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Abstract

In this paper, we consider the finite element approximation of the distributed optimal

control problems of the stationary Bénard type under the pointwise control constraint.

The states and the co-states are approximated by polynomial functions of lowest-order

mixed finite element space or piecewise linear functions and the control is approximated

by piecewise constant functions. We give the superconvergence analysis for the control;

it is proved that the approximation has a second-order rate of convergence. We further

give the superconvergence analysis for the states and the co-states. Then we derive error

estimates in L
∞-norm and optimal error estimates in L

2-norm.
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1. Introduction

The control of viscous flow for the purpose of achieving some desired objective is crucial to

many technological and scientific applications. The Boussinesq approximation of the Navier-

Stokes system is frequently used as mathematical model for fluid flow in semiconductor melts.

In many crystal growth technics, such as Czochralski growth and zone-melting technics, the

behavior of the flow has considerable impact on the crystal quality. It is therefore quite natural

to establish flow conditions that guarantee desired crystal properties. As control actions, they

include distributed forcing, distributed heating, and others. For example, the control of vorticity

has significant applications in science and engineering such as control of turbulence and control

of crystal growth process.

Considerable progress has been made in mathematics, physics and computation of the op-

timal control problems for the viscous flow; see [1, 2, 9, 12, 14, 15] and references therein.

Optimal control problems for the thermally coupled incompressible Navier-Stokes equation by

Neumann and Dirichlet boundary heat controls were considered in [12, 15]. Also, the time

dependent problems were considered in the literature. In this article, we consider the Bénard

problem whose state is governed by the Boussinesq equations, which is crucial to many techno-

logical and scientific applications. Without the control constraint, the analysis of approximation

about optimal control of the stationary Bénard problem was considered in [20], and it uses the
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gradient iterative method to solve the discretized equations. For the constrained control case,

there seems to be little work on this problem. This paper is concerned with the finite element

approximation and error analysis of the constrained optimal control problem of the stationary

Bénard problem:

(P) min
Q∈K

J(Q) = {
1

2
‖u− U‖2

L2(Ω) +
α

2
‖Q‖2

0,Ω},

subject to the Boussinesq system:

(a) − ν∆u + (u · ∇)u + ∇p = Tg + f in Ω,

(b) ∇ · u = 0 in Ω,

(c) − κ∆T + u · ∇T = Q in Ω,

(d) u = 0 T = 0 on ∂Ω

(1.1)

and subject to the control constraint

K = {Q ∈ L2(Ω) : Q(x) ≥ 0; a.e. x ∈ Ω}, (1.2)

where Ω is a regular bounded and convex open set in R
n (n = 2, or 3), with ∂Ω ∈ C1,1.

u, p, T denote the velocity, pressure and temperature fields, respectively, f is a body force, and

control Q. The vector g is in the direction of gravitational acceleration and κ > 0 the thermal

conductivity parameter. In this paper we only consider, for the simplicity, the case where κ is

constant. Assume ν > 0 is the kinematic viscosity.

The optimal control problems (P) are to seek the state variables (u, p, T ) and Q such that

the functional J is minimized subject to (1.1) where U is some desired velocity fields. The

physics objective of the minimization problem is to match a desired flow field by adjusting the

distributed control Q.

Approximation properties of the optimal control problems have long been investigated in

the past years. For some classic work, we refer to Falk [10], Geveci [11] and Malanowski [26].

Theory and numerical results for elliptic control problems have been known for a long time,

and can be found, for example, in Casas, Mateos, and Tröltzsch [5] or Casas and Tröltzsch [7],

[24] and [25]. However, new discretization concepts have been developed in recent years. The

variational approach by Hinze [16] and the superconvergence approach of Meyer and Rösch

[27] can achieve approximation order h2 in the L2−norm using the piecewise constant control

approximation for some simpler linear optimal control problems. However there seems to exist

few known result on the analysis of the above control problem, which is a coupled nonlinear

control problem.

In this work we show that the method cited above can be adapted to the Boussinesq equa-

tions. Here the control is discretized by piecewise constant functions. Clearly, the optimal

approximation order of the control is expected to be h. However, we will show a superconver-

gence result that improves the order to h2 only assuming first order global regularity. We will

show the state u and the related co-state have the approximation order of h2 in the L2−norm.

The paper is organized as follows. In Section 2, we give some notations and assumptions that

will be used throughout the paper. In Section 3, we will discuss the finite element approximation

of the optimal control problem. In Section 4, the main results will be given and the proof of

the superconvergence results will be presented in Section 5.
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2. Notations and Preliminaries

Using the classical techniques, it can be proved that the optimal control problem has at

least one solution. The reader is referred to [19] for the details.

From [20], we have the following optimality conditions for the optimal control problem (P):

(a) − ν∆u + (u · ∇)u + ∇p = Tg + f in Ω,

(b) ∇ · u = 0 in Ω,

(c) − κ∆T + u · ∇T = Q in Ω,

(d) u = 0 T = 0 on ∂Ω

(2.1)

coupled with the co-state equations and variational inequality:

(a) − ν∆w − (u · ∇)w + ∇utrw−∇σ + ϕ∇T = u− U in Ω,

(b) ∇ ·w = 0 in Ω,

(c) − κ∆φ − u · ∇ϕ = w · g in Ω,

(d) w = 0 ϕ = 0 on ∂Ω,

(e)

∫

Ω

(αQ + ϕ)(P − Q) dx ≥ 0 ∀ P ∈ K.

(2.2)

To consider the weak formulations of Eqs. (2.1) and (2.2), we need to introduce some function

spaces and the bilinear and trilinear forms. In this paper we adopt the standard notation

Wm,q(Ω) for Sobolev spaces on Ω with the norm ‖ · ‖m,q,Ω and the seminorm | · |m,q,Ω. We

denote Wm,2(Ω) (Wm,2
0 (Ω)) by Hm(Ω) (Hm

0 (Ω)) with the norm ‖ · ‖m,Ω and the semi-norm

| · |m,Ω. For vector-valued functions and spaces of vector-valued functions, which are indicated

by boldface, we define the Sobolev space Hm(Ω),

Hm(Ω) = {u = (u1, · · · , un)| ui ∈ Hm(Ω), i = 1, · · · , n},

and its associated norm ‖ · ‖Hm(Ω) is given by

‖u‖2
Hm(Ω) =

n∑

i=1

‖ui‖
2
Hm(Ω).

We also define the subspaces

L2
0(Ω) =

{
f ∈ L2(Ω) :

∫

Ω

f dx = 0
}
, H1

0(Ω) = {u ∈ H1(Ω); u = 0 on ∂Ω}.

Then we introduce the bilinear and trilinear forms, for all u,v,w ∈ H1(Ω), T, S ∈ H1(Ω) and

q ∈ L2
0(Ω),

a0(u,v) =

∫

Ω

ν∇u · ∇v dx, a1(T, S) =

∫

Ω

κ∇T · ∇S dx,

c0(u,v,w) =

∫

Ω

(u · ∇)v · w dx, c1(u, T, S) =

∫

Ω

u · ∇TS dx,

and

b(v, q) = −

∫

Ω

q∇ · v dx, d(T,v) =

∫

Ω

Tg · v dx.
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Moreover we assume that b(v, q) satisfies the inf-sup condition, i.e., there exists a constant

β > 0 such that

inf
06=q∈L2

0
(Ω)

sup
0 6=v∈H1

0
(Ω)

b(v, q)

‖v‖H1‖q‖L2

≥ β. (2.3)

Then, we have the weak formulation: seek (u, p, T,w, σ, ϕ, Q) ∈ H1
0(Ω) × L2

0(Ω) × H1
0 (Ω) ×

H1
0(Ω) × L2

0(Ω) × H1
0 (Ω) × K such that

(a) a0(u,v) + c0(u,u,v) + b(v, p) = d(T,v) + (f,v) ∀ v ∈ H1
0(Ω),

(b) b(u, q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(T, S) + c1(u, T, S) = (Q, S) ∀ S ∈ H1
0 (Ω)

(2.4)

and

(a) a0(w,v) + c0(v,u,w) + c0(u,v,w) − b(v, σ) = (u-U,v) − c1(v, T, ϕ) ∀ v ∈ H1
0(Ω),

(b) b(w, q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(ϕ, S) + c1(u, S, ϕ) = d(S,w) ∀ S ∈ H1
0 (Ω),

(d) (αQ + ϕ, P − Q) ≥ 0 ∀ P ∈ K.

(2.5)

From (2.5) (d), we can see that

Q = max(0,−
1

α
ϕ). (2.6)

In the next section, we will discuss the finite element approximation of the problem (2.4) and

(2.5).

3. Finite Element Approximation

We are now able to introduce a finite-element based approximation of the optimal control

(1.1). To this end, we consider a family of triangulations Th, h > 0, of Ω̄. With each element

T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of

the set T and σ(T ) is the diameter of the largest ball contained in T . The mesh size of the

grid is defined by h = maxT ∈Th
ρ(T ). We suppose that triangulations Th satisfy the following

regularity assumptions:

(H1) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

σ(T )

ρ(T )
≤ ρ

hold for all T ∈ Th and all 0 < h ≤ 1.

(H2) Define Ω̄h =
⋃

T ∈Th
T , and let Ωh and Γh denote its interior and its boundary,

respectively. We assume that Ω̄h is convex and that the vertices of Th placed on the boundary

of Γh are points of Γ. We also assume that

|Ω\Ωh| ≤ Ch2.

Next, to every boundary triangle T of Th we associate another triangle T̂ with curved boundary,

in which the edge between boundary nodes of T is substituted by the corresponding curved

part of Γ. We denote by T̂h the union of these curved boundary triangles with interior triangles

of Th, such that Ω̄ =
⋃

T̂ ∈T̂h
T̂ .
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Denote by Pk the function space of polynomials of degree less than or equal to k. Introduce

finite element spaces as follows:

Kh = {Qh ∈ L2(Ω) : Qh|T̂ = constant, T̂ ∈ T̂h}, Kad
h = Kh ∩ K,

Vh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ), T ∈ Th; yh = 0 on Ω̄\Ωh}.

Next we introduce the order-one Raviart-Thomas mixed finite element spaces as in [29]: V̄h ×

X̄h ⊂ H1
0 × L2

0 such that for a positive constant β0, the following inf-sup condition is satisfied:

inf
06=qh∈X̄h

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖H1‖qh‖L2

≥ β0. (3.1)

Moreover, similarly to Vh, we define

Vh = {yh ∈ V̄h on Ωh; yh = 0 on Ω̄\Ωh},

Xh = {ph ∈ X̄h : ph|T̂ = constant, T̂ ∈ T̂h}.

Now, it is obvious that Vh×Xh is defined on Ω̄, and then the finite-dimensional approximation

of the optimal control problem is:

(Ph) min
Qh∈Kh

Jh(Qh) = {
1

2
‖uh − U‖2

L2(Ω) +
α

2
‖Qh‖

2
0,Ω} (3.2)

subject to seek (uh, ph, Th) ∈ Vh × Xh × Vh such that

(a) a0(uh,vh) + c0(uh,uh,vh) + b(vh, ph) = d(Th,vh) + (f,vh) ∀ vh ∈ Vh,

(b) b(uh, qh) = 0 ∀ qh ∈ X h ,

(c) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh.

(3.3)

The optimal control problem (Ph) associated with state equations (3.3) is equivalent to

optimality conditions as follows:

Scheme I. Seek (uh, ph, Th) ∈ Vh × Xh × Vh such that

(a) a0(uh,vh) + c0(uh,uh,vh) + b(vh, ph) = d(Th,vh) + (f,vh) ∀ vh ∈ Vh,

(b) b(uh, qh) = 0 ∀ qh ∈ X h ,

(c) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh.

(3.4)

couple with co-state system and inequality: seek (wh, σh, ϕh, Qh) ∈ Vh × Xh × Vh × Kad
h

such that

(a) a0(wh,vh) + c0(vh,uh,wh) + c0(uh,vh,wh) − b(vh, σh)

= (uh − U,vh) − c1(vh, Th, ϕh) ∀ vh ∈ Vh,

(b) b(wh, qh) = 0 ∀ qh ∈ Xh ,

(c) a1(ϕh, Sh) + c1(uh, Sh, ϕh) = d(Sh,wh) ∀ Sh ∈ Vh,

(d) (αQh + ϕh, P̂h − Qh) ≥ 0 ∀ P̂h ∈ Kad
h .

(3.5)

Similarly, it follows from (3.5)(d) that

Qh = max(0,−
1

α
πhϕh), (3.6)
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where πh is defined by

πhv|T̂ =
1

|T̂ |

∫

T̂

v dx ∀ T̂ ∈ T̂h.

On the other hand, define

Ṽ = {v ∈ H1

0; ∇ · v = 0 on Ω}.

Then the weak form of the optimality conditions reads: seek (u, T ) ∈ Ṽ × H1
0 (Ω) such that

(a) a0(u,v) + c0(u,u,v) = d(T,v) + (f,v) ∀ v ∈ Ṽ,

(b) a1(T, S) + c1(u, T, S) = (Q, S) ∀ S ∈ H1
0 (Ω)

(3.7)

and seek (w, ϕ, Q) ∈ Ṽ× H1
0 (Ω) × K such that

(a) a0(w,v) + c0(v,u,w) + c0(u,v,w) = (u-U,v) − c1(v, T, ϕ) ∀ v ∈ Ṽ,

(b) a1(ϕ, S) + c1(u, S, ϕ) = d(S,w) ∀ S ∈ H1
0 (Ω),

(c) (αQ + ϕ, P − Q) ≥ 0 ∀ P ∈ K.

(3.8)

Define the finite element space Ṽh of the form:

Zh = {vh ∈ Vh; ∇ · vh = 0 on Ωh} Ṽh = Vh ∩ Zh.

It is clear Ṽh ∈ Ṽ. The finite-dimensional approximation of the optimal control problem is

defined by

(P̃h) min
Qh∈Kh

Jh(Qh) = {
1

2
‖uh − U‖2

0,Ω +
α

2
‖Qh‖

2
0,Ω} (3.9)

subject to seeking (uh, Th) ∈ Ṽh × Vh such that

(a) a0(uh,vh) + c0(uh,uh,vh) = d(Th,vh) + (f,vh) ∀ vh ∈ Ṽh,

(b) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh.
(3.10)

This results in another finite element system.

Scheme II. seek (uh, Th) ∈ Ṽh × Vh such that

(a) a0(uh,vh) + c0(uh,uh,vh) = d(Th,vh) + (f,vh) ∀ vh ∈ Ṽh,

(b) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh

(3.11)

coupled with seeking (wh, ϕh, Qh) ∈ Ṽh × Vh × Kad
h such that

(a) a0(wh,vh) + c0(vh,uh,wh) + c0(uh,vh,wh) = (uh − U,vh) − c1(vh, Th, ϕh) ∀ vh ∈ Ṽh,

(b) a1(ϕh, Sh) + c1(uh, Sh, ϕh) = d(Sh,wh) ∀ Sh ∈ Vh, (3.12)

(c) (αQh + ϕh, P̂h − Qh) ≥ 0 ∀ P̂h ∈ Kad
h .

The scheme II involves no pressure terms explicitly, they are easy to be solved. However, it

is often difficult to construct divergence-free finite element spaces. The readers are referred to

[8, 18] for the detailed discussion of divergence-free finite element spaces.

From the existing studies in [19, 20], we see the following convergence result.
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Lemma 3.1. Suppose (H1)-(H2) hold. Let the sequence Qh with h → 0 be a sequence of

solutions to (Ph) or (P̃h). Then there exist weakly-converged subsequences in L2(Ω). If the

subsequence Qh (still indexed by h) weakly converges to Q in L2(Ω), then Q is a solution of

(P). Moreover,

lim
h→0

Jh(Qh) = J(Q). (3.13)

In the next sections we will discuss and prove better convergent orders under some reasonable

conditions and assumptions. In addition, throughout the next sections, c or C denotes a general

positive constant independent of the mesh size h.

4. Main Results of Superconvergence and Optimal Error Estimate

Let (Qh,uh,wh, Th, ϕh) be a sequence of solutions of finite element approximation defined

by the scheme I or scheme II with h → 0. So, since uh weakly converges to u in the H1-norm,

uh strongly converges to u in L2-norm by the embedding theory. Now from Lemma 3.1 and

the definitions of Jh(Qh) and J(Q), we can get that

lim
h→0

‖Qh − Q‖L2 = 0. (4.1)

In this section, we discuss the superconvergence of the finite element approximation and the

optimal error estimates in the L2-norm and L∞-norm. Some additional assumptions are needed.

Firstly, we assume that the cost function J is strictly convex near the solutions Q, i.e.,

(H3) For the solution Q there exists a neighborhood of Q in L2 such that J is convex in

the sense that there is a constant c∗ > 0 satisfying:

c∗‖Q − P‖2
0,Ω ≤ (J ′(Q) − J ′(P ), Q − P ), (4.2)

for all P in this neighborhood of Q.

Secondly, we declare that the solution (Q,u,w, T, ϕ) is nonsingular, if for the solution u of

(P), the linear co-state system

(a) − ν∆v − (u · ∇)v + ∇vtru−∇ζ + ̺∇T = r in Ω,

(b) ∇ ·w = 0 in Ω,

(c) − κ∆̺ − u · ∇̺ − v · g = g in Ω,

(d) v = 0, ̺ = 0 on ∂Ω

(4.3)

is well-posed, which means that:

(R1) For each (r, g) ∈ [H−1(Ω)]n × H−1(Ω), the system (4.3) has a unique solution and

there holds the a priori estimate

‖v‖H1 + ‖̺‖1,Ω + ‖ζ‖0,Ω ≤ C{‖r‖H−1 + ‖g‖−1,Ω}. (4.4)

It follows from the regularity theory of partial differential equations (see [4]) that

‖v‖H2 + ‖̺‖2,Ω + ‖ζ‖1,Ω ≤ C{‖r‖L2 + ‖g‖0,Ω}. (4.5)

Thirdly, we need an additional assumption for the exact solution as following:

(H4) u,w, T, ϕ belong to a space W2,l(Ω) and W 2,l(Ω) respectively for some l > n.
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From the theory of partial differential equations and the assumption ∂Ω ∈ C1,1, we can see

(H4) is reasonable.

The optimal control Q is obtained by the projection formula (2.6). Therefore, we can classify

the triangles T into two sets Ωh
1 and Ωh

2 :

Ωh
1 =

⋃

T ∈Th

{T : Q is only Lipschitz contiuous on T }, Ωh
2 =

⋃

T ∈Th

{T : Q ∈ W 2,l(T )}.

This classification is correct because W 2,l(Ω) is embedded in C0,1(Ω̄) and the projection oper-

ator max is continuous from C0,1(Ω̄) and C0,1(Ω̄).

Last, let Ω0 = {x : Q(x) = 0}. Then it is clear that the number of triangles in Ω0 which

are denoted by Ωh
0 grows as h → 0. However, the following additional assumption is fulfilled in

many practical case:

(H5) Measure of Ωh
1 is bounded by O(h), i.e., there exists a constant C such that

|Ωh
1 | ≤ Ch.

The condition (H5) holds if ∂Ω0 has a finite length in the two-dimensional case, or area in

the three-dimensional case.

In the sequel, we denote by S the centroid of the triangle T . We define a piecewise constant

function by the values of Q(S) as in [27],

Ph(x) = Q(S) if x ∈ T . (4.6)

It is easy to verify that Ph ∈ Kad
h .

Now we are able to state our superconvergence in the following theorem. To prove these

superconvergent results, we need some auxiliary lemmas. In this section, we only state these

auxiliary lemmas. The proofs of the lemmas are deferred to the next section for clearer presen-

tations.

Theorem 4.1. Suppose (H1)-(H5) are fulfilled. Then the error estimates

‖Qh − Ph‖0,Ω ≤ Ch2 and ‖Q − Qh‖0,Ω ≤ Ch (4.7)

hold.

To prove Theorem 4.1, for any given P ∈ L2(Ω), introduce auxiliary functions (uh(P ),

ph(P ), Th(P ), wh(P ), σ(P ), ϕh(P )) satisfying the following problem:

(a) a0(uh(P ),vh) + c0(uh(P ),uh(P ),vh) + b(vh, ph(P )) = d(Th(P ),vh) + (f,vh) ∀ vh ∈ Vh,

(b) b(uh(P ), qh) = 0 ∀ qh ∈ Xh ,

(c) a1(Th(P ), Sh) + c1(uh(P ), Th(P ), Sh) = (P, Sh) ∀ Sh ∈ Vh

(4.8)

and

(a) a0(wh(P ),vh) + c0(vh,uh(P ),wh(P )) + c0(uh(P ),vh,wh(P )) − b(vh, σh(P ))

= (uh(P ) − U,vh) − c1(vh, Th(P ), ϕh(P )) ∀ vh ∈ Vh,

(b) b(wh(P ), qh) = 0 ∀ qh ∈ Xh ,

(c) a1(ϕh(P ), Sh) + c1(uh(P ), Sh, ϕh(P )) = d(Sh,wh(P )) ∀ Sh ∈ Vh.

(4.9)

The proof can be given by using the following four lemmas, whose proofs will be provided

in the next section.
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Lemma 4.1. Suppose (H1)-(H5) are fulfilled. We have the following error estimate:

‖Qh − Ph‖0,Ω ≤ C{h2 + ‖ϕ − ϕh(Q)‖0,Ω + ‖ϕh(Q) − ϕh(Ph)‖0,Ω}. (4.10)

Lemma 4.2. Suppose (H1)-(H5) are fulfilled. There hold the following error estimates:

‖u− uh(Q)‖L2(Ω) + ‖T − Th(Q)‖0,Ω ≤ Ch2, (4.11)

‖w−wh(Q)‖L2(Ω) + ‖ϕ − ϕh(Q)‖0,Ω ≤ Ch2. (4.12)

This lemma comes from the result of [20] based on the approximation theory of nonsingular

solutions of coupled nonlinear systems such as [4].

Lemma 4.3. Suppose that (H1)-(H5) are valid. Then the following estimate holds:

‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω + ‖ph(Q) − ph(Ph)‖0,Ω ≤ Ch2. (4.13)

Lemma 4.4. Suppose that (H1)-(H5) are valid. Then we have

‖wh(Q) −wh(Ph)‖H1(Ω) + ‖ϕh(Q) − ϕh(Ph)‖1,Ω + ‖σh(Q) − σh(Ph)‖0,Ω ≤ Ch2. (4.14)

Now it is clear that Theorem 4.1 is the direct consequence of Lemmas 4.1-4.4. Next, we

consider the super-closing properties of the state and adjoint state.

Theorem 4.2. Suppose (H1)-(H5) are fulfilled. Then there hold the following super-closing

properties:

‖uh(Q) − uh‖H1(Ω) + ‖Th(Q) − Th‖1,Ω + ‖ph(Q) − ph‖0,Ω ≤ Ch2, (4.15)

‖wh(Q) −wh‖H1(Ω) + ‖ϕh(Q) − ϕh‖1,Ω + ‖σh(Q) − σh‖0,Ω ≤ Ch2. (4.16)

It is easy to see that these two results are the direct consequence of Theorem 4.1, Lemmas 4.3

and 4.4. Moreover, we have the following optimal a priori error estimates in the L2-norm.

Theorem 4.3. Assume that all the above conditions are valid. Then there holds the following

a priori error estimate:

‖u− uh‖L2(Ω) + ‖T − Th‖0,Ω + ‖w−wh‖L2(Ω) + ‖ϕ − ϕh‖0,Ω ≤ Ch2. (4.17)

Proof. It follows from the superconvergent results of [30] and Theorem 4.2 that

‖u− uh‖L2(Ω) = ‖u− uh(Q)‖L2(Ω) + ‖uh(Q) − uh‖L2(Ω) ≤ Ch2.

The other terms on the left-hand side of (4.17) can also be estimated similarly. This completes

the proof of Theorem 4.3. �

Now, if we define Q̂h = max(0,− 1
α
ϕh), then we have the superconvergence:

‖Q − Q̂h‖L2 ≤ Ch2.

Furthermore, we have the following almost optimal a priori error estimates in the L∞-norm.
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Theorem 4.4. Assume that all the above conditions are valid. In the 2D case, if (u,w) ∈

W
2,∞ (Ω), (T, ϕ) ∈ W 2,∞(Ω) respectively, then there hold the following a priori error estimates:

‖u− uh‖L∞(Ω) + ‖T − Th‖∞,Ω + ‖w−wh‖L∞(Ω) + ‖ϕ − ϕh‖∞,Ω ≤ Ch2| lnh|
1

2 , (4.18)

and

‖Q − Qh‖∞,Ω ≤ Ch. (4.19)

Proof. In the 2D case, by using the known result

‖wh‖L∞(Ω) ≤ C| lnh|
1

2 ‖∇wh‖L2(Ω) ∀ wh ∈ Vh

and the superconvergent result in Theorem 4.2, we have

‖u(Q) − uh(Qh)‖L∞(Ω)

≤ ‖u(Q) − uh(Q)‖L∞(Ω) + C| lnh|
1

2 (‖uh(Q) − uh(Qh)‖H1(Ω))

≤ C| lnh|
1

2 h2.

and other terms follow similarly. On the other hand, by using the inverse property of finite

element spaces

‖vh‖∞,Ω ≤ Ch−1‖vh‖0,Ω ∀ vh ∈ Kh,

and the superconvergent results in Theorem 4.1, we have

‖Q − Qh‖∞,Ω ≤ ‖Q − Ph‖∞,Ω + ‖Ph − Qh‖∞,Ω

≤ ‖Q − Ph‖∞,Ω + Ch−1‖Ph − Qh‖0,Ω

≤ Ch.

This completes the proof of Theorem 4.4. �

5. Proofs of the Lemmas

In this section we give the proofs of the lemmas in Section 4. In the sequel, we give the

proofs of all the results for the scheme I. As scheme II does not involve pressure terms explicitly,

similar conclusions can be easily established using a similar procedure.

5.1. Proof of Lemma 4.1

From the assumption (4.2), by the proof contained in [3], there exists a constant c > 0

satisfying

c‖Qh − Ph‖
2
0,Ω ≤ (J ′

h(Qh) − J ′
h(Ph), Qh − Ph). (5.1)

Then, noting that

(αQh + ϕh(Qh), Sh − Qh) ≥ 0 ∀ Sh ∈ Kh,

we have

c‖Qh − Ph‖
2
0,Ω ≤ (J ′

h(Qh) − J ′
h(Ph), Qh − Ph)

= (αQh + ϕh(Qh), Qh − Ph) − (αPh + ϕh(Ph), Qh − Ph)

≤ −(αPh + ϕh(Ph), Qh − Ph). (5.2)
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Next, we derive a variational inequality for the function Ph. Since

(αQ + ϕ(Q), P − Q) ≥ 0 ∀ P ∈ K,

the result is also true pointwise, i.e.,

(αQ(x) + ϕ(x))(P (x) − Q(x)) ≥ 0 ∀ P ≥ 0 and x ∈ Ω.

Applying this formula at x = S and P = Qh, we have

(αQ(S) + ϕ(S))(Qh(S) − Q(S)) ≥ 0 ∀ S.

Note that Ph(S) = Q(S) and let ϕ̂(x) = ϕ(S) if x ∈ T for each T ∈ Th. It gives that

(αPh(S) + ϕ(S))(Qh(S) − Ph(S)) ≥ 0 ∀ S.

By integrating this formula over T and summing the resulting inequalities up, we have

(αPh + ϕ̂, Qh − Ph) ≥ 0. (5.3)

Substituting this into (5.2) leads to

c‖Qh − Ph‖
2
0,Ω ≤ (ϕ̂ − ϕh(Ph), Qh − Ph)

= (ϕ̂ − ϕ, Qh − Ph) + (ϕ − ϕh(Q), Qh − Ph)

+(ϕh(Q) − ϕh(Ph), Qh − Ph). (5.4)

We estimate the three terms on the right-hand side of (5.4). The first term represents a formula

for the numerical integration. Let f be a function belonging to H2(T ). The estimate

∣∣∣∣
∫

T

f(x) − f(S) dx

∣∣∣∣ ≤ ch2
√
|T ||f |H2(T ) (5.5)

is valid. By using this estimate, we obtain

(ϕ̂ − ϕ, Qh − Ph) =
∑

T ∈Th

∫

T

(ϕ̂ − ϕ)(Qh − Ph) dx

=
∑

T ∈Th

(Qh − Ph)

∫

T

(ϕ(S) − ϕ(x)) dx

≤
∑

T ∈Th

Ch2 |Qh − Ph|
√
|T |(|ϕ|2,T )

≤ Ch2‖Qh − Ph‖0,Ω. (5.6)

For the second and third terms, we have

|(ϕ − ϕh(Q), Qh − Ph)| + |(ϕh(Q) − ϕh(Ph), Qh − Ph)|

≤ {‖ϕ − ϕh(Q)‖0,Ω + ‖ϕh(Q) − ϕh(Ph)‖0,Ω}‖Qh − Ph‖0,Ω. (5.7)

Substituting (5.6) and (5.7) into (5.4) leads to (4.10). The proof of Lemma 4.1 is thereby

complete. �
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5.2. Proof of Lemma 4.3

To prove Lemma 4.3, we need some basic properties of bilinear forms and trilinear forms

in the weak formulation. It is also clear that the bilinear forms a0(·, ·), a1(·, ·) and d(·, ·) are

continuous, i.e.,

|a0(f,g)| ≤ C1‖f‖H1(Ω)‖g‖H1(Ω), (5.8)

|a1(F, G)| ≤ C2‖F‖1,Ω‖G‖1,Ω, (5.9)

|d(F, f)| ≤ C3‖F‖0,Ω‖f‖H1(Ω). (5.10)

We have the coercivity relations associated with a0(·, ·) and a1(·, ·):

|a0(g,g)| ≥ ν‖g‖2
H1(Ω), (5.11)

|a1(G, G)| ≥ κ‖G‖2
1,Ω. (5.12)

For trilinear forms c0( · , · , · ) and c1( · , · , · ), we have the estimates

c0(f,g,v) ≤ C4‖f‖H1(Ω)‖g‖H1(Ω)‖v‖L2(Ω), (5.13)

c0(v, f, f) = 0 if v ∈ V, (5.14)

c1(v, F, G) ≤ C2‖v‖H1(Ω)‖F‖1,Ω‖G‖1,Ω if v ∈ V, (5.15)

c1(v, F, F ) = 0 if v ∈ V. (5.16)

These estimates follow from the Poincaré inequality, the Cauchy-Schwarz inequality, the Hölder

inequality and various embedding results.

Now we can prove the error estimate (4.13) in Lemma 4.3. The proof is divided into two

steps. In the first step, we prove

‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω

≤ C{h2 + ‖uh(Q) − uh(Ph)‖L2(Ω) + ‖Th(Q) − Th(Ph)‖0,Ω}, (5.17)

which shows that the H1-norm of the error functions is controlled by its L2-norm. In the second

step, we prove the L2-estimate:

‖uh(Q) − uh(Ph)‖L2(Ω) + ‖Th(Q) − Th(Ph)‖0,Ω

≤ C{h2 + h(‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω)}. (5.18)

Substituting (5.18) into (5.17) leads to the estimates we needed in (4.13).

5.3. Proof of (5.17)

It follows from (4.8) that

(a) a0(uh(Q) − uh(Ph),vh) + c0(uh(Q) − uh(Ph),uh(Q),vh)

+ c0(uh(Ph),uh(Q) − uh(Ph),vh) + b(vh, ph(Q) − ph(Ph))

= d(Th(Q) − Th(Ph),vh) ∀ vh ∈ Vh,

(b) b(uh(Q) − uh(Ph), qh) = 0 ∀ qh ∈ Xh ,

(c) a1(Th(Q) − Th(Ph), Sh) + c1(uh(Q) − uh(Ph), Th(Q), Sh)

+ c1(uh(Ph), Th(Q) − Th(Ph), Sh)

= (Q − Ph, Sh) ∀ Sh ∈ Vh.

(5.19)
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Using standard arguments, we have

‖uh(Q) − uh(Ph)‖2
H1(Ω)

≤ C{‖Th(Q) − Th(Ph)‖0,Ω‖uh(Q) − uh(Ph)‖L2(Ω)

+ ‖uh(Q) − uh(Ph)‖H1(Ω)‖uh(Q) − uh(Ph)‖L2(Ω)}

≤ C{‖Th(Q) − Th(Ph)‖2
0,Ω + ‖uh(Q) − uh(Ph)‖2

L2(Ω)}

+
C

2ε
‖uh(Q) − uh(Ph)‖2

L2(Ω) + ε‖uh(Q) − uh(Ph)‖2
H1(Ω),

where 1 > ε > 0 is a suitable constant and

‖Th(Q) − Th(Ph)‖2
1,Ω ≤ C{‖uh(Q) − uh(Ph)‖2

H1(Ω) + |(Q − Ph, Th(Q) − Th(Ph))|}.

So, we have

‖uh(Q) − uh(Ph)‖2
H1(Ω) + ‖Th(Q) − Th(Ph)‖2

1,Ω

≤C{‖uh(Q) − uh(Ph)‖2
L2(Ω) + ‖Th(Q) − Th(Ph)‖2

0,Ω + |(Q − Ph, Th(Q) − Th(Ph))|}. (5.20)

It remains to estimate the term (Q − Ph, Th(Q) − Th(Ph)). It follows that

(Q − Ph, Th(Q) − Th(Ph))

=(Q − Ph, Th(Q) − Th(Ph))Ωh
1

+ (Q − Ph, Th(Q) − Th(Ph))Ωh
2

. (5.21)

Using the embedding theory of Sobolev space:

‖v‖L1(∂Ω0) ≤ C‖v‖1,Ω,

we have

|(Q − Ph, Th(Q) − Th(Ph))Ωh
1

|

≤|(Q − Ph, Th(Q) − Th(Ph) − ϑh(Th(Q) − Th(Ph)))Ωh
1

| + |(Q − Ph, ϑh(Th(Q) − Th(Ph))Ωh
1

|

≤Ch2{‖Q‖1,Ω‖Th(Q) − Th(Ph)‖1,Ω + ‖∇Q‖∞,Ω‖Th(Q) − Th(Ph)‖L1(∂Ω0)]

≤Ch2‖Q‖C0,1(Ω̄)‖Th(Q) − Th(Ph)‖1,Ω, (5.22)

where ϑh is an orthogonal projection from H1(Ωh
1 ) onto L1(∂Ω0). On the other hand, similar

to (5.6), we have

|(Q − Ph, Th(Q) − Th(Ph))Ωh
2

|

≤|(Q − Ph, Th(Q) − Th(Ph) − πh(Th(Q) − Th(Ph)))Ωh
2

| + |(Q − Ph, πh(Th(Q) − Th(Ph)))Ωh
2

|

≤C{h2‖Th(Q) − Th(Ph)‖1,Ω‖Q‖1,Ω +
∑

T ∈Ωh
2

|πh(Th(Q) − Th(Ph))|

∣∣∣∣
∫

T

(Q(x) − Q(S))dx)Ωh
2

∣∣∣∣

≤Ch2{‖Q‖1,Ω‖Th(Q) − Th(Ph)‖1,Ω + ‖ϕ‖2,Ω2

h
‖Th(Q) − Th(Ph)‖0,Ω}. (5.23)

Substituting (5.21)-(5.23) into (5.20) leads to (5.17).
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5.4. Proof of (5.18)

For the analysis of the convergence rate in the L2-norm, we introduce the auxiliary problem

(a) − ν∆R − (u(Q) · ∇)R + ∇u(Q)trR −∇λ + φ∇T (Q) = uh(Q) − uh(Ph) in Ω,

(b) ∇ ·R = 0 in Ω,

(c) − κ∆φ − u(Q) · ∇φ − R · g = Th(Q) − Th(Ph) in Ω,

(d) R = 0 φ = 0 on ∂Ω.

(5.24)

Since we assume the solution (u, p, T ) is nonsingular, the linear system (5.24) is uniquely solvable

and satisfies the a priori estimate

‖R‖H2(Ω) + ‖λ‖1,Ω + ‖φ‖2,Ω ≤ C{‖uh(Q) − uh(Ph)‖L2(Ω) + ‖Th(Q) − Th(Ph)‖0,Ω}. (5.25)

Using the Aubin-Nietzchte technique, we have

(uh(Q) − uh(Ph),uh(Q) − uh(Ph)) + (Th(Q) − Th(Ph), Th(Q) − Th(Ph))

= a0(uh(Q) − uh(Ph),R) + c0(uh(Q) − uh(Ph),u(Q),R)

+ c0(u(Ph),uh(Q) − uh(Ph),R) + c0(u(Ph) − u(Q),R,uh(Q) − uh(Ph))

− b(uh(Q) − uh(Ph), λ) + c1(uh(Q) − uh(Ph), T (Q), φ) + a1(φ, Th(Q) − Th(Ph))

+ c1(u(Ph), Th(Q) − Th(Ph), φ) − d(Th(Q) − Th(Ph),R)

+ c1(u(Ph) − u(Q), φ, Th(Q) − Th(Ph)). (5.26)

Here we define the L2-orthogonal projection λh ∈ Xh, which satisfies: for any qh ∈ Xh

(λ − λh, qh) = 0, ‖λ − λh‖L2 ≤ Ch‖λ‖H1 .

Next, let us define the (Rh, φh) are the Lagrange interpolations of (R, φ) in the finite element

spaces (Vh, Vh) respectively. Then we know that the following approximation properties:

‖φ − φh‖L2 + h‖φ − φh‖H1 ≤ Ch2‖φ‖H2 ,

‖R − Rh‖L2 + h‖R− Rh‖H1 ≤ Ch2‖R‖H2 .

We have

(uh(Q) − uh(Ph),uh(Q) − uh(Ph)) + (Th(Q) − Th(Ph), Th(Q) − Th(Ph))

= a0(uh(Q) − uh(Ph),R − Rh) + c0(uh(Q) − uh(Ph),u(Q),R − Rh)

+ c0(u(Ph),uh(Q) − uh(Ph),R − Rh) + c1(uh(Q) − uh(Ph), T (Q), φ − φh)

+ c1(u(Ph), Th(Q) − Th(Ph), φ − φh) + a1(φ − φh, Th(Q) − Th(Ph))

− b(uh(Q) − uh(Ph), λ − λh) − d(Th(Q) − Th(Ph),R − Rh) + (Q − Ph, φh)

+ c0(uh(Q) − uh(Ph),u(Q) − uh(Q),Rh) + c0(u(Ph) − uh(Ph),uh(Q) − uh(Ph),Rh)

+ c1(uh(Q) − uh(Ph), T (Q) − Th(Q), φh) + c1(u(Ph) − uh(Ph), Th(Q) − Th(Ph), φh)

+ c0(u(Ph) − u(Q),R,uh(Q) − uh(Ph)) + c1(u(Ph) − u(Q), φ, Th(Q) − Th(Ph))

≤ C{[ h(‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω)

+ ‖u(Q) − u(Ph)‖H1(Ω)‖Th(Q) − Th(Ph)‖0,Ω

+ ‖u(Q) − u(Ph)‖H1(Ω)‖uh(Q) − uh(Ph)‖L2(Ω)][ ‖R‖H2(Ω)

+ ‖λ‖1,Ω + ‖φ‖2,Ω ] + |(Q − Ph, φh)|}, (5.27)
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where we have used the result of [30]. Since we assume that (u, T, Q) is one fixed branch of

the nonsingular solutions and the above estimates are carried out on a fixed subsequence which

converges to this fixed branch, it follows from the general theory of nonsingular solution [4] that

‖u(Q) − u(Ph)‖H1(Ω) + ‖T (Q) − T (Ph)‖1,Ω ≤ C‖Q − Ph‖0,Ω ≤ Ch.

If h is sufficient small, using the same procedure of (5.21)-(5.23) to estimate the last term on

the r.h.s of (5.27) gives

‖uh(Q) − uh(Ph)‖L2(Ω) + ‖Th(Q) − Th(Ph)‖0,Ω

≤ C
(
h2 + h(‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω)

)
. (5.28)

Consequently,

‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω ≤ Ch2. (5.29)

Now, from (5.19), it is obvious that

b(vh, ph(Q) − ph(Ph))

= a0(uh(Q) − uh(Ph),vh) + c0(uh(Q) − uh(Ph),uh(Q),vh)

+c0(uh(Ph),uh(Q) − uh(Ph),vh) − d(Th(Q) − Th(Ph),vh). (5.30)

Moreover, it follows from the inf-sup condition that

‖ph(Q) − ph(Ph)‖0,Ω

≤
1

β0
sup

0 6=vh∈Vh

b(vh, ph(Q) − ph(Ph))

‖vh‖H1

≤ C{‖uh(Q) − uh(Ph)‖H1(Ω) + ‖Th(Q) − Th(Ph)‖1,Ω} ≤ Ch2. (5.31)

5.5. Proof of Lemma 4.4

From (4.9), we have

a0(wh(Q) − wh(Ph), vh) + c0(vh,uh(Q),wh(Q) − wh(Ph))

+ c0(vh,uh(Q) − uh(Ph),wh(Ph)) + c0(uh(Q), vh,wh(Q) − wh(Ph))

+ c0(uh(Q) − uh(Ph), vh,wh(Ph)) + c1(vh, Th(Q) − Th(Ph), ϕh(Q))

+ c1(vh, Th(Ph), ϕh(Q) − ϕh(Ph))

= (uh(Q) − uh(Ph), vh) + b(vh, σh(Q) − σh(Ph)) ∀ vh ∈ Vh,

b(wh(Q) − wh(Ph), qh) = 0 ∀ qh ∈ Xh,

a1(ϕh(Q) − ϕh(Ph), Sh) + c1(uh(Q), Sh, ϕh(Q) − ϕh(Ph))

+ c1(uh(Q) − uh(Ph), Sh, ϕh(Ph))

= d(Sh,wh(Q) − wh(Ph)) ∀ Sh ∈ Vh. (5.32)

Using standard arguments, it is easy to get that

‖wh(Q) − wh(Ph)‖2
H1(Ω) + ‖ϕh(Q) − ϕh(Ph)‖2

1,Ω

≤ C{‖uh(Q) − uh(Ph)‖2
H1(Ω) + ‖Th(Q) − Th(Ph)‖2

1,Ω} ≤ Ch4. (5.33)
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Hence, using the same discussion as in the proof of (5.30) and (5.31) yields

‖σh(Q) − σh(Ph)‖0,Ω ≤ Ch2.

This completes the proof of Lemma 4.4.
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[5] E. Casas, M. Mateos and F. Tröltzsch, Error estimate for the numerical approximation of boundary

semilinear elliptic control problem, Comput. Optim. Appl., 31 (2005), 193-219.
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