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Abstract

An explicit multi-conservation finite-difference scheme for solving the spherical shallow-

water-wave equation set of barotropic atmosphere has been proposed. The numerical

scheme is based on a special semi-discrete form of the equations that conserves four basic

physical integrals including the total energy, total mass, total potential vorticity and total

enstrophy. Numerical tests show that the new scheme performs closely like but is much

more time-saving than the implicit multi-conservation scheme.
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1. Introduction

The spherical shallow-water-wave equation set of barotropic atmosphere, a representative

atmospheric equation set, conserves five basic physical integrals including the total energy, total

mass, total vorticity, total enstrophy and total angular momentum. These constant integrals

imply important physical characteristic and mathematical significance of atmospheric motions

[1,2]. To conserve these integrals as many as possible in a discrete scheme of the equation set is

very necessary, which is one of the essential criterions to evaluate the scheme. For this reason,

many efforts have been made on designing multi-conservation schemes for atmospheric equations

[3–6]. The available multi-conservation schemes, however, are implicit and time-consuming due

to a number of iterations for getting their solutions. Whether and how can an explicit multi-

conservation scheme be constructed? This is an interesting question. A significant attempt

to design an explicit multi-conservation finite-difference scheme is made in this paper, based

on a special semi-discrete form of the spherical shallow-water-wave equation set of barotropic

atmosphere that was applied to construct an implicit scheme with 4 conservation properties by

Wang and Ji [6].

2. Equations and Conservations

The shallow-water-wave equation set of barotropic atmosphere in spherical coordinate sys-

tem is originally formulated as
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where θ, λ are the latitude and longitude respectively; a denotes the radius of earth, u,v

and ϕ represent the zonal wind, meridional wind and geopotential height; v∗ = v cos θ; f∗ =

2ω0 sin θ +ua−1 tan θ, ω0 is the angular velocity of the earth. It can be expressed into a concise

form:
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It is easy to prove that the equation set has five basic constant integrals [6]:
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where the area unit ds is defined as: ds = a2 cos θdλdθ, D is the integration region (here it is

the whole spherical surface), e and ξ are respectively the kinetic energy and potential vorticity,

which are defined as follows:

e =
1

2

(

u2 + v2
)

, ξ = η/ϕ. (2.6)

3. Semi-discrete Equation Set

After discretizing the spatial differential terms of Eq. (2.2), a semi-discrete spherical shallow-

water-wave equation set of barotropic atmosphere on an Arakawa A-grid system has been
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obtained:

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where ε is an adjustable real number, A is a discrete advection operator
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. (3.2)

In Eqs. (3.1) and (3.2), some marks respectively expressing the mean operations and the dif-

ference quotient operations are introduced
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where ∆λ and ∆θ are respectively the grid intervals along zonal and meridional directions. The

semi-discrete equation set is able to keep four of the five constant integrals in the discrete space
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if ε is determined according to the following formula
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where the discrete inner product operation (·, ·) is defined as

(F, G) =
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4. Explicit Multi-conservation Scheme

Wang and Ji [6] proposed the following implicit scheme with 4 conservation properties:
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where τ is the time step, and the operators L1 and L2 are defined as follows
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It is easy to prove that the operators L1, L2and A satisfy the following equality

(L1u, ϕ u) + (L2v, ϕ v) + (Aϕ, E) = 0. (4.3)

The implicit solution to Eq. (4.1) was obtained iteratively:
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Generally, it would converge after 6-8 steps or more of iteration. Obviously, it is time-consuming.

In order to save the computing time, the iteration can be broken down after the 3rd step, and

an approximate solution to Eq. (4.1) is obtained:
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which conserves the total mass and total potential vorticity naturally. This approximate so-

lution, however, is unable to conserve the total energy and total enstrophy exactly due to

the broken-down iteration. To make the total energy conserved, which is essential to ensure

the computational stability, a flexible coefficient βn is introduced to correct the approximate

solution
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where βn is determined by the following formula

anτ2β2
n − bnτβn + cn = 0 (4.7)
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Table 5.1: Temporal evolution of the five basic physical integrals simulated by the explicit multi-

conservation finite-difference scheme (4.6)-(4.12).

Integration Total energy Total mass Total enstrophy Total potential Total angular

time (day) (×1012) (×108) (×10−10) vorticity momentum (×1010)

0 7.61845750632341 1.75248645432350 2.00662133399936 0.0 5.82066986554327

10 7.61845750632917 1.75248645432350 2.00662133505423 -5.2×10−17 5.82047589834651

20 7.61845750633071 1.75248645432347 2.00662133551195 1.2×10−17 5.82054539378767

30 7.61845750633259 1.75248645432347 2.00662133589375 4.0×10−17 5.82040192957590

40 7.61845750632594 1.75248645432348 2.00662133624930 -1.5×10−17 5.82040766484019

50 7.61845750632493 1.75248645432348 2.00662133660218 -9.1×10−17 5.82031332165226

60 7.61845750632882 1.75248645432348 2.00662133695058 -1.4×10−16 5.82019225852469

70 7.61845750633128 1.75248645432348 2.00662133729320 -1.5×10-16 5.82014362178185

80 7.61845750632727 1.75248645432348 2.00662133762288 -6.4×10−17 5.82003761366708

90 7.61845750632524 1.75248645432348 2.00662133793366 -2.1×10−18 5.82005239603197

100 7.61845750632337 1.75248645432349 2.00662133825054 -1.4×10−16 5.81981469815627

Based on the equality (4.3), the coefficient cn can be rewritten into

{
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
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In this way, Eq. (4.7) becomes the following form

anτβ2
n − bnβn + c̃n = 0. (4.11)

Considering the finiteness of βn when τ → 0, the solution to (4.11) can only be determined by

βn =











2c̃n/
(

bn +
√

bn − 4anc̃nτ
)

bn ≥ 0,

2c̃n/
(

bn −
√

bn − 4anc̃nτ
)

bn < 0.
(4.12)

Now, an explicit scheme (4.6)-(4.12) with 3 conservation properties is constructed.

5. Numerical Tests and Discussion

To examine the multi-conservation properties, the scheme (4.6)-(4.12) is implemented for a

100-day integration using the four-wave Rossby-Haurwitz waves as the initial conditions. The

integration region is the whole spherical surface, and the horizontal resolutions is set to be

4.50 × 4.50. Table 5.1 shows the temporal evolution of the five simulated physical integrals

by the scheme. It is observed that the proposed scheme can conserve the total energy, total

mass and total potential vorticity well. The results verify the three conservation properties of

the scheme obtained theoretically. Among them, the total potential vorticity is best conserved,

which is zero in the initial time and keeps being a small number near to zero with not less than

16-digit precision in the integration. The total mass on each day keeps 14 digits invariable,

and the relative errors to the initial value are limited in a range of 10−15. The values of total
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Table 5.2: CPU time of the two schemes for 100-day integration on the IBM ThinkPad T41 Laptop.

Explicit multi-conservation Implicit multi-conservation

Scheme scheme (4.6)-(4.12) scheme (4.1)

CPU time 261s 814s

energy on different days have 11 same digits. To our surprise, the total enstrophy is conserved

in 9-digit precision, although this can not be proved theoretically. The total angular momentum

also keeps 4 digits constant in the whole 100-day integration. Comparing with the performance

of the implicit multi-conservation scheme (4.1) described by Wang and Ji [6], the explicit multi-

conservation scheme (4.6)-(4.12) behaves very close to the implicit scheme, but requires much

less computational time (see Table 5.2). These convince us that the explicit multi-conservation

scheme is more practicable. It is expected that the proposed scheme can be generalized to

design multi-conservation dynamical cores for atmospheric general circulation model (AGCM).
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