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Abstract

In this paper, two fourth-order accurate compact difference schemes are presented for

solving the Helmholtz equation in two space dimensions when the corresponding wave

numbers are large. The main idea is to derive and to study a fourth-order accurate compact

difference scheme whose leading truncation term, namely, the O(h4) term, is independent

of the wave number and the solution of the Helmholtz equation. The convergence property

of the compact schemes are analyzed and the implementation of solving the resulting linear

algebraic system based on a FFT approach is considered. Numerical results are presented,

which support our theoretical predictions.
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1. Introduction

In this paper, we consider two-dimensional Helmholtz equation

∇2u + k2u = f(x, y), (1.1)

where k is wave number, together with some appropriate boundary conditions. Boundary value

problems governed by the Helmholtz equation describe many physical phenomena and have

important applications in acoustic and electromagnetic waves.

When the wave number k is very large, Eq. (1.1) has a great difficulty in computation

because in this case the solutions of Eq. (1.1) are highly oscillatory. There exist many different

numerical methods for solving the Helmholtz equation, such as Galerkin finite element method

[1], spectral method [8,12] and finite difference method [2,4,14]. Many of the proposed schemes

can provide very accurate approximations to the highly oscillatory solutions under the condition

that kh is very small, where h is a characteristic spatial grid size. This condition shows that in

order to attain accurate approximate solutions, it is required to significantly decrease h with

large wave number k.

On the other hand, in recent years, high-order accurate compact finite difference methods

have been used widely for solving convection-diffusion problems, the Navier-Stokes equations

and the Helmholtz equation [3-7,10,11,13,14]. This class of methods is attractive since they

offer a means to obtain high accuracy solutions with less computational costs. In this paper,

we will use the compact finite difference methods to deal with Eq. (1.1). We first derive two

fourth-order compact finite difference schemes for the problem (1.1), and then provide some

convergence analysis for the two methods. The main difference of the two proposed schemes is
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about the coefficient of the leading truncation errors: the coefficient of one of the schemes is

independent of the wave number k and the solution of (1.1) (the solution is in general depends

on k also). Consequently, it is expected that this scheme will be useful for solving Eq. (1.1)

with large wave number k. Moreover, in this work we also apply the fast Fourier transform

(FFT) algorithm to solve the algebraic system resulting from the compact finite difference

discretizations. This significantly speeds up the computational efficiency.

The rest of the paper is organized as follows. In Section 2, two fourth-order compact finite

difference schemes are presented. In Section 3, the convergence analysis of the proposed schemes

for one- and two-dimensional Helmholtz equation is provided. Numerical implementation based

on a FFT approach is given in Section 4. In Section 5, numerical experiments are carried out

to verify the theoretical predictions obtained in this work.

2. Fourth-order Compact Schemes

We consider Eq. (1.1) with Dirichlet and Neumann boundary conditions. For ease of nota-

tions, we only consider a simple square domain Ω = (0, 1)× (0, 1) with ∆x = ∆y, but the main

ideas in this work can be extended to rectangular domains with ∆x 6= ∆y. Divide uniformly

Ω with lines {(xi, yj) : xi = ih, yj = jh, i, j = 0, 1, · · · , J}, where h is the spacial mesh-size.

Use the notation δ2
x, δ2

y to denote the second-order central difference with respect to x, y,

respectively:

δ2
xui,j =

ui−1,j − 2ui,j + ui+1,j

h2
, δ2

yui,j =
ui,j−1 − 2ui,j + ui,j+1

h2
.

By the Taylor series expansion, we get for every sufficiently smooth u

δ2
xu = uxx +

h2

12
ux4 +

h4

360
ux6 + O(h6),

here and below for simplicity, we omit subscripts i, j whenever confusions will not occur. Adding

a similar expression for δ2
y and rearranging the resulting terms give

uxx + uyy = (δ2
x + δ2

y)u − h2

12
(ux4 + uy4) − h4

360
(ux6 + uy6) + O(h6). (2.1)

Similarly, there is the expression

ux2y2 = δ2
xδ2

yu − h2

12
(ux4y2 + ux2y4) + O(h4). (2.2)

Inserting (2.1) into the Helmholtz equation (1.1) gives

(δ2
x + δ2

y)u − h2

12
(ux4 + uy4) − h4

360
(ux6 + uy6) + k2u = f + O(h6). (2.3)

In order to obtain the fourth-order accuracy, we need to approximate the term ux4 + uy4 to

O(h2). By using the original equation (1.1) and the expressions (2.1), (2.2), we have

ux4 + uy4 = ∆2u − 2ux2y2 = ∆(f − k2u) − 2ux2y2 = ∆f − k2(δ2
x + δ2

y)u

−2δ2
xδ2

yu +
k2h2

12
(ux4 + uy4) +

h2

6
(ux2y4 + uy2x4) + O(h4). (2.4)
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Combining (2.3) and (2.4) yields the following fourth order accurate finite difference scheme
(

1 +
k2h2

12

)
(δ2

x + δ2
y)u +

h2

6
δ2
xδ2

yu + k2u = f +
h2

12
(δ2

x + δ2
y)f, (2.5)

where the truncation error is

T (1) =
[ k2

144
(ux4 + uy4) +

1

360
(ux6 + uy6)

+
1

72
(ux2y4 + uy2x4) − 1

144
(fx4 + fy4)

]
h4. (2.6)

The scheme (2.5) is a standard fourth-order accurate formula. However, in many physical

problems, the source function f(x, y) usually have no relationship with the wave number k. So

in order to make the scheme more efficient for large k, we naturally wish that the truncation

error T (1) has less relevance to k. Hence we try to drop the terms dependent on k in the

truncation error T (1). To this end, we need to provide better second order approximations to

the terms ux6 + uy6 and ux2y4 + uy2x4 . Observe

ux2y4 + uy2x4 = (∆u)x2y2 = (f − k2u)x2y2

= fx2y2 − k2ux2y2 = fx2y2 − k2δ2
xδ2

yu + O(h2), (2.7)

and

ux6 + uy6 = ∆3u − 3(ux2 + uy2)x2y2

= ∆2(f − k2u) − 3(ux2 + uy2)x2y2 = ∆2f − k2∆2u − 3(ux2 + uy2)x2y2

= ∆2f − k2(∆f − k2∆u) − 3(ux2 + uy2)x2y2

= −k2(δ2
x + δ2

y)f + k4(δ2
x + δ2

y)u + 3k2δ2
xδ2

yu + ∆2f − 3fx2y2 + O(h2). (2.8)

Inserting (2.4), (2.7) and (2.8) into the truncation error T (1) yields

T (1) =
{
− k4

240
(δ2

x + δ2
y)u − 7k2

360
δ2
xδ2

yu +
k2

240
(δ2

x + δ2
y)f

+
1

360
∆2f +

1

180
fx2y2 − 1

144
(fx4 + fy4)

}
h4 + O(h6). (2.9)

Adding the first three terms on the right side of (2.9), which are all relevant to k, to the finite

difference scheme (2.5) lead to another fourth-order accuracy compact difference scheme
(

1 +
k2h2

12
+

k4h4

240

)
(δ2

x + δ2
y)u +

(
h2

6
+

7k4h4

360

)
δ2
xδ2

yu + k2u

= f +

(
h2

12
+

k2h4

240

)
(δ2

x + δ2
y)f, (2.10)

and the corresponding truncation error is

T (2) =

[
1

360
∆2f +

1

180
fx2y2 − 1

144
(fx4 + fy4)

]
h4 + O(h6). (2.11)

In general, the source term f is independent of the wave number k — in this sense the leading

truncation error for the scheme (2.10) is independent of the wave number k. When h is sufficient

small, the term O(h4) will play the leading role in the truncation errors. Hence, it is expected

that the accuracy of the scheme (2.10) may be better than that of the scheme (2.5). If ∆f is

known analytically, it can be used directly in (2.5) and (2.10).
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2.1. Neumann boundary conditions

The schemes (2.5) and (2.10) are of fourth-order accuracy in interior grid points (xi, yj).

The compact setting gives a straightforward treatment for the Dirichlet boundary conditions.

However, for Neumann boundary conditions, it is uncertain that the overall truncation errors

on Ω remain O(h4); this certainly depends on the approximations of the Neumann boundary

conditions. Here, we introduce a method for Eq. (1.1) with Neumann boundary condition

such that the schemes (2.5) and (2.10) remain fourth-order accuracy in the sense of truncation

errors on the whole domain Ω. For simplicity (and without loss of generality), we consider the

boundary conditions

u
∣∣∣
x=0,1

= 0, u
∣∣∣
y=0

= 0,
∂u

∂y

∣∣∣
y=1

= g(x).

In order to approximate Neumann boundary condition in a manner consistent with our fourth-

order difference schemes, we need to derive a fourth-order approximation for the boundary

condition ∂u
∂y |y=1 = g(x). For this purpose, we place a row of ghost points: (xi, yJ+1), 0 ≤ i ≤

J, yJ+1 = (J + 1)h, outside of the region Ω and express ∂u
∂y |y=1 by

∂u

∂y

∣∣∣
y=1

≈ ui,J+1 − ui,J−1

2h
.

Using the Taylor expansion at (xi, yJ) gives

ui,J+1 − ui,J−1

2h
= (uy)i,J +

h2

6
(uyyy)i,J + O(h4).

Assuming f is sufficiently smooth on Ω and adding Eq. (1.1) on the boundary 0 ≤ x ≤ 1, y = 1,

as we did before, we have

ui,J+1 − ui,J−1

2h

= gi +
h2

6
(fy − k2uy − uxxy)i,J + O(h4)

= gi +
h2

6
(fy)i,J − k2h2

6

ui,J+1 − ui,J−1

2h
− h2

6

δ2
xui,J+1 − δ2

xui,J−1

2h
+ O(h4),

which leads to a fourth-order approximation expression for the boundary condition ∂u
∂y |y=1 =

g(x):

(
1 +

k2h2

6

)
ui,J+1 − ui,J−1

2h
+

h2

6

δ2
xui,J+1 − δ2

xui,J−1

2h
= gi +

h2

6
(fy)i,J . (2.12)

To eliminate the values of u at the ghost points, we add the difference equation (2.5) at the

boundary points (xi, yJ)(1 ≤ i ≤ J − 1),

(
1 +

k2h2

12

)
(δ2

x + δ2
y)ui,J +

h2

6
δ2
xδ2

yui,J + k2ui,J = fi,J +
h2

12
∆fi,J . (2.13)

By eliminating the terms ui,J+1 from (2.12) with the use of (2.13), we obtained a fourth-order

boundary condition consistent with the compact scheme (2.5). Similar treatment can be made

to provide a fourth-order boundary condition consistent with the compact scheme (2.10). This

can be done by replacing (2.13) with (2.10) at j = J .
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3. Convergence Analysis

In this section, we give a convergence analysis for the schemes (2.5) and (2.10) with Dirichlet

boundary condition. For Neumann boundary condition, the treatment is basically similar to

the former.

To begin, we first give the following norm notations which will be used in the later contexts.

For the vector u = {ui}J−1
i=1 ∈ RJ−1,

‖u‖ =

(
J−1∑

i=1

|ui|2h
) 1

2

, ‖u‖∞ = sup
1≤i≤J−1

|ui|,

and for the vector u = {ui,j}J−1
i,j=1 ∈ R(J−1)×(J−1),

‖|u‖| =




J−1∑

i=1

J−1∑

j=1

|ui,j |2h2





1

2

, ‖|u‖|∞ = sup
1≤i,j≤J−1

|ui,j |.

For uj = {u1,j, u2,j, · · · , uJ−1,j}T , with 1 ≤ j ≤ J − 1, we have

‖|u‖| =




J−1∑

j=1

‖uj‖2h





1

2

.

3.1. One dimensional case

Before we give the proof of the fourth-order convergence for the schemes (2.5) and (2.10),

we first consider the same problem for the one dimensional Helmholtz equation. It will be

demonstrated in next section that our two-dimensional schemes can be splitted to several one-

dimensional problems, so a good understanding of the 1D convergence property will be very

useful. Moreover, one-dimensional case itself is also interesting.

Similar to the derivation of the previous section, the fourth order compact finite difference

for the one dimensional Helmholtz equation

uxx + k2u = f, 0 < x < 1, (3.1)

is given by (
1 +

k2h2

12

)
δ2
xu + k2u = f +

h2

12
δ2
xf, (3.2)

and the corresponding truncation error is T = O(h4).

We rewrite (3.2) as follows

(
−1 − k2h2

12

)
ui−1 +

(
2 − k2h2 +

k2h2

6

)
ui +

(
−1 − k2h2

12

)
ui+1 = h2(fi +

h2

12
δ2
xfi), (3.3)

or the simple matrix form

DU = ~b, (3.4)
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where D is a symmetric tri-diagonal matrix. When h → 0 and kh → 0, the coefficient matrix

D tends to the matrix




2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 . . . 2 −1

0 0 0 . . . −1 2





(J−1)×(J−1)

. (3.5)

It is well known that the matrix (3.5) is positive definite. Hence when kh is sufficiently small,

the coefficient matrix D is also positive definite. So under the condition that kh is sufficiently

small, (3.2) has a unique solution.

Assume that vi is the value of the exact solution of (3.1) at the grid points xi = ih, (i =

0, 1, · · · , J), and let ei = ui − vi. Then the error vector E = {ei} satisfies

(
1 +

k2h2

12

)
δ2
xei + k2ei = −Ti. (3.6)

We rewrite (3.6) as follows

(
−1 − k2h2

12

)
ei−1 +

(
2 − k2h2 +

k2h2

6

)
ei +

(
−1 − k2h2

12

)
ei+1 = h2Ti, (3.7)

or the simple matrix form

DE = h2T,

It is well known that the matrix (3.5) has the eigenvalues

λj = 2 − 2 cos
jπ

J
= 4 sin2 jπh

2

and the corresponding eigenvectors

ηj = (η1,j , η2,j , · · · , ηJ−1,j)
T , ηm,j = sin

mjπ

J
, m = 1, · · · , J − 1 (3.8)

for j = 1, · · · , J − 1. When h is sufficiently small, the smallest eigenvalue behaves like

min
1≤j≤J−1

λj = 4 sin2 πh

2
∼ π2h2. (3.9)

Since the eigenvector set {ηj} constitutes a full orthogonal basis of RJ−1, we can write the

error vector

E =

J−1∑

j=1

ajηj , ‖E‖2 =

J−1∑

j=1

|aj |2‖ηj‖2.

Now consider the inner product (DE, E) = (h2T, E). When kh → 0, we have

(DE, E) = (D
J−1∑

j=1

ajηj ,
J−1∑

j=1

ajηj) → (
J−1∑

j=1

ajλjηj ,
J−1∑

j=1

ajηj)

=

J−1∑

j=1

λj |aj |2‖ηj‖2 ≥ Cπ2h2
J−1∑

j=1

|aj |2‖ηj‖2 = Cπ2h2‖E‖2, (3.10)
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where (and hereafter) C denotes a generic constant which may have different value at different

place. On the other hand, we have

(h2T, E) ≤ h2‖T ‖‖E‖. (3.11)

Combining (3.10) and (3.11), we obtain

‖E‖ ≤ C‖T ‖

which leads to the following result.

Theorem 3.1. Suppose kh is sufficiently small, where k is the wave number and h is the grid

length. Then the scheme (3.2) has a unique solution. Moreover, for the sufficiently smooth

solution u of (3.1) and the approximate solution uh of the scheme (3.2), with Dirichlet or

Neumann boundary condition, there exists the following error estimate

‖u − uh‖ ≤ Ch4,

where C is a constant dependent of k, u and f .

Note that if the boundary condition is given by a mixed boundary condition ux|x=0 =

a, u|x=1 = b, then the limiting matrix corresponding to (3.5) is of the same form but with the

size J × J which has the eigenvalues

λj = 2 − 2 cos
(2j − 1)π

2J

and the corresponding eigenvectors

ηj = (η1,j , η2,j , · · · , ηJ,j)
T , ηm,j = cos

(m − 1)(2j − 1)π

2J
, m = 1, · · · , J,

for j = 1, · · · , J .

If the boundary condition is given by the Neumann boundary condition ux|x=0 = a, ux|x=1 =

b, then the limiting matrix corresponding to (3.5) is of the form same to (3.5) but with size

(J + 1) × (J + 1) which has the eigenvalues

λj = 2 − 2 cos
(2j − 1)π

J

and the corresponding eigenvectors

ηj = (η1,j , η2,j , · · · , ηJ+1,j)
T , ηm,j = cos

(m − 1)(2j − 1)π

J
, m = 1, · · · , J + 1,

for j = 1, · · · , J + 1.

In the above two cases, the results of Theorem 3.1 can be established similar to the Dirichlet

boundary condition case.

3.2. Two dimensional case

In the same manner, we may obtain that when kh is sufficiently small, there is a unique

solution for (2.5) or (2.10).



Compact Fourth-Order Finite Difference Schemes for Helmholtz Equation 105

Assume vi,j is the value of the exact solution v(x, y) of Eq. (1.1) at the grid point (xi, yj),

and let ei,j = ui,j − vi,j . Then the error E = {ei,j} satisfies

(
1 +

k2h2

12

)
(δ2

x + δ2
y)ei,j +

h2

6
δ2
xδ2

yei,j + k2ei,j = −T
(1)
i,j , (3.12)

and
(

1 +
k2h2

12
+

k4h4

240

)
(δ2

x + δ2
y)ei,j +

(
h2

6
+

7k4h4

360

)
δ2
xδ2

yei,j + k2ei,j = −T
(2)
i,j (3.13)

for the schemes (2.5) and (2.10), respectively.

For 1 ≤ j ≤ J − 1, denote Ej = (e1,j, · · · , eJ−1,j)
T and T

(l)
j = (T

(l)
1,j , · · · , T

(l)
J−1,j)

T . Let

Ej =

J−1∑

m=1

amjηm, T
(l)
j =

J−1∑

m=1

T̂
(l)
mjηm, l = 1, 2. (3.14)

Then we have

‖|E‖|2 =

J−1∑

j=1

‖Ej‖2h =

J−1∑

j=1

J−1∑

m=1

|am,j |2‖ηm‖2h

=

J−1∑

m=1

(

J−1∑

j=1

|am,j |2h)‖ηm‖2 =

J−1∑

m=1

‖am‖2‖ηm‖2, (3.15)

and

‖|T (l)‖|2 =

J−1∑

j=1

‖T (l)
j ‖2h =

J−1∑

j=1

J−1∑

m=1

|T̂ (l)
m,j|2‖ηm‖2h

=

J−1∑

m=1

(

J−1∑

j=1

|T̂ (l)
m,j|2h)‖ηm‖2 =

J−1∑

m=1

‖T̂ (l)
m ‖2‖ηm‖2, (3.16)

where am = (am,1, · · · , am,J−1), T̂m = (T̂m,1, · · · , T̂m,J−1). Hence, in order to estimate ‖|E‖|,
it is only necessary to estimate ‖am‖ for each m.

With the expressions (3.8) for the eigenvectors, (3.14) can be rewritten as

ei,j =

J−1∑

m=1

am,j sin imπh, T
(l)
i,j =

J−1∑

m=1

T̂
(l)
m,j sin imπh, l = 1, 2. (3.17)

Inserting the above relations into Eqs. (2.5) and (2.10), respectively, we get

Amam,j−1 + Bmam,j + Amam,j+1 = h2T̂
(l)
m,j, l = 1, 2 (3.18)

where, for scheme (2.5)

Am = −
(

1 +
k2h2

12
− 2

3
sin2 mπh

2

)
,

Bm =

(
2 + 4 sin2 mπh

2

)(
1 +

k2h2

12

)
− 4

3
sin2 mπh

2
− k2h2, (3.19)
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and for scheme (2.10)

Am = −
[
1 +

k2h2

12
+

k4h4

240
− 4

(
1

6
+

7k2h2

360

)
sin2 mπh

2

]
,

Bm =

(
2 + 4 sin2 mπh

2

)(
1 +

k2h2

12
+

k4h4

240

)
−
(

4

3
+

7k2h2

45

)
sin2 mπh

2
− k2h2. (3.20)

Assume h → 0, kh → 0. Then the coefficient matrix of Eq. (3.18) also tends to the matrix

(3.5). Thanks to the analysis of subsection 3.1, we know that for each m, 1 ≤ m ≤ J − 1, the

following inequality holds:

‖am‖ ≤ C‖T̂ (l)
m ‖, l = 1, 2.

Hence

‖|E‖|2 =

J−1∑

m=1

‖am‖2|‖ηm‖2 ≤ C

J−1∑

m=1

‖T̂ (l)
m ‖2‖ηm‖2 = C‖|T ‖|2. (3.21)

So the following result can be obtained.

Theorem 3.2. Suppose kh is sufficiently small, where k is the wave number and h is the grid

length. Then schemes (2.5) or (2.10) have a unique solution. Moreover, for sufficiently smooth

solution u of (1.1) and the approximate solution uh of schemes (2.5) or (2.10), with Dirichlet

or Neumann boundary condition, there exists the following error estimate

‖|u − uh‖| ≤ Ch4,

where C is a constant dependent of k, u and f .

In fact, by the expressions of the truncation errors (2.6) and (2.11), the relations of the error

estimates in Theorems 3.1 and 3.2 can be expressed as

‖u − uh‖ ≤ C
(
k2‖u‖C4(Ω) + ‖u‖C6(Ω)

)
h4 (3.22)

for the scheme (2.5), and

‖u − uh‖ ≤ Ch4 + C
(
k2‖u‖C6(Ω) + ‖u‖C8(Ω)

)
h6 (3.23)

for the scheme (2.10), where the constant C is independent of k and u.

4. A Fast Algorithm Based on FFT

In this section, we assume that the boundary condition satisfies u(0, y) = u(1, y) = 0, i.e.,

u0,j = uJ,j = 0, 0 ≤ j ≤ J.

If this assumption is not satisfied, then a simple linear transformation will make this assumption

true. We will seek the solution of scheme (2.5) or (2.10) in the following form:

ui,j =

J−1∑

m=1

am,j sin imθ, (0 ≤ i, j ≤ J) (4.1)
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where θ = π/J . Eq. (4.1) is also called the fast Fourier sine transform (see, e.g., [9]). Here the

number am,j are unknowns that we wish to determine. Once the am,j are determined, the fast

Fourier sine transform can be used to compute ui,j efficiently.

Inserting (4.1) into the second-order central difference δ2
xui,j and δ2

yui,j yields

δ2
xui,j = 4

J−1∑

m=1

am,j sin2 mθ

2
sin mθ,

δ2
yui,j =

J−1∑

m=1

(am,j+1 − 2am,j + am,j−1) sin imθ. (4.2)

Substituting the above two expressions into the schemes (2.5) and (2.10) respectively, we can

deduce the following trigonometric system

Amam,j−1 + Bmam,j + Amam,j+1 = D
(l)
m,j, 1 ≤ j ≤ J − 1, (4.3)

where Am, Bm are of the same sense as in the previous section, namely, (3.19) or (3.20), and

D
(l)
m,j, (l = 1, 2) are determined by the following sine transformations

fi,j +
h2

12
(δ2

x + δ2
y)fi,j =

J−1∑

m=1

D
(1)
m,j sin imθ, 1 ≤ j ≤ J − 1,

fi,j + (
h2

12
+

k2h4

240
)(δ2

x + δ2
y)fi,j =

J−1∑

m=1

D
(2)
m,j sin imθ, 1 ≤ j ≤ J − 1.

System (4.3) can be easily and directly solved since it is tri-diagonal. A tri-diagonal system of J

equations can be solved in O(J) operations, then J tri-diagonal systems are of a cost of O(J2).

The fast Fourier sine transform uses O(J log J) operations on a vector with J components.

Thus, the total computational cost in the schemes (2.5) or (2.10) is O(J2 log J).

5. Numerical Tests

In the following, we use three examples to illustrate the accuracy and efficiency of the

schemes (2.5) and (2.10) with Dirichlet and Neumann boundary conditions. The test problems

used here are chosen such that the analytic solutions are available, so rigorous comparisons

can be made. In Example 5.1, we consider the test problem with Dirichlet boundary con-

dition. The test problem with Neumann boundary condition is considered in Example 5.2.

Example 5.3 is presented to make comparisons of the schemes (2.5) and (2.10). In all the

computations, the error is measured in the L∞ norm and the convergence order is taken as

r = log(eh1
/eh2

)/log(h1/h2).

Example 5.1. Consider the problem

{
∇2u + k2u = (k2 − π2 − k2π2) sin πx sin kπy, (x, y) ∈ Ω = (0, 1)2,

u |∂Ω= 0.

Its exact solution is given by u(x, y) = sin πx sin kπy.

The errors and the convergence rates with respect to the L∞ norm for the schemes (2.5)

and (2.10) are given in Table 5.1. It is shown that the convergence orders for the schemes (2.5)
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Table 5.1: Example 5.1: order of convergence of computed solution with Dirichlet BC. (k = 30).

2nd-order difference scheme (2.5) scheme (2.10)

J error order error order error order

32 1.52 3.61e-1 4.37e-1

64 2.30e-1 2.73 1.28e-2 4.82 1.54e-2 4.83

128 5.19e-2 2.15 7.10e-4 4.17 8.53e-4 4.17

256 1.27e-2 2.03 4.31e-5 4.04 5.18e-5 4.04

512 3.10e-3 2.03 2.68e-6 4.01 3.21e-6 4.01

1024 7.85e-4 1.98 1.67e-7 4.00 2.00e-7 4.00

2048 1.96e-4 2.00 1.04e-8 4.27 1.25e-8 4.00

Table 5.2: Example 5.1: order of convergence of computed solution with Dirichlet BC. (k = 300).

scheme (2.5) scheme (2.10)

J error order error order

128 42.38 59.73

256 1.57 1.90

512 3.42e-2 4.12e-2

1024 1.80e-3 4.10 2.10e-3 4.29

2048 1.05e-4 4.25 1.27e-4 4.05
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Fig. 5.1. Example 5.1: the errors for fixed h and increasing wave number k.

and (2.10) are four. Moreover, it is also seen that higher accurate approximate solutions are

provided for the fourth-order compact difference schemes (2.5) and (2.10). For comparison, we

also list the errors obtained by using the 2nd-order central difference scheme. It is observed that

the numerical solutions obtained by the 4th-order compact schemes are much more accurate

than those obtained by using the second-order central difference scheme.

In Table 5.2, we list the numerical errors for a larger wave number, k = 300. As expected,

for large k, the fourth order convergence rates are maintained when J is large enough such that

kh is sufficiently small.

In Fig. 5.1, we set h = 2−10. It is observed that the errors are developed with the increasing

wave number k for both the schemes (2.5) and (2.10). As a comparison, we also plot the errors
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obtained by using the second-order central difference scheme. For higher-order schemes, it is

seen that for small grid length h, the high resolutions are obtained even for large k.

Example 5.2. We consider the equation in Example 5.1 with the same exact solution but with

different boundary conditions

u|x=0,1 = 0, u|y=0 = 0,
∂u

∂y
|y=1 = kπ cos kπ sin πx.

In this numerical test, we use the scheme (2.5), together with the four-order boundary

approximation for handling the Neumann boundary condition (as described in Section 2.1) to

compute the numerical solutions. For comparison, a second-order treatment for the Neumann

condition is also employed. From Table 5.3, we see that the convergence orders for the numerical

solutions, obtained by the scheme (2.5) and two different boundary value approximations, are

two and four respectively. This suggests that it is important to use higher order boundary value

approximation if higher order difference schemes are used.

Table 5.3: Example 5.2: order of convergence used scheme (2.5). (k = 5).

second-order fourth-order

J error order error order

64 5.52e-2 8.33e-5

128 1.38e-2 2.00 5.20e-6 4.00

256 3.50e-3 1.98 3.25e-7 4.00

512 8.64e-4 2.02 2.03e-8 4.00

1024 2.16e-4 2.00 1.27e-9 4.00

Table 5.4: Example 5.3: the critical wave number k required for a given accuracy.

J k ≈ 10 k ≈ 800

512 1.0005 0.3596

1024 1.0000 0.0232

2048 1.0001 0.0061

Table 5.5: Example 5.3: ‖E‖(2.10)/‖E‖(2.5) for small k and large k.

J ‖E‖ k ≤ kc

256 ‖E‖ ≤ 10−2 k ≤ 235

512 ‖E‖ ≤ 10−2 k ≤ 455

1024 ‖E‖ ≤ 10−2 k ≤ 800

2048 ‖E‖ ≤ 10−4 k ≤ 730

Example 5.3. Consider the problem

{ ∇2u + k2u = π2 sinπx sin πy, (x, y) ∈ (0, 1) × (0, 1/2),

u|x=0,1 = 0, u|y=0 = 0, u|y=1/2 = sin πx(sin
lπ

2
+

1

l2 − 1
),

where k2 = π2(1 + l2) with odd number l. Note that here f is independent of k. The exact

solution is

u(x, y) = sin πx sin lπy +
sin πx sin πy

l2 − 1
.
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For this exact solution, the error estimates in (3.22)-(3.23) suggest that

‖E‖ ≤ Ck6h4 (5.1)

for the scheme (2.5); and

‖E‖ ≤ Ch4 + Ck8h6 (5.2)

for the scheme (2.10). Here the constant C is independent of k.

We compare the scheme (2.5) and the scheme (2.10) by observing the error bounds of (5.1)

and (5.2),
h4 + k8h6

k6h4
=

1

k6
+ k2h2, (5.3)

where the constants C in (5.1) and (5.2) are omitted. From the above relation we see that the

scheme (2.10) is more useful than the scheme (2.5) for large k and small h (kh small). While

for small and moderate values of k the accuracy of the schemes (2.5) and (2.10) is almost the

same.
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Fig. 5.2. Example 5.3: numerical errors against the wave number k.

In Fig. 5.2, the error behaviors for the schemes 2.5 and (2.10) are examined with fixed

J and increasing k. In Table 5.4, we set k = π
√

1 + 32 ≈ 10 and k = π
√

1 + 2552 ≈ 800

respectively, and investigate the error ratio ‖E‖(2.10)/‖E‖(2.5) for different values of h, where

‖E‖(2.10) and ‖E‖(2.5) denote the errors of the scheme (2.10) and the scheme (2.5), respectively.

The numerical results shown in Fig. 5.2 and Table 5.4 confirm our theoretical prediction that

the scheme (2.10) is more efficient than the scheme (2.5) when the wave number k is large.

It is seen from Fig. 5.2 that for a grid size, there exists a critical value kc such that the

corresponding computations will not be convergent if k ≥ kc. In Table 5.5, we list the critical

values of the wave number k with some required accuracy, i.e., ‖E‖ ≤ 10−2 (or 10−4). The

numerical results are obtained using the scheme (2.10).

6. Conclusions

In this work we developed two fourth-order compact schemes for solving the Helmholtz

equation. We also make some convergence analysis under the conditions that kh is sufficiently
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small. A higher-order approximation for the Dirichlet and the Neumann boundary conditions is

designed. Moreover, an efficient implementation of the finite difference approximation, based on

a FFT approach, is proposed. Numerical experiments are carried out to confirm the theoretical

predictions.

In a future work, we will extent the present work to handle some more complicated situations.

One issue arises when the boundary condition involved a global (integral) condition, as seen

in [6]. Another issue is to consider the case when the wave number k is a piecewise constant,

see also [6]. In this case, maintaining fourth-order accuracy in the compact setting seems quite

difficult.
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