k
b(Akv,Akv) .

(3.40)

It follows from the fact b(Akv,Akv) ≤ λk‖Akv‖2
0 that

µ2

λ2
k

b(Akv,Akv) ≤
µ2

λ2
k

λk‖Akv‖2
0 =

µ2

λk
‖Akv‖2

0 . (3.41)

Thus, with (3.40) and (3.41), we obtain

b((I − P ∗
kPk)v, v) ≥ µ(2 − µ)

λk
‖Akv‖2

0 . (3.42)

For 0 < µ < 2, we chose CQ = 1/(µ(2 − µ)) ≥ 1. Then, it follows from (3.42) that

CQ(Q̄Akv,Akv) = CQ((I − P ∗
kPk)A−1

k Akv,Akv) = CQb((I − P ∗
kPk)v, v)

≥ CQ
µ(2−µ)

λk
‖Akv‖2

0 = ‖Akv‖2
0/λk .

Setting w = Akv, we have (A3) holds for this kind of smoother.
To check (A4), we notice that for the smoother of the form Qk = µ

λk
I, it follows from (3.2)

and (3.4) that

b(Dkv,Dkv) =
µ2

λ2
k

b(AkSkv,AkSkv), (3.43)

b(Dkv, v) = µb(AkSkv, v)/λk = µb(AkSkv, Skv)/λk

= µ‖AkSkv‖2
0/λk .

(3.44)

Since b(AkSkv,AkSkv) ≤ λk‖AkSkv‖2
0, we obtain from (3.43) and (3.44) that

b(Dkv,Dkv) = µ2

λ2
k
b(AkSkv,AkSkv)

≤ µ2

λ2
k
λk‖AkSkv‖2

0 = µb(Dkv, v) .

Taking σ = µ, for 0 < µ < 2, we get that (A4) holds.
Thus, we obtain

Theorem 3.4. For 0 < µ < 2, the smoothers of the form Qk = µ
λk
I satisfy (A3) and (A4).
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Remark 3.1. The largest eigenvalue of the matrix is involved in the construction of this kind
of smoothers, which is not easy to obtain in practical computation. This gives some difficulty in
using this kind of smoothers directly in practical computation. However this theorem is still im-
portant and useful in constructing smoothers and for providing us with a better understanding
of the role the smoother plays in the convergence of the multigrid algorithm (see the analysis
below).

Let us consider smoothers of the form

Qk =
1
η
I . (3.45)

To make Qk above satisfy (A3) and (A4), η should satisfy some conditions. Next, we will give
some conditions based on Theorem 3.4.

Two cases are considered. The first one is the case η ≥ λk. In this case, it is obvious that
there exists a positive constant µ ≤ 1 such that 1

η = µ
λk

. From Theorem 3.4, it follows the
desired smoothers. This case is of great importance for the practical computation and many
practical smoothers can be obtained from this case. As mentioned above, it is not easy to get
the largest eigenvalue of the matrix, but a upper bound of the largest eigenvalue of the matrix
can be easily obtained using many different methods. All these upper bounds can be used to
construct smoothers of the form (3.45) for the purpose of the practical computation.

The second case is λk

2 < η ≤ λk. In this case, we can see that there exists a constant
1 ≤ µ < 2 such that 1

η = µ
λk

. Also, for this case, we still can obtain desired smoothers. This
case indicates that the multigrid algorithm is still convergent for any upper bounds η of λk/2
even if η < λk. This seems an interesting result, which may provide us a better understanding
of the role the smoother plays in the convergence of the multigrid algorithm. On the other
hand, it also implies that if some upper bounds of λk/2 can be obtained, then all these bounds
can also be used to construct smoothers of the form (3.45) for practical use. The convergence
of the multigrid algorithm is still ensured in this case.

To conclude, we obtain the following theorem

Theorem 3.5. Let λk

2 < η. Then the smoothers of the form (3.45) satisfy (A3) and (A4).

With Theorems 3.1-3.3 and 3.5, we complete the construction and analysis of the proposed
multigrid algorithm.

4. Numerical Results

Let us consider the following model problem for our numerical experiment{
−�u = f, in Ωc,

u = 0, on ∂Ω, (4.1)

subject to the asymptotic conditions

u(x, y) = α+O(1/r) , |∇u(x, y)| = O(1/r2) , r =
√
x2 + y2 → ∞ ,

where Ω is unit circle disc, α = 1, and

f =
{ 4

(x2+y2)2 , 1 < x2 + y2 < 9
4 ,

0 , 9
4 ≤ x2 + y2.

We make the coupling at the circle Γ with radius 2. The exact solution of the model problem
and the computational solution of the finest level are denoted as u and uh respectively. The
discrete norm ‖ · ‖D is defined as

‖w‖D = hJ

√∑
i

w(xi)2,
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Table 1: Numerical results for J = 3

m N ‖u− uh‖D ITn
128 2048 2.9060e-3 10
256 8192 7.4122e-4 10
512 32768 1.8700e-4 9
1024 131072 4.6633e-5 8

Table 2: Numerical results for J = 4

m N ‖u− uh‖D ITn
128 2048 2.9354e-3 12
256 8192 7.5595e-4 11
512 32768 1.9390e-4 10
1024 131072 4.9087e-5 9
2048 524288 1.2272e-5 8

Table 3: Numerical results for J = 5

m N ‖u− uh‖D ITn
256 8192 8.9339e-4 11
512 32768 2.1598e-4 11
1024 131072 5.8905e-5 10
2048 524288 1.3499e-5 10
4096 2097152 3.0680e-6 10

where the sum is taken over all nodes xi of the finest level finite element space UJ . It is well
known that this discrete norm is equivalent to the standard L2 norm.

In what follows, the number of circular arcs that Γ is divided into on the finest level and
the number of unknowns on the finest level are denoted as m and N , respectively. ITn stands
for the number of iterations needed to achieve the corresponding error ‖u − uh‖D. In all our
numerical experiments, the multigrid algorithm with only pre-smoothing is used and only one
smoothing is taken at each level.

The results for the cases J = 3, J = 4 and J = 5 are presented in Table 1, Table 2 and
Table 3 respectively.

From all these tables, we find that the proposed multigrid algorithm performs well even if
the number of unknowns is very large (for example, the case of more than 2 million unknowns)
and the number of iterations needed to achieve the corresponding accuracy is independent of
the number of levels and the mesh sizes used, which supports our theoretical predictions.
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