
Journal of Computational Mathematics, Vol.26, No.3, 2008, 297–309.

AN IMPROVED ERROR ANALYSIS FOR FINITE ELEMENT
APPROXIMATION OF BIOLUMINESCENCE TOMOGRAPHY*

Wei Gong

Institute of Systems Science, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080, China

Email: gongwei@amss.ac.cn

Ruo Li

CAPT, LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China

Email: rouli@pku.edu.cn

Ningning Yan

LSEC, Institute of Systems Science, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080, China

Email: ynn@amss.ac.cn

Weibo Zhao

School of Mathematical Sciences, Peking University, Beijing 100871, China

Email: wbzhao@pku.edu.cn

Dedicated to Professor Junzhi Cui on the occasion of his 70th birthday

Abstract

This paper is concerned with an ill-posed problem which results from the area of molec-

ular imaging and is known as BLT problem. Using Tikhonov regularization technique, a

quadratic optimization problem can be formulated. We provide an improved error esti-

mate for the finite element approximation of the regularized optimization problem. Some

numerical examples are presented to demonstrate our theoretical results.
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1. Introduction

In modern medical science, molecular imaging plays an important role. The traditional

imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI)

[12] can not fulfill the requirements, so optical imaging methods such as florescence molecular

tomography (FMT) [13] and bioluminescence imaging (BLT) [14] are becoming flourishing in

the decades. Bioluminescence imaging is based on the use of a family of enzymes known as

luciferases, which are found in organisms that emit a bioluminescent glow. It can be applied

to all disease processes in all areas of small-animal models. Examples of ongoing applications

include cancer, inflammatory disease, neurodegenerative disease, gastrointestinal physiology,

renal physiology, cell trafficking, stem cell research, transplant science, and muscle physiology.
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The bioluminescent photon transport in the media can be described by radiative transfer

equation, which can be reduced to a diffusion equation [12]:

−div(D∇y) + µy = u in Ω, (1.1)

y + 2(D∇y) · n = g− on ∂Ω. (1.2)

We should find a source function u in view of the boundary value problems (1.1)-(1.2) and

accordant with the measurement g on the boundary by (D∇y)·n = −g. This is a typical inverse

source problem and is proved strongly ill-posed. Through a Tikhonov regularization technique,

a well-posed optimization problem to approximate the original BLT problem is proposed in [5],

both convergence analysis and numerical treatment are provided.

In this paper, we analyze the regularized optimization scheme proposed in [5] using the anal-

ysis technique for optimal control problems. By introducing an adjoint state, the optimization

problem can be converted to a system with three coupled equations. Then the analysis for both

the continuous and discretized systems are clearer and easier. Using the a new methodology in

the a priori error analysis for the finite element approximation of the regularized optimization

problem, an improved error estimate is obtained comparing to the results in [5]. Numerical

experiments confirm our results.

The paper is organized as follows: In Section 2, we introduce the mathematical model of

bioluminescence tomography. In Section 3, the finite element scheme of the model problem

is presented. Then the improved a priori error analysis is provided in Section 4. In the last

section, some numerical results on the model problem are provided.

2. The Mathematical Model of Bioluminescence Tomography

Let us consider the following ill-posed problem:

−div(D∇y) + µy = Bu in Ω, (2.1)

y + 2(D∇y) · n = g− on ∂Ω, (2.2)

(D∇y) · n = −g on ∂Ω, (2.3)

where Ω is a bounded domain in R
n(n ≤ 3) with a Lipschitz boundary Γ = ∂Ω, D is a symmetric

or nonsymmetric positive definite matrix, µ ≥ 0, n is the outward normal on ∂Ω, B is a linear

operator from ΩU to Ω, which has the typical form of a characteristic function χΩU
on ΩU ⊂ Ω.

In above problem, g− is usually a given function and is zero in a typical BLT problem,

whereas g is the measurement. We should detect the source function u by the measurement g,

and u is usually in a closed convex subset QU of the space L2(ΩU ). In the typical BLT problems

QU has usually the form of L2(ΩU ) or the subset of L2(ΩU ) with nonnegatively valued functions.

From the boundary conditions (2.2) and (2.3) we can formulate another boundary condition:

y = g− + 2g on Γ.

Then we will only consider the following two boundary conditions to fix the idea

y = g1 on Γ, (2.4)

(D∇y) · n = g2 on Γ. (2.5)
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It is well known that the problem (2.1) with boundary conditions (2.4) and (2.5) has infinitely

many solutions. Using Tikhonov regularization strategy, a regularized optimization problem is

provided in [5] as

min
uǫ∈QU

{

1

2
‖yǫ − g1‖

2
L2(Γ) +

ǫ

2
‖uǫ‖

2
L2(ΩU )

}

(2.6)

subject to

−div(D∇yǫ) + µyǫ = Buǫ in Ω, (2.7)

(D∇yǫ) · n = g2 on Γ. (2.8)

By the Lax-Milgram Lemma, it is well known that problem (2.7)-(2.8) has a unique solution

yǫ(uǫ) for all uǫ ∈ L2(ΩU ). Let

Jǫ(uǫ) =
1

2
‖yǫ − g1‖

2
L2(Γ) +

ǫ

2
‖uǫ‖

2
L2(ΩU ).

It is clearly that the quadratic functional Jǫ is strictly convex, so that the minimization problem

(2.6)-(2.8) admits a unique solution. Furthermore, it has been proved in [5] that the regularized

optimization problem is stable and the solution of problem (2.6) uǫ converges to the solution

of BLT problem strongly in the sense of L2-norm when ǫ→ 0.

Let

a(y, v) =

∫

Ω

(D∇y∇v + µyv)dx, ∀ y, v ∈ H1(Ω),

(u, v) =

∫

Ω

uvdx, ∀ u, v ∈ L2(Ω),

(u, v)U =

∫

ΩU

uvdx, ∀ u, v ∈ L2(ΩU ),

< y, v >=

∫

Γ

yvds, ∀ y, v ∈ L2(Γ).

Then following the lines of [9] we have that the pair (yǫ, uǫ) is the solution of the problem

(2.6)-(2.8) if and only if there exists an adjoint state pǫ ∈ H1(Ω) such that

a(yǫ, v) = (Buǫ, v)+ < g2, v >, ∀ v ∈ H1(Ω), (2.9)

a(w, pǫ) =< yǫ − g1, w >, ∀ w ∈ H1(Ω), (2.10)

(B∗pǫ + ǫuǫ, v − uǫ)U ≥ 0, ∀ v ∈ QU , (2.11)

where B∗ is the adjoint of B.

3. The Finite Element Approximation

In this section, we consider the finite element approximation of the regularized optimization

problem (2.6)-(2.8).

Let Ωh be a polygonal approximation to Ω with a boundary ∂Ωh. For simplicity, we assume

that Ωh = Ω. Let T h be a partitioning of Ωh into disjoint regular n−simplices τ such that

Ω̄h =
⋃

τ∈T h τ̄ . Associated with T h is a finite dimensional subspace V h of C(Ω̄h), such that
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v|τ are polynomials of m-order(m ≥ 1) ∀ v ∈ V h and τ ∈ T h. In this paper, we only consider

the case m = 1 for V h.

Let T h
U be a partitioning of Ωh

U into disjoint regular n−simplices τU such that Ω̄h
U =

⋃

τU∈T h

U

τ̄U . Again, assume that Ωh
U = ΩU . Associated with T h

U is another finite dimensional

subspace Wh
U of L2(Ωh

U ), such that w|τU
are polynomials of l−order(l ≥ 0) ∀w ∈ Wh

U and

τU ∈ T h
U . Let Qh

U = QU ∩Wh
U . In this paper, we consider the cases l = 0 or l = 1 for Wh

U .

In the following, we will denote hτ and hτU
the diameters of the element τ ∈ T h and

τU ∈ T h
U , respectively. Set h = maxτ∈T h hτ and hU = maxτU∈T h

U

hτU
.

Then the finite element approximation of the problem (2.6) reads as

min
uh

ǫ
∈Qh

U

{

1

2
‖yh

ǫ − g1‖
2
L2(Γ) +

ǫ

2
‖uh

ǫ ‖
2
L2(ΩU )

}

, (3.1)

subject to

a(yh
ǫ , v

h) = (Buh
ǫ , v

h)+ < g2, v
h > ∀ vh ∈ V h.

Again, it follows that the problem (3.1) has a solution (yh
ǫ , u

h
ǫ ), and a pair (yh

ǫ , u
h
ǫ ) ∈ V h×Qh

U

is the solution of (3.1) if and only if there is a co-state ph
ǫ ∈ V h such that the triplet (yh

ǫ , p
h
ǫ , u

h
ǫ )

satisfies the following optimality conditions:

a(yh
ǫ , v

h) = (Buh
ǫ , v

h)+ < g2, v
h >, ∀ vh ∈ V h, (3.2)

a(wh, ph
ǫ ) =< yh

ǫ − g1, w
h >, ∀ wh ∈ V h, (3.3)

(B∗ph
ǫ + ǫuh

ǫ , v
h − uh

ǫ )U ≥ 0, ∀ vh ∈ Qh
U . (3.4)

The theoretical analysis concludes that the solution of above finite element scheme (3.2)-(3.4)

approximates the solution of the regularized optimization problem (2.6)-(2.8) (see [5] and the

next section). Moreover, it has been shown in [5] that the solution of (2.6)-(2.8) approximates

the exact solution of the original problem (2.1) with the boundary conditions (2.4) and (2.5),

when ǫ goes to zero. Then it is clear that we can use the finite element scheme presented in

this section to make the numerical simulation for the BLT problem.

4. Error Analysis

In this section, we will discuss the error analysis of the finite element approximation provided

in the last section. As mentioned in Section 2, we will only consider the two types of control

set: QU = L2(ΩU ) or QU = {v ∈ L2(ΩU ), v ≥ 0 a.e. in ΩU}. At first, we consider the case

l = 0, i.e., we approximate the control by piecewise constant finite element space. The finite

element space for the state and the costate is conforming piecewise linear (m = 1).

Theorem 4.1. Let (yǫ, pǫ, uǫ) be the solution of problem (2.9)-(2.11), (yh
ǫ , p

h
ǫ , u

h
ǫ ) be the solution

of problem (3.2)-(3.4). Assume that Ω is convex, D ∈ (C(Ω))2×2, uǫ ∈ H1(ΩU ), yǫ, pǫ ∈ H2(Ω).

Then we have

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yǫ − yh
ǫ ‖

2
0,Γ + ‖pǫ − ph

ǫ ‖
2
1,Ω ≤ Ch2 + Ch2

U . (4.1)

Proof. Let (yh
ǫ (uǫ), p

h
ǫ (uǫ)) ∈ V h × V h be the solution of the following auxiliary problem:

a(yh
ǫ (uǫ), vh) = (Buǫ, vh)+ < g2, vh >, ∀vh ∈ V h, (4.2)

a(wh, p
h
ǫ (uǫ)) =< yh

ǫ (uǫ) − g1, wh >, ∀wh ∈ V h. (4.3)
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Then we have

(B∗ph
ǫ (uǫ) −B∗ph

ǫ , uǫ − uh
ǫ )U = (ph

ǫ (uǫ) − ph
ǫ , B(uǫ − uh

ǫ ))

= a(yh
ǫ (uǫ) − yh

ǫ , p
h
ǫ (uǫ) − ph

ǫ )

= < yh
ǫ (uǫ) − yh

ǫ , y
h
ǫ (uǫ) − yh

ǫ >

= ‖yh
ǫ (uǫ) − yh

ǫ ‖
2
0,Γ. (4.4)

Let uI be the integral average of u on the element such that

uI |τU
=

∫

τU
u

∫

τU
1
.

Then uI ∈ Qh
U , and it is well known (see, e.g., [2]) that for all w ∈ H1(ΩU ),

‖w − wI‖0,ΩU
≤ ChU‖w‖1,ΩU

. (4.5)

Note that uǫ ∈ H1(ΩU ), uh
ǫ ∈ L2(ΩU ), and ph

ǫ ∈ H1(Ω). It follows from (2.11), (3.4) and

(4.4)-(4.5) that

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yh
ǫ − yh

ǫ (uǫ)‖
2
0,Γ

= (B∗ph
ǫ (uǫ) + ǫuǫ, uǫ − uh

ǫ )U − (B∗ph
ǫ + ǫuh

ǫ , uǫ − uh
ǫ )U

= (B∗pǫ + ǫuǫ, uǫ − uh
ǫ )U + (B∗ph

ǫ (uǫ) −B∗pǫ, uǫ − uh
ǫ )U

+(B∗ph
ǫ + ǫuh

ǫ , u
h
ǫ − uI

ǫ)U + (B∗ph
ǫ + ǫuh

ǫ , u
I
ǫ − uǫ)U

≤ 0 + ‖B∗(ph
ǫ (uǫ) − pǫ)‖0,ΩU

‖uǫ − uh
ǫ ‖0,ΩU

+ 0 + (B∗ph
ǫ , u

I
ǫ − uǫ)U

≤ C‖ph
ǫ (uǫ) − pǫ‖0,Ω + (B∗ph

ǫ − (B∗ph
ǫ )I , uI

ǫ − uǫ)U .

≤ C‖ph
ǫ (uǫ) − pǫ‖0,Ω + Ch2

U‖B
∗ph

ǫ ‖1,ΩU
‖uǫ‖1,ΩU

. (4.6)

Next, let us consider the error ‖ph
ǫ (uǫ) − pǫ‖0,Ω. Let πh : C(Ω) → V h be the standard

piecewise linear Lagrange interpolation operator. Note that the bilinear form a(·, ·) is positive

definite and ‖w‖ 1
2
,∂Ω ≤ C‖w‖1,Ω. It can be derived from (2.10) and (4.3) that

c‖ph
ǫ (uǫ) − πhpǫ‖

2
1,Ω

≤ a(ph
ǫ (uǫ) − πhpǫ, p

h
ǫ (uǫ) − πhpǫ)

= a(ph
ǫ (uǫ) − πhpǫ, p

h
ǫ (uǫ) − pǫ) + a(ph

ǫ (uǫ) − πhpǫ, pǫ − πhpǫ)

= < yh
ǫ (uǫ) − yǫ, p

h
ǫ (uǫ) − πhpǫ > +a(ph

ǫ (uǫ) − πhpǫ, pǫ − πhpǫ)

≤ C(‖yh
ǫ (uǫ) − yǫ‖− 1

2
,Γ + ‖pǫ − πhpǫ‖1,Ω)‖ph

ǫ (uǫ) − πhpǫ‖1,Ω,

which implies that

‖ph
ǫ (uǫ) − πhpǫ‖1,Ω ≤ C‖yh

ǫ (uǫ) − yǫ‖− 1
2

,Γ + C‖pǫ − πhpǫ‖1,Ω,

and

‖ph
ǫ (uǫ) − pǫ‖1,Ω ≤ ‖ph

ǫ (uǫ) − πhpǫ‖1,Ω + ‖πhpǫ − pǫ‖1,Ω

≤ C‖yh
ǫ (uǫ) − yǫ‖− 1

2
,Γ + C‖pǫ − πhpǫ‖1,Ω

≤ C‖yh
ǫ (uǫ) − yǫ‖− 1

2
,Γ + Ch‖pǫ‖2,Ω, (4.7)
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where we used the well known interpolation error estimate: ‖w − πhw‖1,Ω ≤ Ch‖w‖2,Ω for all

w ∈ H2(Ω) (see, e.g., [2]).

Then we consider the error ‖yh
ǫ (uǫ) − yǫ‖− 1

2
,Γ. Noting that yh

ǫ (uǫ) is the standard finite

element approximation of yǫ(uǫ), from the finite element error analysis (see, e.g., [2]) we have

‖yh
ǫ (uǫ) − yǫ‖1,Ω ≤ Ch‖yǫ‖2,Ω. (4.8)

For all g ∈ H
1
2 (Γ), set ψ be the solution of the following equation:

−div(D∗∇ψ) + µψ = 0 in Ω,

(D∗∇ψ) · n = g on Γ,

where D∗ is the conjugate matrix of D. Noting that Ω is convex and D ∈ (C(Ω))2×2, we have

‖ψ‖2,Ω ≤ C‖g‖ 1
2
,Γ. Using the well known duality argument, we can obtain that

< yh
ǫ (uǫ) − yǫ, g > = a(yh

ǫ (uǫ) − yǫ, ψ) = a(yh
ǫ (uǫ) − yǫ, ψ − πhψ)

≤ C‖yh
ǫ (uǫ) − yǫ‖1,Ω‖ψ − πhψ‖1,Ω ≤ Ch2‖yǫ‖2,Ω‖ψ‖2,Ω

≤ Ch2‖yǫ‖2,Ω‖g‖ 1
2
,Γ.

Therefore, we have that

‖yh
ǫ (uǫ) − yǫ‖− 1

2
,Γ = sup

g∈H
1
2 (Γ)

< yh
ǫ (uǫ) − yǫ, g >

‖g‖ 1
2
,Γ

≤ Ch2‖yǫ‖2,Ω. (4.9)

Thus it is concluded from (4.7) and (4.9) that

‖ph
ǫ (uǫ) − pǫ‖1,Ω ≤ Ch2‖yǫ‖2,Ω + Ch‖pǫ‖2,Ω. (4.10)

Furthermore, for all f ∈ L2(Ω), set ϕ be the solution of the following equation:

−div(D∇ϕ) + µϕ = f, in Ω,

(D∇ϕ) · n = 0, on Γ.

Again noting that Ω is convex and D ∈ (C(Ω))2×2, we have

‖ϕ‖2,Ω ≤ C‖f‖0,Ω.

Then it follows from (4.9) and (4.10) that

(ph
ǫ (uǫ) − pǫ, f) = a(ϕ, ph

ǫ (uǫ) − pǫ)

= a(ϕ− πhϕ, p
h
ǫ (uǫ) − pǫ) + a(πhϕ, p

h
ǫ (uǫ) − pǫ)

≤ C‖ph
ǫ (uǫ) − pǫ‖1,Ω‖ϕ− πhϕ‖1,Ω+ < yh

ǫ (uǫ) − yǫ, πhϕ >

≤ Ch‖ph
ǫ (uǫ) − pǫ‖1,Ω‖ϕ‖2,Ω + C‖yh

ǫ (uǫ) − yǫ‖− 1
2
,∂Ω‖πhϕ‖ 1

2
,∂Ω

≤ Ch2(‖pǫ‖2,Ω + ‖yǫ‖2,Ω)‖ϕ‖2,Ω

≤ Ch2(‖pǫ‖2,Ω + ‖yǫ‖2,Ω)‖f‖0,Ω. (4.11)

Therefore by the definition of the norm we have

‖ph
ǫ (uǫ) − pǫ‖0,Ω = sup

f∈L2(Ω)

(ph
ǫ (uǫ) − pǫ, f)

‖f‖0,Ω

≤ Ch2(‖pǫ‖2,Ω + ‖yǫ‖2,Ω). (4.12)
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and then (4.6) and (4.12) imply that

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yh
ǫ − yh

ǫ (uǫ)‖
2
0,Γ ≤ C(h2 + h2

U ). (4.13)

Applying the error estimate (4.8) and the trace theorem:

‖v‖0,Γ ≤ C‖v‖1,Ω, ∀v ∈ H1(Ω),

we have

‖yǫ − yh
ǫ ‖

2
0,Γ ≤ ‖yǫ − yh

ǫ (uǫ)‖
2
0,Γ + ‖yh

ǫ (uǫ) − yh
ǫ ‖

2
0,Γ

≤ C‖yǫ − yh
ǫ (uǫ)‖

2
1,Ω + C(h2 + h2

U )

≤ C(h2 + h2
U ). (4.14)

On the other hand,

c‖ph
ǫ (uǫ) − ph

ǫ ‖
2
1,Ω ≤ a(ph

ǫ (uǫ) − ph
ǫ , p

h
ǫ (uǫ) − ph

ǫ )

= < yh
ǫ (uǫ) − yh

ǫ , p
h
ǫ (uǫ) − ph

ǫ >

≤ C‖yh
ǫ (uǫ) − yh

ǫ ‖0,Γ‖p
h
ǫ (uǫ) − ph

ǫ ‖1,Ω. (4.15)

Then from (4.10), (4.13) and (4.15) we have that

‖pǫ − ph
ǫ ‖

2
1,Ω ≤ ‖pǫ − ph

ǫ (uǫ)‖
2
1,Ω + ‖ph

ǫ (uǫ) − ph
ǫ ‖

2
1,Ω

≤ Ch2 + ‖yh
ǫ − yh

ǫ (uǫ)‖
2
0,Γ

≤ Ch2 + Ch2
U . (4.16)

Combining (4.13), (4.14) and (4.16) we complete the proof. �

In Theorem 4.1, we provided the error estimate for the finite element approximation of the

regularized BLT problem (2.9)-(2.11):

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yǫ − yh
ǫ ‖

2
0,Γ + ‖pǫ − ph

ǫ ‖
2
1,Ω = O(h2). (4.17)

This result is valid for all l ≥ 0, where l is the order of the finite element space for the control.

Although it improves the result of the error estimate in [5], where the order of the error is

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yǫ − yh
ǫ ‖

2
0,Γ = O(h

3
2 ).

It is clear that this error estimate is not optimal, especially for the error of the state, i.e.,

‖yǫ − yh
ǫ ‖

2
0,Γ. The numerical results (see the next section) conform this conclusion.

In the following, we will try to improve the error estimate in Theorem 4.1 by considering

the piecewise linear finite element approximation to control variable uǫ, while we again use the

conforming piecewise linear finite element space to approximate the state yǫ and the costate pǫ.

We will consider the case QU = {v ∈ L2(ΩU ), v ≥ 0 a.e. in ΩU} in the following. For the other

simple case where QU = L2(ΩU ), the results of Theorem 4.2 can be improved (see Remark 4.3).

In order to have the improved error estimate, we divide the domain ΩU into three parts:

Ω+
U = {∪τU : τU ⊂ ΩU , uǫ|τU

> 0},

Ω0
U = {∪τU : τU ⊂ ΩU , uǫ|τU

= 0},

Ωb
U = ΩU\(Ω

+
U ∪ Ω0

U ).
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In the following, we assume that uǫ and T h
U are regular such that meas(Ωb

U ) ≤ ChU . This

assumption can be satisfied in many practical cases. For example, when the free boundary Γ0

is a curve with the finite length L, then meas(Ωb
U ) ≤ ChUL ≤ ChU , because that Ωb

U consists

of the elements which intersect with the free boundary Γ0.

Theorem 4.2. Let (yǫ, pǫ, uǫ) be the solution of the problem (2.9)-(2.11), and (yh
ǫ , p

h
ǫ , u

h
ǫ ) be the

solution of the problem (3.2)-(3.4). Let all conditions in Theorem 4.1 are valid. Moreover let Wh
U

be piecewise linear finite element space, assume that uǫ ∈ W 1,∞(ΩU )∩H2(Ω+
U ), yǫ ∈W 2,∞(Ω),

pǫ ∈W 1,∞(Ω) ∩H2(Ω). Then we have

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yǫ − yh
ǫ ‖

2
0,Γ + ‖pǫ − ph

ǫ ‖
2
0,Ω ≤ Cǫ−1h4 + Ch3

U + Ch4| lnh|2. (4.18)

Proof. Let πh : L2(ΩU ) → Wh
U be the standard Lagrange interpolation operator. Then

πhuǫ ∈ Qh
U for all uǫ ∈ QU . Similar to Theorem 4.1, we have

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yh
ǫ − yh

ǫ (uǫ)‖
2
0,Γ

= (B∗pǫ + ǫuǫ, uǫ − uh
ǫ )U + (B∗ph

ǫ (uǫ) −B∗pǫ, uǫ − uh
ǫ )U

+(B∗ph
ǫ + ǫuh

ǫ , u
h
ǫ − πhuǫ)U + (B∗ph

ǫ + ǫuh
ǫ , πhuǫ − uǫ)U

≤ 0 + ‖B∗(ph
ǫ (uǫ) − pǫ)‖0,ΩU

‖uǫ − uh
ǫ ‖0,ΩU

+ 0 + (B∗ph
ǫ + ǫuh

ǫ , πhuǫ − uǫ)U

≤ C(δ)ǫ−1‖ph
ǫ (uǫ) − pǫ‖

2
0,Ω + Cδǫ‖uǫ − uh

ǫ ‖
2
0,ΩU

+ (B∗pǫ + ǫuǫ, πhuǫ − uǫ)U

+ǫ(uh
ǫ − uǫ, πhuǫ − uǫ)U + (B∗ph

ǫ −B∗ph
ǫ (uǫ), πhuǫ − uǫ)U

+(B∗ph
ǫ (uǫ) −B∗pǫ, πhuǫ − uǫ)U

≤ C(δ)ǫ−1‖ph
ǫ (uǫ) − pǫ‖

2
0,Ω + Cδǫ‖uǫ − uh

ǫ ‖
2
0,ΩU

+ (B∗pǫ + ǫuǫ, πhuǫ − uǫ)U

+C(δ)ǫ‖πhuǫ − uǫ‖
2
0,ΩU

+ C(δ)‖πhuǫ − uǫ‖
2
0,ΩU

+ Cδ‖ph
ǫ − ph

ǫ (uǫ)‖
2
0,Ω, (4.19)

where (yh
ǫ (uǫ), p

h
ǫ (uǫ)) is the solution of the auxiliary equation (4.2)-(4.3), and δ is an arbitrary

small positive number. Note that

(B∗pǫ + ǫuǫ, πuǫ − uǫ)U

=

∫

Ω+

U

(ǫuǫ +B∗pǫ)(πuǫ − uǫ) +

∫

Ω0
U

(ǫuǫ +B∗pǫ)(πuǫ − uǫ)

+

∫

Ωb

U

(ǫuǫ +B∗pǫ)(πuǫ − uǫ),

and

(ǫuǫ +B∗pǫ)|Ω+

U

= 0, (πuǫ − uǫ)|Ω0
U

= 0.

From the definition of Ωb
U we know that there exists at least one point zτU

∈ τU for each element

τU ∈ Ωb
U such that u(zτU

) > 0. Therefore we have (ǫuǫ +B∗pǫ)(zτU
) = 0, and then

(B∗pǫ + ǫuǫ, πuǫ − uǫ)U

=

∫

Ωb

U

(ǫuǫ +B∗pǫ)(πuǫ − uǫ)

=
∑

τU∈Ωb

U

∫

τU

(ǫuǫ +B∗pǫ − (ǫuǫ +B∗pǫ)(zτU
))(πuǫ − uǫ)

≤ C
∑

τU∈Ωb

U

h2
τU
|ǫuǫ +B∗pǫ|1,∞,τU

|uǫ|1,∞,τU
meas(Ωb

U ) ≤ Ch3
U . (4.20)



An Improved Error Analysis for Finite Element Approximation of Bioluminescence Tomography 305

Similarly, it can be concluded that

‖πhuǫ − uǫ‖
2
0,ΩU

= ‖πhuǫ − uǫ‖
2
0,Ω+

U

+ ‖πhuǫ − uǫ‖
2
0,Ω0

U

+ ‖πhuǫ − uǫ‖
2
0,Ωb

U

≤ Ch4
U‖uǫ‖

2
2,Ω+

U

+ 0 + Ch2
U‖uǫ‖

2
1,∞,Ωb

U

meas(Ωb
U ) ≤ Ch3

U . (4.21)

Furthermore, it follows from (3.3) and (4.3) that

‖ph
ǫ − ph

ǫ (uǫ)‖0,Ω ≤ ‖ph
ǫ − ph

ǫ (uǫ)‖1,Ω ≤ C‖yh
ǫ − yh

ǫ (uǫ)‖0,∂Ω. (4.22)

Combining (4.19)-(4.22) and (4.12) we have

ǫ‖uǫ − uh
ǫ ‖

2
0,ΩU

+ ‖yh
ǫ − yh

ǫ (uǫ)‖
2
0,Γ ≤ Cǫ−1h4 + Ch3

U . (4.23)

Noting that yh
ǫ (uǫ) is the standard finite element solution of yǫ, we have that (see, e.g., [1])

‖yǫ − yh
ǫ (uǫ)‖0,Γ ≤ C‖yǫ − yh

ǫ (uǫ)‖0,∞,Ω ≤ Ch2| lnh|‖yǫ‖2,∞,Ω.

Then similar to Theorem 4.1, we have that

‖yǫ − yh
ǫ ‖

2
0,Γ ≤ ‖yǫ − yh

ǫ (uǫ)‖
2
0,Γ + ‖yh

ǫ (uǫ) − yh
ǫ ‖

2
0,Γ

≤ Ch4| lnh|2 + Cǫ−1h4 + Ch3
U , (4.24)

and

‖pǫ − ph
ǫ ‖

2
0,Ω ≤ ‖pǫ − ph

ǫ (uǫ)‖
2
0,Ω + ‖ph

ǫ (uǫ) − ph
ǫ ‖

2
0,Ω

≤ Ch4 + C‖yh
ǫ (uǫ) − yh

ǫ ‖
2
0,Γ

≤ Ch4| lnh|2 + Cǫ−1h4 + Ch3
U , (4.25)

Summing up, (4.18) follows from (4.23)-(4.25). �

Remark 4.3. Although Theorem 4.2 improved the result of Theorem 4.1, but it is regretful

that it is an improvement only when ǫ is not too small, e.g., ǫ should be larger than h2.

Especially, when ǫ ≥ C, the error order should be O(h2| lnh| + h
3/2
U ) instead of O(h + hU ).

Here the suboptimal error order O(h
3/2
U ) is caused by the singularity of the solution uǫ near

the free boundary. When QU = L2(ΩU ), there is no free boundary, and we can assume that

u ∈ H2(ΩU ). Then (4.20) and (4.21) can be improved to

B∗pǫ + ǫuǫ = 0

and

‖πhuǫ − uǫ‖0,ΩU
≤ Ch2

U‖uǫ‖2,ΩU
.

Thus, the error order in Theorem 4.2 can be improved to O(ǫ−
1
2h2 + h2| lnh| + h2

U ).

5. Numerical Examples

In this section, we presented some numerical examples to verify the estimates of the finite

element approximation in Section 3. For the optimal control problem, the state and the control

are more interested quantity than the co-state due to its importance in practice. Therefore in
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Table 5.1: L2-errors of the state yǫ and the control uǫ for Example 5.1, using piecewise constant finite

element space for the control and piecewise linear finite element space for the state.

# mesh nodes
ǫ

277 1055 4117
order

‖uh
ǫ − uǫ‖L2(Ω) 0.0706998 0.0354385 0.0177333 1

0.1
‖yh

ǫ − yǫ‖L2(∂Ω) 0.00166397 0.000429685 0.000102564 2

‖uh
ǫ − uǫ‖L2(Ω) 0.0712926 0.0355151 0.0177554 1

0.01
‖yh

ǫ − yǫ‖L2(∂Ω) 0.00170581 0.000440191 0.000099923 2

‖uh
ǫ − uǫ‖L2(Ω) 0.0739751 0.035851 0.0178042 1

0.001
‖yh

ǫ − yǫ‖L2(∂Ω) 0.00187942 0.000477981 0.000121379 2

Table 5.2: L2-errors of the state yǫ and the control uǫ for Example 5.1, using piecewise linear finite

element space for both the control and the state.

# mesh nodes
ǫ

277 1055 4117
order

‖uh
ǫ − uǫ‖L2(Ω) 0.00921624 0.0037779 0.00123061 1.62

0.1
‖yh

ǫ − yǫ‖L2(∂Ω) 0.001674 0.000418599 0.000110845 2

‖uh
ǫ − uǫ‖L2(Ω) 0.0128337 0.0044474 0.00135877 1.71

0.01
‖yh

ǫ − yǫ‖L2(∂Ω) 0.00171644 0.000430845 0.000112126 2

‖uh
ǫ − uǫ‖L2(Ω) 0.0226521 0.00673849 0.00186549 1.85

0.001
‖yh

ǫ − yǫ‖L2(∂Ω) 0.0018967 0.000476881 0.000121028 2

the following numerical examples, we only present the results of the state and the control, while

the data for the co-state were omitted.

First we examined the convergence order of the finite element solution for the regularized

problem. The problem under consideration is as

min
uǫ∈QU

{

1

2
‖yǫ − g1‖

2
L2(Γ) +

ǫ

2
‖uǫ‖

2
L2(Ω)

}

(5.1)

subjected to

−∆yǫ + yǫ = uǫ + f, in Ω, (5.2)

∂yǫ

∂n
= g2, on ∂Ω, (5.3)

where

QU = {v ∈ L2(Ω) : v ≥ 0}, Ω = {(x1, x2) : x1
2 + x2

2 ≤ 1}.

Then the co-state equation of the problem is

−∆pǫ + pǫ = 0 in Ω,

∂pǫ

∂n
= yǫ − g1 on ∂Ω.

The right hand side term f in the constrain equation (5.2) is introduced to make an exact

solution available. In the following numerical examples, we used the three meshes, obtained

by sequentially refined a quasi-uniform background mesh with nodes number as 277, 1055 and

4117.
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Table 5.3: The error of (yh

ǫ , uh

ǫ ) to (y, u) with ǫ approaching zero.

h = 0.1 h = 0.05
ǫ

‖uh
ǫ − u‖L2(Ω) ‖yh

ǫ − y‖L2(∂Ω) ‖uh
ǫ − u‖L2(Ω) ‖yh

ǫ − y‖L2(∂Ω)

2−1 1.43608 0.624236 1.43607 0.625114

2−2 1.21323 0.450697 1.21318 0.451689

2−3 0.970780 0.312104 0.970063 0.313135

2−4 0.745611 0.202724 0.745531 0.203720

2−5 0.553699 0.124724 0.554001 0.125660

2−6 0.404896 0.0730709 0.406007 0.0739797

2−7 0.298441 0.0410194 0.300634 0.0419472

2−8 0.229740 0.0220504 0.232178 0.0230450

2−9 0.192386 0.0112031 0.194608 0.0122475

2−10 0.177602 0.00518454 0.178179 0.00626051

Example 5.1. In this example, we consider the problem (5.1) -(5.3) with

f(x1, x2) = 3yǫ(x1, x2) − uǫ(x1, x2),

g1(x1, x2) = ǫxuǫ + yǫ(x1, x2),

g2(x1, x2) = (x1 + x2) cos(x1 + x2),

and the exact solutions is

uǫ(x1, x2) = max
{

ex1 − e−x1 , 0
}

, yǫ(x1, x2) = sin(x1 + x2).

We firstly used the piecewise constant finite element space and the piecewise linear finite

element space to approximate the control uǫ and the state yǫ, respectively. In Table 5.1, the

L2 error of the control uǫ and the state yǫ are presented. The L2 error of uǫ is of order O(h),

while the L2 error of yǫ is of order O(h2). The accuracy order is independent of ǫ, though the

magnitude of the error is slightly larger with smaller ǫ.

Then we approximated using piecewise linear finite element spaces for both the control and

the state. The error of the control uǫ and the state yǫ were listed in Table 5.2. It is shown that

again the error of yǫ is of order O(h2), while the accuracy order of uǫ is improved to be over

1.6.

Example 5.2. In this example, we examine the dependence of the approximation quality the

numerical solution (yh
ǫ , u

h
ǫ ) of the regularized problem (3.2)-(3.4) to the solution (y, u) of the

original problem without regularization, (2.1) with the boundary conditions (2.4) and (2.5), on

the penalty parameter ǫ when ǫ is going to zero. We set D = I and µ = 1, Ω and QU are same

as Example 5.1. We set

u(x1, x2) = max{3 sin(x1 + x2), 0},

y(x1, x2) = sin(x1 + x2),

f(x1, x2) = 3y(x1, x2) − u(x1, x2),

g1(x1, x2) = y(x1, x2),

g2(x1, x2) = (x1 + x2) cos(x1 + x2).

In Table 5.3 and Fig. 5.1, we listed the error of (yh
ǫ , u

h
ǫ ) as the approximation of (y, u)

with decreasing ǫ. It is shown that (yh
ǫ , u

h
ǫ ) converge to (y, u) as ǫ is going to zero, and the
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Fig. 5.1. The dependence of error on the regularization parameter ǫ.
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Fig. 5.2. The surface of the exact solution u (left) and the error distribution of the approximated

solution uh

ǫ to u with ǫ = 2−10 and h = 0.1 (right).

convergence order of the state is increasing upto 1, but there are no positive convergence order

for the control with respected to ǫ. In the comparison of the data obtained by using h = 0.1 and

h = 0.05 in Table 5.3, it can be found that the error can not be reduced by mesh refinement. It is

indicated that for this example, the essential part of the error is introduced by the regularization

of the original problem instead of the finite element approximation. In Fig. 5.2, the figures of

the exact solution u and the error distribution of the approximation uh
ǫ with ǫ = 2−10 and

h = 0.1 were plotted to show the effects introduced by the regularization on the solution of the

original problem.

6. Discussion

In this paper, we provide an improved a priori error estimate for the finite element ap-

proximation of the regularized BLT problem, and some numerical examples are presented to

demonstrate our theoretical results. There are many important issues that remain to be studied

and which will be dealt with in a sequel to the present paper. There, the focus will be on the a
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posteriori error estimate and adaptive finite element method. They may improve the computing

efficiency because there will have singularity near the source and interface of the medium.
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