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Abstract

In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations

are related to Brinkman model that treats both Darcy’s law and Stokes equations in

a single form of PDE but with strongly discontinuous viscosity coefficient and zeroth-

order term coefficient. We present three different methods to construct uniformly stable

finite element approximations. The first two methods are based on the original weak

formulations of Darcy-Stokes-Brinkman equations. In the first method we consider the

existing Stokes elements. We show that a stable Stokes element is also uniformly stable

with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and

only if the discretely divergence-free velocity implies almost everywhere divergence-free

one. In the second method we construct uniformly stable elements by modifying some

well-known H(div)-conforming elements. We give some new 2D and 3D elements in a

unified way. In the last method we modify the original weak formulation of Darcy-Stokes-

Brinkman equations with a stabilization term. We show that all traditional stable Stokes

elements are uniformly stable with respect to the coefficients and their jumps under this

new formulation.

Mathematics subject classification: 65N12, 65N15, 65N22, 65N30.
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1. Introduction

In this paper, we consider the following model equations on a bounded, connected, and

polygonal domain Ω ⊂ Rd (d = 2, 3) (Fig. 1.1 is an example of two dimensional domain). A

velocity u and a pressure p satisfy







−∇ · (ν(x)∇u) + α(x)u + ∇p = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,

(1.1)

with piecewise-constant viscosity coefficient

ν(x) = νi > 0, x ∈ Ωi, (1.2)
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Fig. 1.1. Domain.

and piecewise-constant zeroth-order term coefficient

α(x) = αi ≥ 0, x ∈ Ωi. (1.3)

The sub-domains Ωi are assumed to be bounded connected polygonal domains such that

Ωi ∩ Ωj = ∅ for i 6= j and Ω =
⋃m

i=1 Ωi. By Γij , we denote the interface between two adjacent

sub-domains Ωi and Ωj , namely, Γij = ∂Ωi ∩ ∂Ωj . For other notations: σ(u, p) = ν(x)∇u− pI

is a stress tensor; n is the unit normal vector to Γi,j ;

[u] |Γij
= u|∂Ωi∩Γij

− u|∂Ωj∩Γij
; [σ(u, p)n] |Γij

= σ(u, p)n|∂Ωi∩Γij
− σ(u, p)n|∂Ωj∩Γij

.

For the interface boundary conditions, we have [σ(u, p)n] |Γij
= 0, and [u] |Γij

= 0. In addition,

the source term g is assumed to satisfy the solvability condition:
∫

Ω

gdx = 0. (1.4)

When αi is big and νi is small in some sub-domains, the equation is close to Darcy equation;

in some sub-domain where νi is big and αi is small together with g = 0, the equation is close to

the Stokes equation. This Darcy-Stokes equation is called Brinkman equation [1], which models

porous media flow coupled with viscous fluid flow in a single form of equation.

Among many applications to the Darcy-Stokes-Brinkman equations, our motivation comes

from computational fuel cell dynamics [2–4]. A fuel cell is a clean chemical energy conversion

device which has potential to replace the traditional combustion engine. In the fuel cell, there

are porous gas diffusion layers and gas channels. The two-phase mixture flow in the porous

media is modeled by Darcy’s law and flow in the gas channel is modeled by Navier-Stokes

equations [5–10]. Reviews for this area can be found in [11, 12].

It is so-called single-domain approach that models multi-domain problems using single set

of equations with highly discontinuous coefficients ν(x) and α(x). In this approach, the internal

interface conditions are straightforward (the velocity and normal component of stress tensor

are continuous), compared to other types of multi-domain Darcy-Stokes models that couple

through three interface conditions [13–21].

The goal of this paper is to explore finite element methods which behave uniformly with

respect to the highly discontinuous coefficients, ν(x) and α(x), and their jumps. We present

three different methods.

In the first two methods, we consider the original weak formulation. As discussed above,

our model problems can be reduced to two extreme cases. One is standard Stokes equation.
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The other one is Darcy’s law (essentially a mixed form of an elliptic problem). For the Stokes

equation, there are many stable elements available. But not all elements lead to uniformly stable

approximations for the Darcy-Stokes-Brinkman problem (1.1). For the mixed form elliptic

problem or Darcy’s law, there are also stable H(div)-conforming elements available. However,

none of them usually work for the original problem (1.1).

In the first method, we show that any stable Stokes element (i.e., satisfies (H1) in Section

3) leads to a uniformly stable approximation for the Darcy-Stokes-Brinkman problem if and

only if the assumption (H2) (in Section 3) holds. Roughly speaking, this assumption says dis-

cretely divergence-free velocity implies the almost everywhere divergence-free one. The element

satisfying (H2) is also stable for the limiting case, Darcy’s law, of the equation.

On the other hand, in the second method, we consider the construction of uniformly stable el-

ements based on some well-known H(div)-conforming elements. Under reasonable assumptions

we find that H(div) stable elements are also uniformly stable for the Darcy-Stokes-Brinkman

problem. Considering the approximation property, we still need to add something to the H(div)

finite element space to approximate H1 space. Based on the analysis, we construct some new

uniformly stable elements for the Darcy-Stokes-Brinkman equations.

In the last method, we consider a modified equivalent formulation by adding a proper

stabilization term. Brezzi, Fortin and Marini [22] presented a stabilization technique that

allows the use of continuous finite element spaces. Their technique involves a modification of

the usual mixed equations. We employ this technique to modify the Darcy-Stoke-Brinkman

models. Under this modification, traditional stable Stokes elements are indeed uniformly stable

with respect to the coefficients and their jumps. There are also other stabilized approaches

(see, e.g., Franca and Hughes [23], Burman and Hansbo [21], and the references therein).

This paper is organized as follows. In Section 2, we describe the continuous and discrete

weak formulations and discuss how to choose the appropriate norms. In Section 3, we investigate

special stable stokes elements which lead to uniformly stable finite element approximations to

our model problem (1.1). In Section 4, we start from standard H(div)-conforming elements to

construct uniformly stable elements. In Section 5, we discuss the method to modify original

weak formulation by adding a proper stabilization term. Finally in Section 6, we give concluding

remarks.

Let us introduce some notations. In this paper, Hk(Ω) denotes the Sobolev space of scalar

functions on Ω whose derivatives up to order k are square integrable, with the norm ‖ · ‖k. The

notation | · |k denotes the semi-norm derived from the partial derivatives of order equal to k.

Furthermore, ‖ · ‖k,T and | · |k,T denote respectively the norm ‖ · ‖k and the semi-norm | · |k
restricted to the domain T . The notation L2

0(Ω) denotes the space of L2 functions with zero

mean values. The space Hk
0 (Ω) denotes the closure in Hk(Ω) of the set of infinitely differentiable

functions with compact supports in Ω. For the corresponding d-dimensional vector spaces, we

put superscript d on the scalar notation, such as, Hk(Ω)d and Hk
0 (Ω)d. We also denote

H(div) := H(div, Ω) := {v ∈ L2(Ω)|divv ∈ L2(Ω)},

H0(div) := {v ∈ H(div)|v · n = 0, on ∂Ω}.

Here n is the unit normal vector on ∂Ω.

For simplicity, following Xu [24], we use X . (&) Y to denote that there exists a constant

C such that X ≤ (≥) CY . Here, the constant C is independent of the mesh size h, the viscosity

coefficient ν, and the zeroth-order term coefficient α.
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2. Model Descriptions

2.1. Continuous problem

We introduce the variational formulation of the problem (1.1). Define the velocity and

pressure spaces respectively as

V := H1
0 (Ω)d and W := L2

0(Ω).

Let V ′ and W ′ be the dual spaces of V and W respectively. Then, the variational formulation

reads as follows: given f ∈ V ′ and g ∈ W ′, find {u, p} ∈ V × W such that

{

a(u,v) − (p,divv) =< f ,v > ∀v ∈ V,

(divu, q) =< g, q > ∀q ∈ W.
(2.1)

Here a(u,v) = (ν(x)∇u,∇v) + (α(x)u,v), (·, ·) denotes the L2 inner product of a pair of

functions on Ω, and < ·, · > denotes the duality pairing of the spaces.

In the limiting case of ν(x) ≡ 0, the problem (2.1) reduces to a mixed form of an ellip-

tic equation. Then, the space H1
0 (Ω)d is no longer a proper function space for u. Instead,

the solution space is replaced by H0(div). For this consideration, we introduce the following

parameter-dependent norms:

|||u|||2 := a(u,u) + M(divu,divu), u ∈ V, (2.2)

and

|||p||| = M−1/2‖p‖0, p ∈ W. (2.3)

Here

M = max(ν, α, 1). (2.4)

Under these norms, we shall show below the uniform stability conditions are straightforward.

Firs of all, by definition we have

a(u,v) ≤ |||u||||||v|||, ∀u,v ∈ V, (2.5)

a(v,v) = |||v|||2, ∀v ∈ Z, (2.6)

where

Z = {v ∈ V : divv = 0}. (2.7)

Note that ‖divv‖0 ≤ M−1/2|||v|||, the continuity condition follows immediately:

(divv, q) ≤ |||v||||||q|||, ∀v ∈ V, ∀q ∈ W. (2.8)

Next, it is well-known that the following inf-sup condition holds [25],

sup
v∈V

(divv, q)

‖v‖1
& ‖q‖0, ∀q ∈ W. (2.9)

Since |||v||| . M1/2‖v‖1, we have the uniform inf-sup condition

sup
v∈V

(divv, q)

|||v|||
& |||q|||, ∀q ∈ W. (2.10)
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By the Brezzi theory for saddle-point problems [26, 27], the problem (2.1) has a unique

solution and the following estimate holds uniformly with respect to ν and α:

|||u||| + |||p||| . |||f |||V ′ + |||g|||W ′. (2.11)

Here the norms on V ′ and W ′ are defined by

|||f |||V ′ := sup
v∈V

< f ,v >

|||v|||
and |||g|||W ′ := sup

q∈W

< g, q >

|||q|||
. (2.12)

Remark 2.1. Let us now take a closer look at the norms defined in (2.12) when f , g ∈ L2.

Obviously, we always have |||g|||W ′ = M1/2‖g‖0. For |||f |||V ′ , if α ≥ α0 > 0, we can easily

see that |||f |||V ′ ≤ α
− 1

2

0 ‖f‖0, since ‖v‖0 ≤ α
− 1

2

0 |||v|||. If α ≡ 0, Olshanskii and Reusken [28]

proved that (νv,v) . (ν∇v,∇v) if k = 2 and one of the following assumptions is satisfied:

meas(∂Ωi∩∂Ω) > 0 for i = 1, 2, or meas(∂Ω1∩∂Ω) > 0 and ν2 . ν1. As a result, |||f |||V ′ .

‖ν− 1
2 f‖0. For the general case of k sub-domains, similar results also hold if one of the following

assumptions is satisfied: meas(∂Ωi ∩ ∂Ω) > 0 for i = 1, 2, · · · , k, or meas(∂Ωi ∩ ∂Ω) > 0

for i ∈ S1 and νj . νjn
for jn ∈ Nj and j ∈ S2. Here Nj denotes the set that consists of

sub-domain indices for the neighbors of j sharing the same d−1 dimensional simplex. The sets

S1, S2 ⊆ {1, 2, · · · , n}, S1 ∪ S2 = {1, 2, · · · , n}, and S1 ∩ S2 = ∅.

2.2. Discrete problem

Let Th be a shape-regular simplicial triangulation of the domain Ω, where the edges or faces

of any element lie on the interfaces. In the simplicial triangulation, the mesh parameter h of

Th is given by h = maxT∈Th
{diameter of T }, where T denotes triangle in 2D and tetrahedron

in 3D. For 2D mesh, let E(T ) denotes the set of all edges in T ; for 3D mesh, let F(T ) denotes

the set of all faces in T . P d
k (Ω) denotes the d-dimensional polynomial space on Ω. When d = 1,

we drop the superscript. Let Vh (⊂ or 6⊂ V ) and Wh ⊂ W denote velocity and pressure finite

dimensional spaces respectively. The discrete weak formulation of the problem (2.1) reads as:

Find {uh, ph} ∈ Vh × Wh such that
{

ah(uh,vh) − (ph,divvh) =< f ,vh > ∀vh ∈ Vh,

(divuh, qh) =< g, qh > ∀qh ∈ Wh.
(2.13)

Here ah(uh,vh) is defined by

ah(uh,vh) =
∑

T∈Th

((ν(x)∇uh,∇vh)T + (α(x)uh,vh)T ) . (2.14)

Here (·, ·)T denotes the L2 inner product on T .

Remark 2.2. If the space Vh 6⊂ H(div), throughout this paper, we view divvh as divhvh,

vh ∈ Vh. The operator divh denotes the piecewise divergence operator acting on element by

element in simplicial triangulations.

Similar to the continuous problem, we define the discrete norm in Vh as follows: ∀vh ∈ Vh,

|||vh|||
2
h := ah(vh,vh) + M(divvh,divvh). (2.15)

The discrete pressure norm is the same as the continuous one since Wh ⊂ W .

Denote the discretely divergence-free space Zh as

Zh := {vh ∈ Vh : (divvh, qh) = 0, ∀qh ∈ Wh}. (2.16)
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3. Application of Special Stable Stokes Elements

In the following, we shall show the critical conditions which lead to uniformly-stable finite

element methods for the problem (1.1). First of all, one can expect that the elements are stable

in the standard H1 (or discrete H1) norm for the velocity and L2
0 norm for the pressure. Thus,

the first assumption is that the following inf-sup condition holds:

(H1) sup
vh∈Vh

(divvh, qh)

‖vh‖1,h
& ‖qh‖0 ∀qh ∈ Wh.

Here discrete H1 norm ‖ · ‖1,h is defined by ‖vh‖2
1,h :=

∑

T∈Th
‖vh‖2

1,T, ∀vh ∈ Vh. When

Vh ⊂ H1
0 (Ω)d, the discrete norm recovers the standard H1 norm.

The second assumption is:

(H2) Zh = {vh ∈ Vh, divvh = 0}.

This assumption means that the discretely divergence-free velocity implies almost everywhere

divergence-free one. If the pressure space contains divergence of velocity one, it yields the

assumption (H2). We state this stronger assumption as

(H2′) divVh ⊆ Wh.

Under the above two assumptions (H1) and (H2), we easily know the following uniform

stability conditions hold.

ah(vh,vh) & |||vh|||
2
h, ∀vh ∈ Zh, (3.1)

sup
vh∈Vh

(divvh, qh)

|||vh|||h
& |||qh|||, ∀qh ∈ Wh, (3.2)

ah(uh,vh) . |||uh|||h|||vh|||h, ∀uh,vh ∈ Vh, (3.3)

(divvh, qh) . |||vh|||h|||qh|||, ∀vh ∈ Vh, ∀qh ∈ Wh. (3.4)

Theorem 3.1. Traditional stable Stokes elements (i.e., satisfy the inf-sup condition (H1)) are

also uniformly stable for the model problem (1.1), if and only if the assumption (H2) holds.

Proof. It is easy to see that the assumption (H2) is sufficient. For the necessity of the

assumption (H2), we consider the inf-sup condition

sup
uh∈Zh

ah(uh,vh)

|||uh|||h
& |||vh|||h, ∀vh ∈ Zh. (3.5)

When α(x) and ν(x) both approach to zero, in order to have the uniform inf-sup condition

(3.5), we must have divvh = 0, ∀vh ∈ Zh. �

For nonconforming finite element methods, multiplying vh ∈ Vh to the first equation of (1.1)

and integrating by parts, we have

ah(u,vh) − (divvh, p) =< f ,vh > +Eh(u, p,vh), (3.6)

where the consistency error term is defined by

Eh(u, p,vh) =
∑

T∈Th

∫

∂T

(ν(x)∇u − pI)n · vhds =
∑

T∈Th

∫

∂T

σ(u, p)n · vhds. (3.7)

We are now in a position to state the following quasi-optimal approximation property. For

completeness, we give a proof by following similar arguments in [25–27,29].
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Theorem 3.2. Assume that (H1) and (H2) are satisfied. Then the problem (2.13) admits a

unique solution {uh, ph} ∈ Vh × Wh, such that

|||u − uh|||h . inf
wh∈Zh(g)

|||u − wh|||h + sup
vh∈Zh

|Eh(u, p,vh)|

|||vh|||h
, (3.8)

|||u − uh|||h . inf
vh∈Vh

|||u − vh|||h + sup
vh∈Zh

|Eh(u, p,vh)|

|||vh|||h
, (3.9)

|||p − ph||| . inf
qh∈Wh

|||p − qh||| + inf
vh∈Vh

|||u − vh|||h + sup
vh∈Vh

|Eh(u, p,vh)|

|||vh|||h
. (3.10)

Here,

Zh(g) := {vh ∈ Vh |(divvh, qh) =< g, qh >, ∀qh ∈ Wh}. (3.11)

Proof. Applying Lemma I.4.1 in [25], the inf-sup condition (3.2) implies Zh(g) is not empty.

Choose u0
h ∈ Zh(g). By the conditions (3.1) and (3.3), there exists a unique solution sh ∈ Zh,

such that

ah(sh,vh) =< f ,vh > −ah(u0
h,vh), ∀vh ∈ Zh.

Let uh = sh +u0
h. Furthermore, it follows from Corollary I.4.1 in [25] that there exists a unique

ph in Wh such that the pair {uh, ph} is the only solution of Problem (2.13).

For ∀wh ∈ Zh(g), uh − wh ∈ Zh. By assumption (H2), div(uh − wh) = 0. Thus, it yields

the following identity:

ah(uh − wh,uh − wh) = ah(u − wh,uh − wh) + Eh(u,uh − wh).

From the coercivity condition (3.1) and continuity condition (3.3), we get

|||uh − wh|||h . |||u − wh|||h +
|Eh(u, p,uh − wh)|

|||uh − wh|||h
. (3.12)

Taking infimum of wh and using triangle inequality, we obtain (3.8).

For ∀vh ∈ Vh, by Lemma I.4.1 in [25], inf-sup condition (3.2) implies: there exists a unique

rh ∈ Z⊥
h such that (divrh, qh) = (div(u − vh), qh), ∀qh ∈ Wh, and |||rh|||h . |||u − vh|||h. Let

wh = vh + rh, then wh ∈ Zh(g). Furthermore

|||u − wh|||h ≤ |||u − vh|||h + |||rh|||h . |||u − vh|||h. (3.13)

(3.12), (3.13), and triangle inequality imply (3.9).

It remains to estimate ‖p − ph‖0. From (3.6) and (2.13), we derive that

ah(u − uh,vh) − (divvh, p − ph) = Eh(u, p,vh), ∀vh ∈ Vh. (3.14)

Further, we can get

(divvh, ph − qh) = ah(u − uh,vh) − Eh(u, p,vh) + (divvh, p − qh). (3.15)

By inf-sup condition (3.2),

|||ph − qh||| . sup
vh∈Vh

(divvh, ph − qh)

|||vh|||h
. (3.16)
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From (3.15), continuity conditions (3.3) and (3.4), further we can get

|||ph − qh||| . |||u − uh|||h + |||p − qh||| +
Eh(u, p,vh)

|||vh|||h
.

Thus (3.10) follows immediately by using triangle inequality. �

Remark 3.1. Under a stronger assumption (H2′), from (2.1) and (2.13), we have Qhdivu =

divuh. Here Qh : W → Wh is an L2-orthogonal projection. Thus we get

‖divu− divuh‖0 = ‖(I − Qh)divu‖0. (3.17)

Examples (P d
k -Pk−1 type elements). In all these methods, we approximate the velocity

by the continuous piecewise polynomials of order k and the pressure by the discontinuous

piecewise polynomials of order k− 1. The methods are all conforming in the sense that Vh ⊂ V

and Wh ⊂ W .

1. Scott and Vogelius [30] proposed 2D family of P 2
k −Pk−1 type triangular elements for any

k ≥ 4, on singular-vertex free mesh. An internal vertex in 2D is said to be singular if

edges meeting at the point fall into two straight lines.

2. Arnold and Qin [31] proposed a 2D finite element of P 2
2 −P1 type on macro square meshes

where each big square is subdivided into four triangles by connecting the square’s vertices

to the point midway between the center of the square and its bottom edge.

3. Qin [32] proposed 2D finite elements of P 2
k − Pk−1 type, for k = 2 and k = 3, on macro

triangular meshes where each big triangle is subdivided into three triangles by connecting

the barycenter with three vertices.

4. Zhang [33] proposed 3D finite elements of P 3
k −Pk−1 type, for k ≥ 3, on macro tetrahedron

meshes where each big tetrahedron is subdivided into four subtetrahedra by connecting

the barycenter with four vertices.

For these finite element spaces, the assumption (H2′) is trivially satisfied by the definition

of Vh and Wh.

4. Application of Modified H(div)-conforming Elements

The second method is to consider the construction of uniformly stable elements for the

Darcy-Stokes-Brinkman equations on the basis of H(div)-conforming elements. We first con-

sider the following mixed formulation of an elliptic problem, which can be viewed as one limiting

case of the problem (2.13). Find uh ∈ V 0
h and ph ∈ W 0

h , such that

{

(uh,vh) − (ph,divvh) =< f ,vh > ∀vh ∈ V 0
h ,

(divuh, qh) =< g, qh > ∀qh ∈ W 0
h ,

(4.1)

Here, V 0
h ⊂ V 0 and W 0

h ⊂ L2
0 are two finite element spaces, and V 0 := H0(div), with the norm

‖v‖2
H(div)

:= (divv,divv) + (v,v), v ∈ V 0.
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The stability conditions for this problem are

(vh,vh) & ‖vh‖
2
H(div)

, ∀vh ∈ Z0
h := {vh ∈ V 0

h : (divvh, qh) = 0, ∀qh ∈ W 0
h}, (4.2)

sup
vh∈Vh

(divvh, qh)

‖vh‖H(div)

& ‖qh‖0, ∀qh ∈ W 0
h , (4.3)

(uh,vh) . ‖uh‖H(div)‖vh‖H(div), uh,vh ∈ V 0
h , (4.4)

(divvh, qh) . ‖vh‖H(div)‖qh‖0, ∀vh ∈ V 0
h , ∀qh ∈ W 0

h . (4.5)

In the lemma below, we shall show that any stable Stokes elements satisfying (H1) and

(H2) are also stable for the reduced problem (4.1).

Lemma 4.1. Suppose that the finite element spaces Vh ⊂ V 0 and Wh ⊂ L2
0 satisfy the assump-

tions (H1) and (H2). Then the stability conditions (4.2)-(4.5) hold for {Vh, Wh}.

Proof. The condition (4.2) is trivial by the assumption (H2). Under the assumption (H1),

(4.3) follows from the fact that ‖vh‖H(div) . ‖vh‖1,h, ∀vh ∈ Vh. From the Cauchy-Schwartz

inequality, the conditions (4.4) and (4.5) also follow immediately. �

In consequence, we have

Theorem 4.1. Under the conditions in Lemma 4.1, the problem (4.1) admits a unique solution

{uh, ph} ∈ Vh × Wh, such that

‖u− uh‖H(div) . inf
vh∈Vh

‖u− vh‖H(div), (4.6)

‖p − ph‖0 . inf
qh∈Wh

‖p − qh‖0 + inf
vh∈Vh

‖u− vh‖H(div). (4.7)

In addition, if the assumption (H2′) holds, we have

‖div(u − uh)‖0 = ‖(I − Qh)divu‖0. (4.8)

Now, we want to construct modified H(div) elements to approximate H1 space on the

basis of H(div) stable elements. In practice for common choices of V 0
h and W 0

h , the stability

conditions (4.2) and (4.3) amount to

(S1)

{

There exists Πh : V 0 → V 0
h such that ∀v ∈ V 0,

divΠhv = Qhdivv and ‖Πhv‖H(div) . ‖v‖H(div),

and

(S2) divV 0
h = W 0

h .

In fact it is easy to see that, under the assumption (S1), the assumption (S2) is equivalent to

a weaker one:

divV 0
h ⊆ W 0

h . (4.9)

For example, the Raviart-Thomas [34,35] or Brezzi-Douglas-Marini elements [36,37] satisfy

(S1) and (S2). In these elements, Πh is the canonical interpolation operator defined element

by element. In addition, Πh satisfies H1 bound property, namely ∀v ∈ V 0,

‖Πhv‖1,h . ‖v‖1,h. (4.10)

In fact, this condition is crucial to the uniform stability for the original problem (2.13).
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Lemma 4.2. Suppose that the H1 bound condition (4.10) and the H(div) stability conditions,

(S1) and (S2), hold. Then the assumptions (H1) and (H2) hold for V 0
h and W 0

h .

Proof. By Fortin’s Lemma, (S1), (S2), and (4.10) imply the assumption (H1). The as-

sumption (H2) is a direct consequence of (S2). �

However, in general, the spaces V 0
h and W 0

h do not usually work for the original problem,

since these spaces lead to the nonconforming approximation and a function in V 0
h has no con-

tinuity of tangential component. In order to have desired accuracy for the consistency error

estimate, at least we need to impose some weak continuity of tangential component of the veloc-

ity approximation. Now our task is to construct new element spaces Vh and Wh to approximate

the original problem while preserving the structure of V 0
h and W 0

h , namely, by satisfying the

conditions (S1) and (S2).

A natural choice for pressure space is Wh = W 0
h . This implies that, in order to have (S2)

for Vh and Wh, our new space may take the form:

Vh = V 0
h + curlS. (4.11)

Here S is some piecewise polynomial space on Th. Recall that the curl operator on a scalar

function q in 2D is defined by

curlq =

(

−
∂q

∂x2
,

∂q

∂x1

)T

,

and on a vector function q in 3D is defined by

curlq =

(

∂q2

∂x3
−

∂q3

∂x2
,

∂q3

∂x1
−

∂q1

∂x3
,

∂q1

∂x2
−

∂q2

∂x1

)T

,

where q = (q1, q2, q3)
T . Now we look at the degrees of freedom of v ∈ Vh. Let Πh : V → Vh

be the canonical interpolation operator defined element by element. We first note the identity

by Green’s formula,
∫

T

(divΠhv − Qhdivv)qhdx =

∫

T

div(Πhv − v)qh

= −

∫

T

(Πhv − v)∇qhdx +

∫

∂T

(Πhv − v) · nqhds.

In order to have the commutativity property in (S1), we can take the degrees of freedom used

in the standard Raviart-Thomas [34,35] or Brezzi-Douglas-Marini elements [36,37]. Further we

need additional degrees of freedom to ensure certain weak continuity of the velocity approxi-

mation.

Examples. We define the velocity finite element space on the element T as following:

VT := V 0
T + curl(bY ), (4.12)

here b is the bubble function, namely b = Πd+1
i=1 λi, and λi, i = 1, · · · , d + 1, is the barycentric

coordinate of T . For the space Y , choose the following polynomial spaces:

Y =







Y1 := P1(T ) 2D,

Y2 := P 3
1 (T ) 3D,

Y3 := P 3
1 (T )/span{(λi −

1
3 )∇λi}

4
i=1 3D.

(4.13)
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By construction, it is easy to see that ∀q ∈ curl(bY ) satisfies

divq = 0 and q · n|∂T = 0. (4.14)

For the space V 0
T , we choose the following well-known H(div)-conforming finite element spaces.

V 0
T =















RT1(T ) := P 2
1 (T ) + P̃1(T )x 2D,

BDM1(T ) := P 2
1 (T ) 2D,

RT1(T ) := P 3
1 (T ) + P̃1(T )x 3D,

BDM1(T ) := P 3
1 (T ) 3D,

(4.15)

where P̃1(T ) := P1(T )/P0(T ) (i.e., the homogeneous polynomial space of degree 1). RT1(T )

denotes both the first order 2D Raviart-Thomas [34] and 3D Nedelec [35] finite element spaces.

BDM1(T ) denotes both the first order 2D Brezzi-Douglas-Marini [36] and 3D Brezzi-Douglas-

Duran-Fortin [37] finite element spaces.

For different choices of V 0
T and Y in (4.15) and (4.13), we give the corresponding degrees

of freedom in the Table 4.1. In this table, RT0(f) is the zeroth-order Raviart-Thomas element

space [34], i.e.,

RT0(f) := P 2
0 (f) + P0x,

n is the unit normal vector to an edge e ∈ E(T ) or a face f ∈ F(T ), and t is the unit tangent

vector along the edge e. For the element diagrams, see the Figs. 4.1-4.3.

Table 4.1: The Six Modified H(div) Elements.

Elements V 0
T Y Degrees of Freedom (DOF) # of

DOF

First 2D RT1(T ) Y1

∫

e
v · nqds, ∀q ∈ P1(e), 11

Element
∫

T
v · qdx, ∀q ∈ P 2

0 (T )
∫

e
v · tds

Second 2D BDM1(T ) Y1

∫

e
v · nqds, ∀q ∈ P1(e), 9

Element
∫

e
v · tds

First 3D RT1(T ) Y2

∫

f
v · nqds, ∀q ∈ P1(f) 27

Element
∫

T
v · qds, ∀q ∈ P 3

0 (T )
∫

f
(v × n) · rds, ∀r ∈ RT0(f)

Second 3D BDM1(T ) Y2

∫

f
v · nqds, ∀q ∈ P1(f) 24

Element
∫

f
(v × n) · rds, ∀r ∈ RT0(f)

Third 3D RT1(T ) Y3

∫

f
v · nqds, ∀q ∈ P1(f) 23

Element
∫

T
v · qds, ∀q ∈ P 3

0 (T )
∫

f
(v × n) · rds, ∀r ∈ P 2

0 (f)

Fourth 3D BDM1(T ) Y3

∫

f
v · nqds, ∀q ∈ P1(f) 20

Element
∫

f
(v × n) · rds, ∀r ∈ P 2

0 (f)

Among these six elements, the second 2D element and the second 3D element have been

also proposed by Mardal-Tai-Winther [38] and Tai-Winther [39] respectively for the problem

(1.1) with ν(x) ≡ ǫ2 and α(x) ≡ 1.
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Fig. 4.1. DOF for the first 2D modified RT element (left) and for the second 2D modified BDM

element (right).

Fig. 4.2. DOF for the first 3D modified RT element (left) and for the second 3D modified BDM

element (right).

4.1. Unisolvence

Denote the dimension of a polynomial space by dim(·). It is easy to see that the following

relation holds:

dim(V 0
T + curl(bY )) = dim(V 0

T ) + dim(curl(bY )) = dim(V 0
T ) + dim(Y ).

From this relation, we can see that the dimension of polynomial space VT is the same as the

number of degrees of freedom for each element. In addition, the following lemma is useful for

the unisolvence of the 3D elements.

Lemma 4.3. ([39]) Assume that v ∈ P 2
1 (f) is of the form

v =

3
∑

i=1

ci(λi −
1

3
)∇λi,

and satisfies
∫

f
bfv · rdx = 0. Here r is the position vector: r = (x, y)T , and bf is the cubic

bubble function associated with face f . Then c1 + c2 + c3 = 0.

Now, we give a unified unisolvence proof for all of the six elements.

Lemma 4.4. For all the six elements, ∀v ∈ VT is uniquely determined by the corresponding

degrees of freedom.

Proof. Assume that all the degrees of freedom are zeros. Let v = v0 + curl(bq), with

v0 ∈ V 0
T and q ∈ Y (in 2D, q is scalar). In 3D,

curl(bq)·n = curlf (bq)f = 0,
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Fig. 4.3. DOF for the third 3D modified RT element (left) and for the fourth 3D modified BDM

element (right).

with (bq)f the tangential component of bq on f . In 2D,

curl(bq) · n =
∂(bq)

∂t
= 0.

Thus, v · n = v0 · n ∈ P1(∂T ). Furthermore,

{

∫

e
v0 · nrds = 0, ∀r ∈ P1(e) ∀e ∈ E(T ) in 2D,

∫

f v0 · nwds = 0, ∀w ∈ P1(f) ∀f ∈ F(T ) in 3D.
(4.16)

Also, by Stoke’s theorem,

∫

T

curl(bq)·rdx = 0, ∀r ∈ P d
0 (T ), d = 2, 3.

Hence
∫

T

v0 · rdx =

∫

T

v · rdx = 0, ∀r ∈ P d
0 (T ). (4.17)

It is well known that 2D Raviart-Thomas [34], 3D Nedelec [35], 2D Brezzi-Douglas-Marini [36],

and 3D Brezzi-Douglas-Duran-Fortin [37] elements are all unisolvent. Therefore, v0 = 0.

In what follows, we shall show that q = 0. For the 2D elements, ∀q ∈ P1(e),

0 =

∫

e

v · tds =

∫

e

curl(bq) · tds =

∫

e

∇(bq) · nds =

∫

e

∂b

∂n
qds.

Since ∂b/∂n remains the same sign on each edge e, we know that q has zero point in the interior

of e. Thus, q = 0. For the 3D elements, on each face f , it is easy to calculate that

v × n = curl(bq) × n =
∂b

∂n
(n × q) × n.

Here ∂b/∂n is proportional to bf on the face f . Then we get

∫

f

bf (n × q) × n · rds = 0, ∀r ∈ RT0(f) or ∈ P 2
0 (f), ∀f ∈ F(T ). (4.18)

The remaining proof is essentially from Lemma 3 by Tai and Winther [39]. Note r ∈ P 2
0 (f) ⊂

RT0(f). Then it is easy to get

qt(x
b
f ) = 0, f ∈ F(T ). (4.19)
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Here qt := (n × q) × n is the tangential component of q, xb
f is the barycenter of the face f .

For q ∈ P 3
1 (T ), from (4.19) we easily know that q can be formulated as

q =

4
∑

i=1

ci(λi −
1

3
)∇λi. (4.20)

Here c1, c2, · · · , c4 are arbitrary constants. Then, the tangential component of q on the face f1

has the form

qt =

4
∑

i=2

ci(λi −
1

3
)(∇λi)t. (4.21)

For the first and second 3D elements, from Lemma 4.3, we get c2 + c3 + c4 = 0. By considering

the other three faces we can also get c1 + c3 + c4 = 0, c1 + c2 + c4 = 0 and c1 + c2 + c3 = 0.

These four relations imply that ci = 0, i = 1, 2, 3, 4. For the third and fourth elements, by the

construction of the space Y3, it follows immediately ci = 0, i = 1, 2, 3, 4. Therefore, q = 0. �

4.2. Verification of assumptions

Let V
(i)
h , i = 1, 2, · · · , 6, be the finite dimensional velocity spaces corresponding to the six

velocity finite elements listed in the Table 4.1 with all degrees of freedom of v ∈ V
(i)
h being

zero on ∂Ω. It is easy to see V
(i)
h ⊂ H(div, Ω), but 6⊂ H1

0 (Ω). These choices of spaces lead to

nonconforming finite element methods of the problem (2.13).

For the pressure, let the finite dimensional space W
(i)
h , i = 1, 2, · · · , 6, be as follows:







































W
(1)
h := {q ∈ W : q|T ∈ P1(T )},

W
(2)
h := {q ∈ W : q|T ∈ P0(T )},

W
(3)
h := {q ∈ W : q|T ∈ P1(T )},

W
(4)
h := {q ∈ W : q|T ∈ P0(T )},

W
(5)
h := {q ∈ W : q|T ∈ P1(T )},

W
(6)
h := {q ∈ W : q|T ∈ P0(T )}.

Taking Vh = V
(i)
h and Wh = W

(i)
h , the assumption (S2) is trivially satisfied by the constructions.

For each finite element space Vh, the canonical interpolation operator Πh: V → Vh is defined

by the corresponding degrees of freedom in Vh. Thus, ∀q ∈ W
(i)
h and ∀v ∈ V ,

∫

T

divΠhvqdx = −

∫

T

Πhv · ∇qdx +

∫

∂T

Πhv · nqds,

= −

∫

T

v · ∇qdx +

∫

∂T

v · nqds =

∫

T

divvqdx =

∫

T

Qhdivvqdx.

Therefore, by the assumption (S2), we get the commutativity property

divΠhv = Qhdivv. (4.22)

Furthermore, since the operator Πh preserves linear polynomials locally, we can prove that there

hold the interpolation error estimates.

‖v − Πhv‖j,h . hk+1−j |v|k+1,h, 0 ≤ j ≤ k ≤ 1, (4.23)
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and the H1 bound property

‖Πhv‖1,h . ‖v‖1,h. (4.24)

Notice that these elements are not invariant under the Piola transformation. Consequently, a

different argument is required to prove the interpolation error estimate. The analysis can be

done by scaling to a similar element of unit diameter using translation, rotation, and dilation

and using the compactness argument [40, 41]. Thus, the assumption (S1) and (4.10) hold.

Now we shall derive consistency error estimates for all the six elements.

We consider the detailed discussion in 3D case (2D case is similar and easier). By the

interface condition [σ(u, p)n] |Γij
= 0, we can rewrite the consistency error term (3.7) as

Eh(u, p,vh) =
∑

f∈F(T )

∫

f

σ(u, p)n · [vh]ds. (4.25)

On the face f , decompose the vector σ(u, p)n and v along the normal direction n and along

the tangential direction to the face f , i.e., σ(u, p)n = (σ(u, p)n · n)n + n× (σ(u, p)n× n), and

vh = (vh · n)n + n× (vh × n). Then we get

Eh(u, p,vh) =
∑

f∈F(T )

∫

f

(σ(u, p)n × n) · [vh × n]ds. (4.26)

Let T−

f and T +
f denote the two tetrahedrons sharing the same face f . Denote

w+ := w|∂T+

f
∩f , w− := w|∂T−

f
∩f ,

here w can be either a scalar or a vector. In addition, denote σ+(u, p) := σ(u+, p+) and

σ−(u, p) := σ(u−, p−). For all the four 3D elements in Section 4, the following uniform consis-

tency error estimate holds.

Lemma 4.5. For u ∈ H1
0 , ∀vh ∈ V

(i)
h , i = 3, 4, 5, 6,

|Eh(u, p,vh)| . h|ν1/2∇u|1,h|||vh|||h. (4.27)

Proof. By the continuity of the normal component of the stress tensor, on the face f we

have that σ(u, p)n = σ+(u, p)n = σ−(u, p)n. We first estimate
∣

∣

∣

∣

∫

f

(

σ+(u, p)n × n
)

· [vh × n]ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f

(ν+∇u+n× n) · [vh × n]ds −

∫

f

(

(p+I)n × n
)

· [vh × n]ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f

(ν+∇u+n× n) · [vh × n]ds

∣

∣

∣

∣

=

∣

∣

∣

∣

ν+

∫

f

(∇u+n× n − λ)[vh × n − µ]ds

∣

∣

∣

∣

≤ ν+ inf
λ∈R2

‖∇u+n × n− λ‖0,f inf
µ∈R2

‖[vh × n− µ]‖0,f

. ν+h|u|2,T+

f
|vh|1,T+

f
. (4.28)

Here the third equality follows from the definition of degrees of freedom, the first inequality from

Cauchy-Schwartz inequality, and the second inequality from the standard scaling argument and

Bramble-Hilbert Lemma. Similarly, we can get
∣

∣

∣

∣

∫

f

(

σ−(u, p)n × n
)

· [vh × n]ds

∣

∣

∣

∣

. ν−h|u|2,T−

f
|vh|1,T−

f
. (4.29)
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From the above two estimates, (4.28) and (4.29), it follows that

∣

∣

∣

∣

∫

f

(σ(u, p)n × n) · [vh × n]ds

∣

∣

∣

∣

. h
(

ν+|u|2
2,T+

f

+ ν−|u|2
2,T−

f

)1/2 (

ν+|vh|
2
1,T+

f

+ ν−|vh|
2
1,T−

f

)1/2

.

Finally, applying Cauchy-Schwartz inequality, we have the consistency error estimate

|Eh(u, p,vh)|

. h





∑

f∈F(T )

(

ν+|u|2
2,T+

f

+ ν−|u|2
2,T−

f

)





1/2 



∑

f∈F(T )

(

ν+|vh|
2
1,T+

f

+ ν−|vh|
2
1,T−

f

)





1/2

. h|ν1/2∇u|1,h|||vh|||h.
�

For the 2D case, on the edge e, decompose the vector σ(u, p)n and vh along the normal

direction n and along the tangential direction t, i.e., σ(u, p)n = (σ(u, p)n ·n)n+ (σ(u, p)n · t)t

and vh = (vh · n)n + (vh · t)t. Then, we get

Eh(u, p,vh) =
∑

e∈E(T )

∫

e

(σ(u, p)n · t)[vh · t]ds. (4.30)

Similar to the 3D case, the following uniform consistency error estimate holds for the two 2D

elements in Section 4.

Lemma 4.6. For u ∈ H1
0 , ∀vh ∈ V

(i)
h , i = 1, 2,

|Eh(u, p,vh)| . h|ν1/2∇u|1,h|||vh|||h. (4.31)

5. Application of Stable Stokes Elements for a Modified Formulation

Brezzi, Frotin and Marini [22] studied the mixed form of Poisson equation and modified the

variational formulation such that the coercivity condition automatically held on the discrete

level. We can apply the same technique by considering the following equivalent formulation of

(2.1). Find {u, p} ∈ V × W such that

{

a(u,v) + M(divu,divv) − (p,divv) =< f ,v > +M < g,divv > ∀v ∈ V,

(divu, q) =< g, q > ∀q ∈ W,
(5.1)

where M is given by (2.4). Correspondingly, we have the following discrete weak formulation.

Find {uh, ph} ∈ Vh × Wh such that ∀vh ∈ Vh and ∀qh ∈ Wh,

{

ah(uh,vh) + M(divuh,divvh) − (ph,divvh) =< f ,vh > +M < g,divvh >,

(divuh, qh) =< g, qh > .
(5.2)

Under this modified formulation, any pair of stable Stokes elements that satisfy the inf-sup

condition

sup
vh∈Vh

(divvh, qh)

‖vh‖1,h
& ‖qh‖0 ∀qh ∈ Wh, (5.3)

is uniformly stable under the norms given in (2.15) and (2.3).
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Furthermore, by the standard saddle point theory [25–27], we have

|||u − uh|||h + |||p − ph||| . inf
vh∈Vh

|||u − vh|||h + inf
qh∈Wh

|||p − qh||| + sup
vh∈Vh

|Eh(u, p,vh)|

|||vh|||h
. (5.4)

Here the consistency error is defined by

Eh(u, p,vh) =
∑

T∈Th

∫

∂T

(σ(u, p)n · vh − divu(vh · n)) ds. (5.5)

It is easy to see that under (H2′) the new formulation (5.2) is equivalent to the original one

(2.13).

6. Concluding Remarks and Future Work

We show that any traditional stable Stokes element is also uniformly stable for the Darcy-

Stokes-Brinkman equations with respect to the viscosity and zeroth-order term coefficient and

their jumps if and only if the discretely divergence-free velocity implies almost everywhere

divergence-free one. We also discuss the construction of uniformly stable elements on the basis

of H(div)-conforming elements. By keeping the structure of standard H(div)-conforming

elements, we construct several new uniformly stable 2D and 3D elements in a unified way.

On the other hand, the original weak formulation of Darcy-Stokes-Brinkman equation can be

equivalently modified in such a way that any traditional stable Stokes element is also uniformly

stable. Among these three methods, the modified H(div) elements have the exact sequence

property which is an important tool to design and analyze preconditioner and multigrid method

for the resulting linear systems. In this sense, we regard these modified H(div) elements as

”solver friendly” ones, and we will discuss it in future work.
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