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Abstract

High order fast sweeping methods have been developed recently in the literature to

solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast

sweeping methods, the high order fast sweeping methods are more accurate, but they

often require additional numerical boundary treatment for several grid points near the

boundary because of the wider numerical stencil. It is particularly important to treat

the points near the inflow boundary accurately, as the information would flow into the

computational domain and would affect global accuracy. In the literature, the numerical

solution at these boundary points are either fixed with the exact solution, which is not

always feasible, or computed with a first order discretization, which could reduce the global

accuracy. In this paper, we discuss two strategies to handle the inflow boundary conditions.

One is based on the numerical solutions of a first order fast sweeping method with several

different mesh sizes near the boundary and a Richardson extrapolation, the other is based

on a Lax-Wendroff type procedure to repeatedly utilizing the PDE to write the normal

spatial derivatives to the inflow boundary in terms of the tangential derivatives, thereby

obtaining high order solution values at the grid points near the inflow boundary. We

explore these two approaches using the fast sweeping high order WENO scheme in [18] for

solving the static Eikonal equation as a representative example. Numerical examples are

given to demonstrate the performance of these two approaches.

Mathematics subject classification: 65N06, 65N22.
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1. Introduction

In this paper we are interested in the numerical solution of two dimensional static Hamilton-

Jacobi equations

H(φx, φy) = f(x, y) (1.1)
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which is defined on a domain Ω with suitable boundary conditions. Typically, the boundary

condition for the solution φ is provided in the inflow part Γ of the boundary. In particular,

we will only study the so-called Eikonal equation in this paper as an example, that is, the

Hamiltonian H in (1.1) is given by

H(u, v) =
√

u2 + v2. (1.2)

Notice that the solution to (1.1) may not always be differentiable or unique, and we are in-

terested in the viscosity solution [4] which is unique, Lipschitz continuous, but may not be

everywhere differentiable.

Applications in which the Hamilton-Jacobi equation (1.1), in particular the Eikonal equation

(1.1)-(1.2), appears are abundant, for example the level set method, image processing and

computer vision, and control theory. Some of the recently developed pedestrian flow models

[7, 16] also involve the static Eikonal equation.

Numerical discretization for (1.1) includes first order monotone schemes on structured

meshes [5] and on unstructured meshes [1], high order essentially non-oscillatory (ENO) schemes

on structured meshes [11, 12], high order weighted ENO (WENO) schemes on structured

meshes [8], high order WENO schemes on unstructured meshes [17], and high order discon-

tinuous Galerkin methods on unstructured meshes [3, 6], among many others. A review of the

discretization techniques for the Hamilton-Jacobi equations can be found in [14].

For a time dependent Hamilton-Jacobi equation

φt + H(φx, φy) = f(x, y), (1.3)

an explicit time discretization, such as the total variation diminishing (TVD) time discretization

in [15], is often used. Such discretization can also be used to obtain the steady state solution

of (1.1), by marching in time until the difference of the numerical solution between successive

time steps becomes negligibly small. This however may not be the most efficient approach to

obtain the solution of (1.1). In recent years, the fast sweeping method has been developed as

one of the efficient techniques for obtaining the steady state solution of (1.1). The original fast

sweeping method [2, 19] is only for first order monotone schemes on structured meshes. For

such first order schemes, there is no issue for numerical boundary conditions, since the first

order upwind discretization will only need values from the physically given boundary condition

on the inflow part of the domain boundary. Later, the fast sweeping method is generalized to

some of the high order spatial discretizations. For example, in [18], the fast sweeping method

is generalized to the high order WENO scheme of [8]; and in [10], it is generalized to the high

order discontinuous Galerkin method of [3]. These high order fast sweeping methods are also

used in the pedestrian flow simulations in [7, 16], which require repeated solution of a static

Eikonal equation. The high order fast sweeping methods produce much more accurate solutions

on coarser meshes when compared with the first order fast sweeping method. However, they do

involve an additional difficulty associated with high order spatial discretizations, namely the

necessity to treat numerical boundary conditions near the boundary. Our numerical experiments

indicate that the main difficulty is near the inflow boundary, as simple extrapolation could take

care of the outflow boundary since the information there would flow out of the computational

domain. We will use the high order WENO scheme in [18] as a representative example to

explain this difficulty. Because of the wider numerical stencil required for the high order WENO

interpolation, the high order fast sweeping WENO method needs a suitable numerical boundary

treatment for several grid points near the inflow boundary. In [18] and also several other papers
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on similar methods [7,10,16], the values of the numerical solution at these boundary points are

either fixed with the exact solution, which is not always feasible, or computed with a first order

discretization, which would reduce the global accuracy.

In this paper, we use the fast sweeping high order WENO scheme in [18] for solving the static

Eikonal equation (1.1)-(1.2), as a representative example, to discuss two strategies to handle

these numerical boundary conditions. In the first approach we use a first order fast sweeping

method to produce numerical solutions with several different mesh sizes near the boundary,

then we form a Richardson extrapolation to obtain suitable high order solution values at the

grid points near the inflow boundary. This approach usually involves only a small additional

computational cost because the numerical solution at the grid points near the inflow boundary

can often be obtained with only local sweeping in the first order fast sweeping method. In

the second approach we use a Lax-Wendroff type procedure, to repeatedly utilizing the PDE to

write the normal spatial derivatives to the inflow boundary in terms of the tangential derivatives,

which would then be readily available by the physical inflow boundary condition. With these

normal spatial derivatives we can then obtain high order solution values at the grid points near

the inflow boundary. This approach, when applicable, involves a negligibly small additional

computational cost.

The rest of the paper is organized as follows. We describe the two approaches for the

numerical boundary conditions in Section 2. In Section 3 we provide several numerical examples

to demonstrate the performance of these two approaches. Concluding remarks are given in

Section 4.

2. The Numerical Scheme and the Treatment of Boundary Conditions

In this section we first give a brief description of the third order fast sweeping WENO

scheme [18] for solving the static Eikonal equation (1.1)-(1.2). We then describe two approaches

for the numerical boundary conditions.

2.1. The third order fast sweeping WENO scheme for the Eikonal equation

We give a very brief description of the third order fast sweeping WENO scheme [18] for

solving the static Eikonal equation (1.1)-(1.2). For more details, we refer to [8, 18].

For simplicity, we assume that the computational domain Ω is a box [0, 1]2 which is covered

by a tensor product mesh (xi, yj) with 0 ≤ i ≤ I and 0 ≤ j ≤ J . We assume without loss of

generality that the mesh is uniform, xi = i∆x, yj = j∆y and ∆x = ∆y = h. The approximation

of the solution to the static Eikonal equation (1.1)-(1.2) at the location (xi, yj) is denoted by

φi,j , which is obtained by a fast sweeping iterative procedure. For the convenience of the

algorithm description below, we divide the set of mesh points (xi, yj) into the following four

categories:

• Category I contains the points at the inflow part of the domain boundary. The numerical

solution φi,j in Category I is fixed at the prescribed physical boundary condition and does

not change during the fast sweeping iteration.

• Category II contains the points at the outflow part of the domain boundary, where no

physical boundary condition is given, and the ghost points outside the computational

domain near the outflow boundary which are necessary for the wide stencil WENO in-
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terpolation. The numerical solution φi,j in Category II is obtained by extrapolation of

suitable accuracy, based on the numerical solution inside the computational domain.

• Category III contains the few points inside the computational domain and near the inflow

boundary. These points cannot be updated by the WENO scheme because of its wide

stencil. For the third order WENO scheme under consideration, any point which has

a horizontal or vertical distance less than 3h from the inflow boundary belongs to this

category. The strategy in [10, 18] to treat points in Category III is to fix the numerical

solution φi,j as the exact solution of the PDE (1.1)-(1.2) and it does not change during

the fast sweeping iteration. This of course is not always feasible. The strategy in [7,16] is

to fix the numerical solution φi,j as that of a first order fast sweeping solution and it does

not change during the fast sweeping iteration. This could of course lead to a loss of local

and hence global accuracy, since information will flow from this part of the boundary into

the computational domain. The main purpose of this paper is to study two strategies to

handle the points in Category III.

• Category IV contains all the remaining points, which are updated during the fast sweeping

iterations until convergence.

The solution from the first-order Godunov fast sweeping method [19] is used as the initial

guess for all the grid points in Category IV. Grid values in Categories I and III are fixed as

appropriate, and before each iteration, grid values in Category II are obtained by suitable

extrapolation.

The following Gauss-Seidel iterations with four alternating direction sweepings are then

performed:
(1) i = 0 : I, j = 0 : J ; (2) i = I : 0, j = 0 : J ;

(3) i = I : 0, j = J : 0; (4) i = 0 : I, j = J : 0.
(2.1)

When we loop to a point (i, j), if it belongs to Category IV, the solution is updated as follows,

φnew
i,j =







min(φxmin
i,j , φymin

i,j ) + fi,j h, if |φxmin
i,j − φymin

i,j | ≤ fi,j h,

1
2

(

φxmin
i,j + φymin

i,j +
(

2f2
i,jh

2 − (φxmin
i,j − φymin

i,j )2
)

1

2

,
)

otherwise,

(2.2)

where fi,j = f(xi, yj), and
{

φxmin
i,j = min

(

φi,j − h (φx)−i,j , φi,j + h (φx)+i,j
)

,

φymin
i,j = min

(

φi,j − h (φy)−i,j , φi,j + h (φy)+i,j
)

,
(2.3)

with

(φx)−i,j = (1 − w−)

(

φi+1,j − φi−1,j

2h

)

+ w−

(

3φi,j − 4φi−1,j + φi−2,j

2h

)

, (2.4)

(φx)+i,j = (1 − w+)

(

φi+1,j − φi−1,j

2h

)

+ w+

(−3φi,j + 4φi+1,j − φi+2,j

2h

)

, (2.5)

w− =
1

1 + 2r2
−

, r− =
ε + (φi,j − 2φi−1,j + φi−2,j)

2

ε + (φi+1,j − 2φi,j + φi−1,j)2
, (2.6)

w+ =
1

1 + 2r2
+

, r+ =
ε + (φi,j − 2φi+1,j + φi+2,j)

2

ε + (φi+1,j − 2φi,j + φi−1,j)2
. (2.7)

Here ε is a small number in the WENO nonlinear weights. The definitions for (φy)−i,j and (φy)+i,j
are of course analogous.
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Convergence is declared if
∥

∥φnew − φold
∥

∥ ≤ δ, (2.8)

where δ is a given convergence threshold value.

2.2. Boundary treatment strategy I: Richardson extrapolation

The first strategy that we propose to treat points in Category III is to obtain several first

order accurate solutions with different mesh sizes, then use Richardson extrapolation to ob-

tain accurate point values for those points in Category III. This is feasible without excessive

computational cost because points in Category III are close to the inflow boundary, hence the

first order fast sweeping iterations can be performed locally, greatly reducing the computational

cost.

Richardson extrapolation is a well-known idea so we will only describe our application of

this idea briefly. Assume Ih is the numerical solution of the first order fast sweeping scheme

with mesh size h at the location (x∗, y∗), which is a grid point in Category III. If we further

assume

Ih − I = αh + βh2 + O(h3)

with constants α and β, where I is the exact solution at the location (x∗, y∗), which is reasonable

when the exact solution is smooth, then clearly

Ĩh =
1

3
Ih − 2Ih/2 +

8

3
Ih/4 (2.9)

would be a third order approximation to I:

Ĩh − I = O(h3).

This boundary treatment strategy is suitable for most types of inflow boundaries, including

the source boundary consisting of a single point. The efficiency of this strategy however depends

on how fast we can compute the first order approximations Ih, Ih/2 and Ih/4 for all grid points

inside Category III. When the characteristics from the inflow boundary do not intersect with

each other, such first order fast sweeping computation can be performed locally and is very fast.

When the characteristics from the inflow boundary do intersect with each other, the efficiency

of this strategy would decrease. Fortunately, in this case the inflow boundary would not be a

single point, hence the second strategy described in next subsection would usually be applicable.

2.3. Boundary treatment strategy II: a Lax-Wendroff type procedure

The original Lax-Wendroff scheme [9] uses an important idea of converting the time deriva-

tives to spatial derivatives, by repeatedly using the PDE. We propose to use the same idea to

obtain high order approximations to the solution values for the points in Category III.

To fix the ideas, let us assume that the left boundary

Γ = {(x, y) : x = 0, 0 ≤ y ≤ 1} (2.10)

of the computational domain [0, 1]2 is the inflow boundary, on which the solution is given as

φ(0, y) = g(y), 0 ≤ y ≤ 1.
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We would like to obtain a high order approximation to the solution value φi,j ≈ φ(xi, yj) for

i = 1, 2 and a fixed j, which corresponds to a point (xi, yj) in Category III. A simple Taylor

expansion gives, for i = 1, 2,

φ(xi, yj) = φ(0, yj) + ih φx(0, yj) +
(ih)2

2
φxx(0, yj) + O(h3)

hence our desired approximation for the third order WENO scheme is

φi,j = φ(0, yj) + ih φx(0, yj) +
(ih)2

2
φxx(0, yj).

We already have φ(0, yj) = g(yj). The PDE (1.1), evaluated at the point (0, yj), becomes

H(φx(0, yj), g
′(yj)) = f(0, yj) (2.11)

in which the only unknown quantity is φx(0, yj). Solving this (usually nonlinear) equation

should give us φx(0, yj). There might be more than one root, in which case we should choose

the root so that

∂uH(φx(0, yj), g
′(yj)) > 0 (2.12)

where ∂u refers to the partial derivative with respect to the first argument in H(u, v). The

condition (2.12) guarantees that the boundary Γ in (2.10) is an inflow boundary. If the condition

(2.12) still cannot pin down a root, then we would choose the root which is closest to the value

from the first order fast sweeping solution at the same grid point. To obtain φxx(0, yj), we first

take the derivative with respect to y on the original PDE (1.1), and then evaluate it at the

point (0, yj), which yields

∂uH(φx(0, yj), g
′(yj))φxy(0, yj) + ∂vH(φx(0, yj), g

′(yj))g
′′(yj) = fy(0, yj), (2.13)

where ∂u and ∂v refer to the partial derivatives with respect to the first and second arguments

in H(u, v), respectively. In this equation the only unknown quantity is φxy(0, yj), hence we

obtain easily its value, thanks to (2.12). We then take the derivative with respect to x on the

original PDE (1.1), and evaluate it at the point (0, yj) to obtain

∂uH(φx(0, yj), g
′(yj))φxx(0, yj) + ∂vH(φx(0, yj), g

′(yj))φxy(0, yj) = fx(0, yj),

This time, the only unknown quantity is φxx(0, yj), which we can obtain readily from this

equality.

It is clear that this procedure can be carried out to any desired order of accuracy. Also, the

inflow boundary Γ in (2.10) can be any piece of a smooth curve: we only need to change the x

and y partial derivatives to normal and tangential derivatives with respect to Γ. However, for

this approach to work, Γ can not consist of a single point.

3. Numerical Examples

In this section, we demonstrate the performance of the two approaches for treating the

inflow boundary conditions described in Section 2 through a few two dimensional numerical

examples. The third order fast sweeping WENO method [18], outlined in Section 2.1, is used.

In our computation, the threshold value at which iteration stops is taken to be δ = 10−11. The

small number in the WENO nonlinear weights ε is taken as 10−6 unless otherwise stated.
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Table 3.1: Example 1. Richardson extrapolation for the inflow boundary. N is the number of mesh

points in each direction.

N L1 error order L∞ order iteration number

40 8.00E-04 6.36E-04 40

80 5.92E-05 3.76 3.33E-05 4.25 30

160 3.64E-06 4.02 1.54E-06 4.44 38

320 4.00E-07 3.19 1.58E-07 3.28 50

640 4.98E-08 3.00 2.02E-08 2.97 81

Example 1.

We solve the Eikonal equation (1.1)-(1.2) with

f(x, y) =
π

2

√

sin2
(π

2
x
)

+ sin2
(π

2
y
)

.

The inflow boundary Γ is the single point (0,0). The computational domain is [−1, 1]2. The

exact solution for this problem is

φ(x, y) = − cos
(π

2
x
)

− cos
(π

2
y
)

.

Since the inflow boundary Γ consists of a single point, the second strategy described in Section

2.3 does not apply. We use the first strategy described in Section 2.2 to handle the inflow

boundary condition. Namely, in the small box [−2h, 2h]2, we apply the first order fast sweeping

method [19] with three different mesh sizes h, h/2 and h/4, and then use the Richardson

extrapolation (2.9) to obtain a third order approximation to the grid values φi,j in this small

box, which are then fixed as the initial values during the third order fast sweeping WENO

process. Notice that this process has very little computational cost since the box [−2h, 2h]2

is very small. For the outflow boundary, which is the boundary of the box [−1, 1]2, we take

a simple third order extrapolation to provide solution values in the ghost points outside the

computational domain. The results are given in Table 3.1. We can see clearly that the scheme

with the numerical boundary treatment gives the correct order of accuracy.

Example 2 (shape-from-shading).

We solve the Eikonal equation (1.1)-(1.2) with

case (a): f(x, y) =
√

(1 − |x|)2 + (1 − |y|)2; (3.1)

case (b): f(x, y) = 2
√

y2(1 − x2)2 + x2(1 − y2)2. (3.2)

The computational domain Ω = [−1, 1]2. The inflow boundary for this example is the whole

boundary of the box [−1, 1]2, namely Γ = {(x, y) : |x| = 1 or |y| = 1}. The boundary condition

φ(x, y) = 0 is prescribed on Γ. For case (b), an additional boundary condition φ(0, 0) = 1 is

also prescribed at the center, see [13]. The exact solutions for these two cases are given by

case (a): φ(x, y) = (1 − |x|)(1 − |y|); (3.3)

case (b): φ(x, y) = (1 − x2)(1 − y2). (3.4)

For this example only, we set the parameter ε in the nonlinear WENO weights (2.6)-(2.7) as

ε = 10−6h2. This smaller choice of ε seems to make the adjustment of the nonlinear weights

better near the center singularity of the solution, especially for case (b).
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Table 3.2: Example 2. Richardson extrapolation for the inflow boundary. N is the number of mesh

points in each direction.

N L1 error order iter L1 error order iter

case (a) case (b)

80 3.45E-06 21 3.38E-05 35

160 3.04E-07 3.51 28 3.44E-06 3.30 50

320 2.58E-08 3.56 46 2.23E-07 3.95 81

640 2.14E-09 3.59 81 9.25E-09 4.59 149

Table 3.3: Example 2. Lax-Wendroff type procedure for the inflow boundary. N is the number of mesh

points in each direction.

N L1 error L∞ iter L1 error L∞ iter

case (a) case (b)

80 2.06E-14 9.26E-13 1 8.64E-07 9.99E-04 35

160 1.58E-14 2.34E-12 1 5.25E-08 2.34E-04 47

320 1.09E-14 5.49E-12 1 4.43E-15 4.26E-12 62

640 1.01E-14 1.08E-11 2 1.41E-15 1.14E-12 90

For this example, we can apply both of the strategies in Sections 2.2 and 2.3. We first apply

the Richardson extrapolation strategy of Section 2.2 for the points inside the computational

domain which are of distance at most 2h away from the inflow boundary Γ, using the results of

the first order fast sweeping method with three different mesh sizes h, h/2 and h/4. For case

(b), even though an additional point φ(0, 0) = 1 is prescribed at the center, we do not take any

special treatment for points near the center. The results are given in Table 3.2. We can again

see clearly that the scheme with this numerical boundary treatment gives the correct order of

accuracy.

Next, we apply the Lax-Wendroff type procedure of Section 2.2 to obtain third order ap-

proximations to the values of the numerical solution corresponding to the points inside the

computational domain which are of distance at most 2h away from the inflow boundary Γ.

Again, for case (b), no special treatment has been done for points near the center. The results

are given in Table 3.3. This time, since the solution is a polynomial of degree lower than the

order of the scheme, we are able to obtain the exact solution with only round-off errors, as the

Lax-Wendroff type procedure of Section 2.2 is able to prescribe the values to the points inside

the computational domain which are of distance at most 2h away from the inflow boundary

Γ exactly by Taylor expansion1) . We remark that the first strategy of using the Richardson

extrapolation in Section 2.2 is not able to provide the solution values to the points inside the

computational domain which are of distance at most 2h away from the inflow boundary Γ

exactly, but only to the designed third order accuracy, hence the final fast sweeping WENO

results in Table 3.2 are also only high order accurate but not exact to round-off errors.

1) We do note that for the coarser meshes in case (b) the solution has not settled to round-off errors. Our

experiments show that this is related to the treatment of the center point: if we fix the numerical solution in

the small box [−2h, 2h]2 rather than just at the center point (0,0) by the exact solution, round-off error can be

achieved. We will not further explore this difficulty as it is not related to the theme of this paper.
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Table 3.4: Example 3. Lax-Wendroff type procedure for the inflow boundary. N is the number of mesh

points in each direction. The errors are measured in the computational domain but outside the box

[−0.15, 0.15]2.

N L1 error order L∞ order iteration number

80 0.573E-05 0.129E-03 25

160 0.122E-05 2.23 0.407E-05 4.98 32

320 0.191E-06 2.68 0.122E-05 1.74 46

640 0.246E-07 2.95 0.161E-06 2.92 62

Table 3.5: Example 4. Lax-Wendroff type procedure for the inflow boundary. N is the number of mesh

points in each direction. The errors are measured in the computational domain but outside the boxes

[−1.15, −0.85]× [−0.15, 0.15], [
√

1.5 − 0.15,
√

1.5 + 0.15] × [−0.15, 0.15] and [
√

0.375− 0.65,
√

0.375−

0.35] × [−3, 3].

N L1 error order L∞ order iteration number

80 0.569E-02 0.274E-02 38

160 0.346E-03 4.04 0.766E-03 1.84 47

320 0.240E-04 3.85 0.294E-04 4.71 47

640 0.470E-05 2.35 0.336E-05 3.13 67

Example 3.

We solve the Eikonal equation (1.1)-(1.2) with f(x, y) = 1. The computational domain is

[−1, 1]2, and the inflow boundary Γ is the unit circle of center (0,0) and radius 0.5, that is

Γ =
{

(x, y) : x2 + y2 = 0.25
}

.

The boundary condition φ(x, y) = 0 is prescribed on Γ. The exact solution for this problem

is the distance function to the circle Γ. This exact solution has a singularity at the center of

the circle to which the characteristics converge, hence we exclude the box [−0.15, 0.15]2 when

measuring the errors. For this problem, it is not easy to apply the Richardson extrapolation

strategy in Section 2.2, since we use rectangular meshes and the inflow boundary Γ is not on

grid points. However, the Lax-Wendroff type procedure in Section 2.3 can be easily used to

obtain the values of the numerical solution corresponding to the points inside the computational

domain which have a horizontal or vertical distance less than 3h from the inflow boundary Γ.

For the outflow boundary, which is the boundary of the box [−1, 1]2, we take a simple third

order extrapolation to provide solution values in the ghost points outside the computational

domain. The results are given in Table 3.4. We can see happily again that the scheme with this

numerical boundary treatment gives the correct order of accuracy away from the singularity at

the center.

Example 4.

We solve the Eikonal equation (1.1)-(1.2) with f(x, y) = 1. The computational domain

is [−3, 3]2, and the inflow boundary Γ consists of two circles of equal radius 0.5 with centers

located at (−1, 0) and (
√

1.5, 0), respectively, that is

Γ =
{

(x, y) : (x + 1)2 + y2 = 0.25 or (x −
√

1.5)2 + y2 = 0.25
}

.
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The boundary condition φ(x, y) = 0 is prescribed on Γ. The exact solution for this problem

is the distance function to Γ. The exact solution for this problem is the distance function to

the circle Γ. This exact solution has singularities at the centers of the circles and on the line

that has the same distance to the two circles, on which the characteristics converge, hence we

exclude the boxes [−1.15, −0.85]× [−0.15, 0.15], [
√

1.5− 0.15,
√

1.5 + 0.15]× [−0.15, 0.15] and

[
√

0.375 − 0.65,
√

0.375 − 0.35] × [−3, 3] when measuring the errors. Again, for this problem,

it is not easy to apply the Richardson extrapolation strategy in Section 2.2, since we use

rectangular meshes and the inflow boundary Γ is not on grid points. However, the Lax-Wendroff

type procedure in Section 2.3 can again be easily used to obtain the values of the numerical

solution corresponding to the points inside the computational domain which have a horizontal

or vertical distance less than 3h from the inflow boundary Γ. For the outflow boundary, which is

the boundary of the box [−3, 3]2, we take a simple third order extrapolation to provide solution

values in the ghost points outside the computational domain. The results are given in Table

3.5. We can see happily again that the scheme with this numerical boundary treatment gives

the correct order of accuracy away from the singularities.

4. Concluding Remarks

In this paper we have discussed two strategies to handle the inflow boundary conditions for

high order fast sweeping methods for solving static Hamilton-Jacobi equations. The first method

is based on Richardson extrapolation and a local application of a first order fast sweeping

method with several different mesh sizes. The second method is based on a Lax-Wendroff type

procedure to use repeatedly the PDE to obtain a high order Taylor expansion solution for grid

points near the inflow boundary. Numerical examples are provided to demonstrate that both

strategies work well and can provide the designed high order accuracy. The second method

involves smaller extra computational cost and usually gives more accurate results, hence it is

preferred if the inflow boundary allows (i.e., if the inflow boundary is not a single point or a set

of isolated points). Even though the boundary treatments are only discussed in the context of

the fast sweeping method, they (especially the second approach relying on the Lax-Wendroff-

type procedure) are actually quite general, and can be applied to various high order numerical

schemes for solving both static and time dependent PDEs. We will explore these issues in more

detail in future work.
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