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Abstract

A new algorithm for finding the inverse of a nonsingular scaled factor circulant matrix

is presented by the Euclid’s algorithm. Extension is made to compute the group inverse

and the Moore-Penrose inverse of the singular scaled factor circulant matrix. Numerical

examples are presented to demonstrate the implementation of the proposed algorithm.
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1. Introduction

Circulant matrices, as an important class of special matrices, have a wide range of interesting

applications [12–19]. They have in recent years been applied in many areas, see, e.g., [2, 3, 6,

10, 11, 15, 17]. Scaled circulant permutation matrices and the matrices that commute with

them are natural extensions of this well-studied class, see, e.g., [1, 20–23]. In particular, it

will be seen that r-circulant matrices [10, 11] are precisely those matrices commuting with the

scaled circulant permutation matrix.

This paper presents an efficient algorithm to compute the inverse of a nonsingular scaled

factor circulant matrix or to compute the group inverse and Moore-Penrose inverse of the

circulant matrix when it is singular. The algorithm has small computational complexity. It is

a notable character of the algorithm that the singularity of the scaled factor circulant matrix

need not be priori known.

We define R as the scaled circulant permutation matrix, that is,

R =















0 d1 0 . . . 0 0

0 0 d2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0 dn−1

dn 0 0 . . . 0 0















n×n

. (1.1)

This paper deals with the case where R is nonsingular (di 6= 0 and fixed).

It is easily verified that the polynomial g(x) = xn − d1d2 . . . dn is both the minimal poly-

nomial and the characteristic polynomial of the matrix R. In addition, R is nondergatory.
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Moreover, R is normal if and only if |d1| = |d2| = · · · = |dn|, where |di|, i = 1, · · · , n denote the

modulus of the complex number di, i = 1, · · · , n.

Definition 1.1. An n × n matrix A over C is called a scaled factor circulant matrix if A

commutes with R, that is,

AR = RA, (1.2)

where R is given in (1.1).

Let RSFCMn be the set of all complex n × n matrices which commute with R. In the

following, with A = scacircR(a0, a1, · · · , an−1) we denote the scaled factor circulant matrix A

whose first row is (a0, a1, . . . , an−1). Remark that the first row of A completely defines the

matrix. Indeed, since R is nonderogatory, Eq. (1.2) is fulfilled if and only if A = f(R) for some

polynomial f . Furthermore, RSFCMn is a vector space of dimension n, and there is a clear

one-to-one correspondence between the polynomials of degree at most n − 1 and the numbers

a0, · · · , an−1.

For an m×n matrix A, any solution to the matrix equation AXA = A is called a generalized

inverse of A. In addition, if X satisfies X = XAX , then A and X are said to be semi-inverses,

see, e.g., [2].

In this paper we only consider square matrices A. In [8, p.51] the smallest positive integer k

for which rank(Ak+1)=rank(Ak) holds is called the index of A. If A has index 1, the generalized

inverse X of A is called the group inverse A# of A. Clearly, A and X are group inverses if and

only if they are semi-inverses and AX = XA.

In [4, 5] a semi-inverse X of A was considered in which the nonzero eigenvalues of X are

the reciprocals of the nonzero eigenvalue of A. These matrices were called spectral inverses.

It was shown in [5] that a nonzero matrix A has a unique spectral inverse, As, if and only if A

has index 1: when As is the group inverse A# of A.

2. The Properties of the Scaled Factor Circulant Matrix

Lemma 2.1. ([1]) If R is a scaled circulant permutation matrix, and if k is a positive integer,

then Rk = D(k)Ck, where D(k) is the diagonal matrix whose (j, j) entry is
∏j+k−1

t=j dt for

1 ≤ j ≤ n and C = circ(0, 1, 0, · · · , 0) is the circulant permutation. Furthermore,

Rn = (
n

∏

j=1

dj)In, detR = (−1)n−1
n

∏

j=1

dj .

Let ω = exp(2πi
n

) be a primitive nth root of unity. Then ωj = dωj , j = 0, 1, · · · , n − 1 are

the distinct roots of g(x), where g(x) = xn − d1d2 · · · dn, and

d = (

n
∏

t=1

dt)
1
n 6= 0. (2.1)

Let F be the n× n unitary Fourier matrix such that

Fij =
1√
n

ω(i−1)(j−1) for 1 ≤ i, j ≤ n. (2.2)

Let

∆ = diag(δ1, δ2, · · · , δn), (2.3)
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where the elements δj of ∆ are computed by the recursion formula

δj+1 =
d

dj

δj , 1 ≤ j ≤ n, δn+1 = δ1 = 1.

Lemma 2.2. ([1]) Let A = scacircR(a0, a1, · · · , an−1) be a scaled factor circulant matrix over

the complex field C. Then

σ(A) = {λj |λj = f(dωj) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1(dωj)i|0 ≤ j ≤ n− 1} (2.4)

is the spectrum of A and

A = f(R) = a0I +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1Ri, (2.5)

where

f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi. (2.6)

The polynomial (2.6) will be called the representor of the scaled factor circulant matrix A.

Lemma 2.3. ([1]) Let A=scacircR(a0, a1, · · · , an−1) be a scaled factor circulant matrix over

the complex field C. If F is the Fourier matrix, then

A = (∆F )diag(λ0, · · · , λi, · · · , λn−1)(∆F )−1, (2.7)

where ∆ is given by (2.3) and λj , j = 0, 1, · · · , n− 1 are the eigenvalues of A given by (2.4).

Let Dn denote the multiplicative semigroup of all n × n diagonal complex matrices. By

Lemma 1 in [2, p.27] the mapping

A→ (△F )−1A(△F )

is a semigroup isomorphism of RSFCMn onto Dn, where F and △ are defined by (2.2) and

(2.3), respectively.

Let A = scacircR(a0, a1, · · · , an−1) ∈ RSFCMn be a scaled factor circulant matrix. Then

σ(A) = {λi|i = 0, 1, · · · , n− 1} by (2.4). Let

Ti =

{

0, if λi = 0,

1/λi, if λi 6= 0,

for i = 0, 1, · · · , n− 1. If

B = (△F )diag(T0, · · · , Ti, · · · , Tn−1)(△F )−1,

then by Theorem 1 of [2], B = As, the spectral inverse of A.

Since each A in RSFCMn has index 1, As is also the group inverse A# of A. Moreover, if

R is normal, then by Theorem 1 of [2], As = A+, where A+ denotes the Moore-Penrose inverse

of A.

We summarize the above discussions in the following theorems.
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Theorem 2.1. Let A ∈Mn. Then A ∈ RSFCMn if and only if (△F )−1A(△F ) is a diagonal

matrix. Let A ∈ RSFCMn. If A is a singular matrix, then As = A# ∈ RSFCMn. If R is

normal, then A+ ∈ RSFCMn and A+ = A#.

Theorem 2.2. If A = scacircR(a0, a1, · · · , an−1) is nonsingular, then f(ωj) 6= 0, where

f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi, ωj = dωj , j = 0, 1, · · · , n− 1

are the distinct roots of g(x). If A is singular and has k zero eigenvalues, then there are

ωi0 , ωi1 , · · · , ωik−1
, such that f(ωij

) = 0, for j = 0, 1, · · · , k − 1. Conversely, if there exists

ωk satisfying f(ωk) = 0, then the scaled factor circulant matrix A is singular.

Proof. According to Theorem 2.1, we know that (△F )−1A(△F ) = D, where

D = diag(f(ω0), f(ω1), · · · , f(ωn−1)),

and ωj = dωj , j = 0, 1, · · · , n− 1 are the distinct roots of g(x). Thus A△F = △FD. Since △F

is a nonsingular matrix, then

rankA = rankA△F = rank△FD = rankD.

If there exist ωi0 , ωi1 , · · · , ωik−1
such that f(ωij

) = 0, for j = 0, 1, · · · , k − 1, then there are

ωik
, ωik+1

, · · · , ωin−1
such that f(ωij

) 6= 0, for j = k, k + 1, · · · , n− 1. Thus rankA = n− k.

Conversely, if rankA = n − k, then there exist ωik
, ωik+1

, · · · , ωin−1
such that f(ωij

) 6= 0,

for j = k, k + 1, · · · , n − 1. Therefore, there are ωi0 , ωi1 , · · · , ωik−1
such that f(ωij

) = 0, for

j = 0, 1, · · · , k − 1.

In addition, let A, B ∈ RSFCMn. Then AB = BA ∈ RSFCMn. If A is a nonsingular

matrix, then A−1 ∈ RSFCMn. Thus RSFCMn is a ring.

Polynomial ring has an intimate relation to the scaled factor circulant matrix ring. Let

P (x) be the polynomial ring. For all f(x) in P (x), the degree of f(x) is denoted by deg(f(x)).

Let Pn−1(x) be the quotient ring P (x)/〈xn − d1d2 · · · dn〉, where 〈xn − d1d2 · · ·dn〉 is an ideal.

Define ϕ as a function which maps scaled factor circulant matrix ring onto the polynomial ring

by

ϕ(A) 7→ f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi,

where A = scacircR(a0, a1, · · · , an−1).

Then, we can conclude that ϕ is a ring isomorphism. The scaled factor circulant matrix

ring and the polynomial quotient ring Pn−1(x) are isomorphic. So, if A is nonsingular, then ϕ

maps the inverse of A onto the inverse of the representor f(x) of A.

3. Main Results

Theorem 3.1. Let A = scacircR(a0, a1, · · · , an−1) be a scaled factor circulant matrix which is

nonsingular, with the representor of A being

f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi.
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Then there exists a polynomial

u(x) = b0 +

n−1
∑

i=1

bi(

i
∏

t=1

dt)
−1xi

such that u(ωj) = 1/f(ωj), where ωj, j = 0, 1, · · · , n−1, are the roots of g(x) = xn−d1d2 · · · dn

and the inverse of A is given by

B = scacircR(b0, b1, · · · , bn−1).

Proof. From Theorem 2.2, we know that f(x) = f(ωj) 6= 0, j = 0, 1, · · · , n− 1. Let

g(x) =
n−1
∏

j=0

(x − ωj) = xn − d1d2 · · · dn.

Then f(x) and g(x) are coprime. Hence there exist u′(x) and v(x) satisfying

f(x)u′(x) + g(x)v(x) = 1.

When x = ωj, j = 0, 1, · · · , n− 1, then g(x) = 0. Consequently, f(ωj)u
′(ωj) = 1. Let

u(x) = u′(x)mod(xn − d1d2 · · · dn).

Then deg(u(x)) < n. Since ωn
j − d1d2 · · ·dn = 0, and u(ωj) = u′(ωj), j = 0, 1, · · · , n − 1, the

existence of u(x) in Theorem 3.1 is then proved.

For the scaled factor circulant matrix B we have

B = scacircR(b0, b1, · · · , bn−1)

= △Fdiag(u(ω0), u(ω1), · · · , u(ωn−1))(△F )−1

= △Fdiag(1/f(ω0), 1/f(ω1), · · · , 1/f(ωn−1))(△F )−1.

Consequently, BA = I. Therefore, u(x) is the inverse of f(x) in the quotient ring Pn−1(x). The

polynomial u′(x) can be obtained by Euclid’s Algorithm. This is the main idea of the algorithm

for computing the inverse of the scaled factor circulant matrix.

To reduce the computation, suppose a is the leading coefficient of f(x) and a 6= 0, let

f ′(x) = f(x)/a. Then f(x) = af ′(x). The leading coefficient of f ′(x) is 1.

Theorem 3.2. Let A = scacircR(a0, a1, · · · , an−1) be a singular scaled factor circulant matrix

with the representor

f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi.

Suppose A has m nonzero eigenvalues. Without loss of generality, suppose f(ωj) = 0, for

j = m, m + 1, · · · , n− 1, where ωj, j = 0, 1, · · · , n− 1, are roots of g(x) = xn − d1d2 · · · dn.

Let

g1(x) =

m−1
∏

j=0

(x− ωj), g2(x) =

n−1
∏

j=m

(x − ωj), f1(x) = f(x)g2(x).
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Then there exists a polynomial

u1(x) = b′0 +
n−1
∑

i=1

b′i(
i

∏

t=1

dt)
−1xi

such that u1(ωj) = 1/f1(ωj), j = 0, 1, · · · , m− 1.

Let

u(x) = u1(x)g2(x) = b0 +

n−1
∑

i=1

bi(

i
∏

t=1

dt)
−1xi.

Then B = scacircR(b0, b1, · · · , bn−1) is the group inverse A# of A. If R is normal, then B =

scacircR(b0, b1, · · · , bn−1) is the Moore-Penrose inverse A+ of A.

Proof. Since

xn − d1d2 · · ·dn =

n−1
∏

j=0

(x − ωj),

it follows that g1(x) and g2(x) are coprime. From the condition of Theorem 3.2, we know that

g1(x) and f(x) are coprime. So f1(x) and g1(x) are coprime, and there exist u2(x) and v(x)

satisfying

f1(x)u2(x) + g1(x)v(x) = 1.

When x = ωj , j = 0, 1, · · · , m−1, g1(x) = 0, thus f1(ωj)u2(ωj) = 1. Let u1(x) = u2(x)mod(g1(x)).

Then the existence of the u1(x) in Theorem 3.2 has been proved.

Since u(x) = u1(x)g2(x), when j = m, m+1, · · · , n−1, u(ωj) = 0, when j = 0, 1, · · · , m−1,

u(ωj) = u1(ωj)g2(ωj) = g2(ωj)/f1(ωj) = 1/f(ωj).

The scaled factor circulant matrix B is given by

B = scacircR(b0, b1, · · · , bn−1)

= △Fdiag(u(ω0), u(ω1), · · · , u(ωn−1))(△F )−1

= △Fdiag(1/f(ω0), 1/f(ω1), · · · , 1/f(ωm−1), 0, · · · , 0)(△F )−1.

It follows from Theorem 2.1 that B is the group inverse A# of A. If R is normal, then B is the

Moore-Penrose inverse A+ of A.

Theorem 3.2 implies that for computing the group inverse A# and the Moore-Penrose inverse

A+ of the singular scaled factor circulant matrix A, we only need to invert f(x)g2(x) in the

quotient ring Pn−1(x)/〈g1(x)〉.
It can be verified that g2(x) is the largest common factor of f(x) and g(x) = xn−d1d2 · · · dn.

In our computations, if deg(f1(x)) > deg(g1(x)), we can do polynomial division f1(x) =

g1(x)s(x) + f12(x). As f12(ωj) = f1(ωj), j = 0, 1, · · · , m − 1, f1(x) can be taken the place

by f12(x).

A similar device was used in [24] for computing the inverses and the group inverses of FLS

r-circulant matrices.
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4. Inverting the Scaled Factor Circulant Matrix

The problem becomes how to evaluate u(x), v(x) when f(x), g(x) are known and satisfy

f(x)u(x) + g(x)v(x) = 1. Using Euclid’s algorithm:

g(x) = q0(x)f(x) + r1(x),

f(x) = q1(x)r1(x) + r2(x),

r1(x) = q2(x)r2(x) + r3(x),

· · · · · · · · ·
ri−1(x) = qi(x)ri(x) + ri+1(x),

· · · · · · · · ·

Let v1(x) = 1, u1(x) = −q0(x), then r1(x) = f(x)u1(x) + g(x)v1(x). It is obvious that

r2(x) = f(x)− q1(x)[g(x) − q0(x)f(x)]

= [1 + q0(x)q1(x)]f(x) − g(x)q1(x).

Let v2(x) = −q1(x), u2(x) = 1 + q0(x)q1(x). We then have

r2(x) = f(x)u2(x) + g(x)v2(x).

Suppose

rj(x) = f(x)uj(x) + g(x)vj(x),

and that vj(x), uj(x) have been computed when j = 0, 1, · · · , i. Then

ri+1(x) = ri−1(x) − qi(x)ri(x)

= f(x)ui−1(x) + g(x)vi−1(x)− qi(x)[f(x)ui(x) + g(x)vi(x)]

= f(x)[ui−1(x) − qi(x)ui(x)] + g(x)[vi−1(x)− qi(x)vi(x)].

Let ri+1(x) = f(x)ui+1(x) + g(x)vi+1(x). Then

ui+1(x) = ui−1(x) − qi(x)ui(x).

Now, we have obtained the recurrence formula for ui(x). So, computing u(x) is equivalent

to computing a sequence of polynomials

q0(x), r1(x), u1(x), · · · , qi(x), ri+1(x), ui+1(x), · · · .

If rj+1=const, then u(x) =
uj+1(x)
rj+1(x) . We can improve the method. If the division of polynomial

becomes

ri−1(x) = qi(x)ri(x) + ci+1ri+1(x),

where ci+1 is a nonzero number, then the recurrence formula becomes

ui+1(x) =
ui−1(x) − qi(x)ui(x)

ci+1
.

Thus, we can make the leading coefficient of ri(x) equal to 1 by suitably choosing ci.
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Algorithm 4.1. Given a scaled factor circulant matrix

A = scacircR(a0, a1, · · · , an−1),

the algorithm computes a scaled factor circulant matrix

B = scacircR(b0, b1, · · · , bn−1).

When A is nonsingular, B is the inverse of A. When A is singular, B is the group inverse

of A. If R is normal, then B is the Moore-Penrose inverse A+ of the scaled factor circulant

matrix A. Let

f(x) = a0 +

n−1
∑

i=1

ai(

i
∏

t=1

dt)
−1xi, g(x) = xn − d1d2 · · · dn,

r−1(x) = g(x), r0(x) = f(x), u−1(x) = 0, u0(x) = 1.

Perform the polynomial division with remainder

do















ri−1(x) = qi(x)ri(x) + ri+1(x),

(let ci+1 be the leading coefficient of ri+1(x)),

ri+1(x)← ri+1(x)/ci+1,

ui+1(x)← [ui−1(x) − qi(x)ui(x)]/ci+1, i = 0, 1, · · ·

(4.1)

until rm(x) = 1 or rm(x) = 0.

If rm(x) = 1, then um(x) is the representor of B. Then B = um(R) is the inverse of A.

If rm(x) = 0, then rm−1(x) is the largest common factor of f(x) and g(x).

Let r(x) = rm−1(x), r−1(x) = g(x)/rm−1(x), r0(x) = f(x)rm−1(x)mod(r−1(x)), u−1(x) =

0, u0(x) = 1, go to (4.1).

Now, if rm′(x) = 1, then u(x) = um′(x)r(x)mod(g(x)) is the representor of B. Thus B =

u(R) is the group inverse A# of A. Moreover, if R is normal, then B = u(R) is the Moore-

Penrose inverse A+ of A.

5. Computational Complexity

If the matrix is nonsingular, the computational complexity is divided into two parts. Suppose

that the order of the scaled factor circulant matrix A is n, deg (f(x)) = n− 1. First we discuss

the computational complexity on the division of polynomials.

ri−1(x) = qi(x)ri(x) + ri+1(x), ri+1(x)← ri+1(x)/ci+1, for i = 0, 1, 2, · · · .
It is obvious that the division of polynomials will be done for less than n− 1 times. If it is

computed for n − 1 times, then deg(qi(x)) = 1, and the leading coefficient of ri(x), qi(x) is 1.

So the division of polynomials involves 2
∑n−1

i=1 i = n2 + O(n) flops. If it has been computed

for less than n− 1 times, although deg (qi(x)) > 1, the times of polynomial division need to be

reduced. It can be deduced that this part involves less than n2 flops.

Second we discuss the computational complexity on the multiplication of polynomials.

ui+1(x)← [ui−1(x)− qi(x)ui(x)]/ci+1, i = 0, 1, 2, · · · .
From Algorithm 4.1, we know that the multiplication of polynomials will be done for less than

n−1 times. If it has been done for n−1 times, since deg(qi(x)) = 1, and the leading coefficient
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of ri(x), qi(x) is 1, the multiplication of polynomials requires 2
∑n−1

i=1 i = n2 +O(n) flops. If it

has been computed for less than n−1 times, the multiple of division involves less than n2 flops.

So, all the amount of work is 2n2 flops. Thus, when deg(f(x)) = m, the algorithm involves

3nm flops. So when m ≪ n, we only require O(n) flops, which indicates that the algorithm

reduces the computational complexity greatly.

With the same reason, when the scaled factor circulant matrix is singular, the method

requires 4n2 +O(n) flops to compute the group inverse or the Moore-Penrose inverse.

6. Numerical Examples

Example 6.1. Let

A =









1 3 2 8

16 1 6 8

8 8 1 12

6 2 4 1









.

Is the matrix A singular or nonsingular? If A is nonsingular, find the inverse of A.

Since A = scacircR(1, 3, 2, 8) = I + 3R+R2 +R3 = f(R), where f(x) = 1 + 3x + x2 + x3

is the representor of A, and

R =









0 1 0 0

0 0 2 0

0 0 0 4

2 0 0 0









,

it is known that A is a scaled factor circulant matrix. Let

r−1(x) = g(x) = x4 − 16,

r0(x) = f(x) = 1 + 3x + x2 + x3,

u−1(x) = 0, u0(x) = 1.

Using Algorithm 4.1, we have

q0(x) = x− 1, r1(x) = x2 − x +
15

2
, c1 = −2, u1(x) = 0.5x− 0.5;

q1(x) = x + 2, r2(x) = x +
28

5
, c2 = −2.5, u2(x) = 0.2x2 + 0.2x− 0.8;

q2(x) = x− 33

5
, r3(x) = 1, c3 =

2223

50
,

u3(x) = − 289

2223
+

131

2223
x +

56

2223
x2 − 10

2223
x3.

Since r3(x) = 1, A is a nonsingular matrix and u3(x) is the representor of A−1. Then

A−1 = scacircR(− 289

2223
,

131

2223
,

112

2223
,− 80

2223
)

=
1

2223









−289 131 112 −80

−160 −289 262 448

448 −80 −289 524

262 112 −40 −289









.
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Example 6.2. Let

A =





−4 −3 2

64 −4 −6

−96 32 −4



 .

Is the matrix A singular or nonsingular? If A is singular, find the group inverse of A.

Since A = scacircR(−4,−3, 2) = −4I − 3R+R2 = f(R), where f(x) = −4− 3x + x2 is the

representor of A, and

R =





0 1 0

0 0 2

32 0 0



 ,

it is known that A is a scaled factor circulant matrix. Let r′
−1(x) = g(x) = x3 − 64, r′0(x) =

f(x) = −4− 3x + x2. Using Algorithm 4.1, we have

q′0(x) = x + 3, r′1(x) = x− 4, c′1 = 13, q′1(x) = x + 1, r′2(x) = 0.

Then the largest common factor of f(x) and g(x) is r′1(x) = x−4. Consequently, A is a singular

matrix. Let

r(x) = x− 4, r−1(x) =
g(x)

x− 4
= x2 + 4x + 16,

r0(x) = f(x)(x − 4)mod(x2 + 4x + 16) = 36x + 192, u−1(x) = 0, u0(x) = 1.

Using Algorithm 4.1, we have

q0(x) =
1

36
x− 1

27
, r1(x) = 1, c1 =

208

9
, u1(x) = − 1

832
x +

1

624
.

Consequently,

u1(x)r(x) = − 1

156
+

1

156
x− 1

832
x2

is the representor of A#. Then

A# = scacircR(− 1

156
,

1

156
,− 1

416
) =





− 1
156

1
156 − 1

416

− 1
13 − 1

156
2

156
32
156 − 1

26 − 1
156



 .
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