
Journal of Computational Mathematics, Vol.26, No.1, 2008, 69–75.

REAL ROOT ISOLATION OF SPLINE FUNCTIONS*

Renhong Wang and Jinming Wu

Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Email: renhong@dlut.edu.cn, wujm97@yahoo.com.cn

Abstract

In this paper, we propose an algorithm for isolating real roots of a given univariate

spline function, which is based on the use of Descartes’ rule of signs and de Casteljau

algorithm. Numerical examples illustrate the flexibility and effectiveness of the algorithm.

Mathematics subject classification: 65D07, 14Q05.

Key words: Real root isolation, Univariate spline, Descartes’ rule of signs, de Casteljau

algorithm.

1. Introduction

The relationship between the number of real roots of a univariate spline and the sequence of

its B-spline coefficients has been studied by de Boor [1] and Goodman [5], which provides a new

bounds on the number of real roots of the spline function. However, the specific distribution

of real roots of a given univariate spline based on its signs and sizes of B-spline coefficients

have not been investigated. The specific distribution can provide a good selection of initial

approximations to all of its real roots in order to get started for iterative methods.

In 1989, Grandine [6] proposed a method for finding all real roots of a spline function based

on the interval Newton method. It is primarily based on iteratively dividing the domain into

segments that contain a zero, by using estimates for the derivatives of the spline function based

on knot insertion. However, if we know the isolating intervals of a given spline function, then

it will greatly reduce the computational cost for finding all of its real roots.

It is well known that there are several algorithms for polynomial real root isolation based

on the use of Descartes’ rule of signs, such as Uspensky’s algorithm (see [2, 7] and references

therein). It can be regarded as a preconditioned process for computing all the real roots of a

given polynomial.

In this paper, we propose an algorithm for computing a sequence of disjoint intervals such

that each of them contains exactly one real root of a given univariate spline, which is primarily

based on the use of Descartes’ rule of signs with its B-spline coefficients and de Casteljau

algorithm. Numerical examples are also provided to illustrate the flexibility of the proposed

algorithm.

2. Preliminaries

We begin by defining the class of spline functions of interest [8, 9]. Take integers m, n ≥ 0

and a non-decreasing sequence t = (t0, t1, · · · , tm+n+1) with ti < ti+n+1, i = 0, 1, · · · , m. For

* Received October 11, 2006 / Revised version received April 4, 2007 / Accepted June 6, 2007 /

70 R.H. WANG AND J.M. WU

i = 0, 1, · · · , m, let Ni,n(x) denote the B-spline of degree n with knots ti, · · · , ti+n+1. For a

constant sequence c = (c0, · · · , cm), we let

s(x) =

m
∑

i=0

ciNi,n(x), t0 < x < tm+n+1. (2.1)

In [5], Goodman proved that the bounds on the number of real roots of the spline function

z(s) ≤ S(c) (2.2)

under the following condition

Condition(c, t) : ∀ x ∈ (t0, tm+n+1), ∃ i, s.t. ti < x < ti+n+1 and ci 6= 0, (2.3)

where z(s) denotes the number of real roots of the spline function s(x), and S(c) denotes the

number of sign variations in the sequence c.

Obviously, Condition(c, t) implies that s(x) cannot vanish on any nontrivial interval in

(t0, tm+n+1).

Let us first recall Descartes’ rule of signs [7]:

Theorem 2.1. (Descartes’ rule of signs) Let P (x) =
∑n

i=0 aix
i be a polynomial in R[x].

If we denote by S(a) the number of sign variations in the sequence a = (a0, a1, · · · , an), and

pos(P) the number of positive real roots of P (x) counted with multiplicities, then pos(P) ≤ S(a),

and pos(P) − S(a) is even.

We remark that Descartes’ rule of signs gives the exact number of roots if and only if there

is one or no sign variation.

Note that the following direct consequences of sign variations: for any real number sequence

b = (bi, · · · , bj), if bibj > 0, then b has an even number of sign variations. Moreover, if bibj < 0,

then b has an odd number of sign variations.

Throughout this paper, we assume cj = 0 when j < 0 and j > m. For a spline function

s(x) defined by (2.1), we have

si(x) = s(x) |[ti,ti+1]=

i
∑

j=i−n

cjNj,n(x) ∈ Pn,

where Pn denotes the set of all univariate polynomials with real coefficients and degree not

exceeding n. Therefore, it can be written in Bézier form:

si(x) =

n
∑

j=0

bi,jBj,n(t), t ∈ [0, 1] (2.4)

under the coordinate transformation

t =
x − ti

ti+1 − ti
, x ∈ [ti, ti+1], (2.5)

where Bj,n(t) = Cj
n tj(1 − t)n−j is the Bernstein polynomial.

Recall that the Bézier curve si(x) defined by (2.4) enjoys the variation diminishing property

[4]: the curve has no more intersections with any line other than the polygon

Pi = {(
j

n
, bi,j)}

n
j=0,

Real Root Isolation of Spline Functions 71

which provides a rudimentary upper bound estimates on the number of real roots of the Bézier

curve.

In order to determine the real roots of si(x) in the interval x ∈ (ti, ti+1), it follows from

Descartes’ rule of signs that

Lemma 2.1. If we denote by z(si) the number of real roots of si(x) in the interval (ti, ti+1),

and bi = (bi,0, bi,1, · · · , bi,n), then z(si) ≤ S(bi). Moreover, if S(bi) = 0 or S(bi) = 1, then si(x)

has no root or only one root in the interval x ∈ (ti, ti+1).

Proof. Since

si(x) =

n
∑

j=0

bi,jBj,n(t) = (1 − t)n

n
∑

j=0

di,jy
j ,

where

y =
t

1 − t
, t ∈ (0, 1), di,j = Cj

n bi,j ,

it follows from Descartes’ rule of signs that z(si) ≤ S(bi). If S(bi) = 0 or S(bi) = 1, then si(x)

has no root or only one root in the interval y ∈ (0,∞). That is, open interval y ∈ (0,∞) is

equivalent to x ∈ (ti, ti+1).

If S(bi) ≥ 2, then we have to further isolate the real roots of si(x) in the interval x ∈ (ti, ti+1),

i.e., computing a sequence of disjoint intervals such that each of them contains exactly one real

root of si(x). We introduce the following algorithm based on the use of both Descartes’ rule of

signs and subdivision algorithm of a given Bézier curve.

It is well known that de Casteljau algorithm is the most fundamental algorithm in the field

of curve and surface design [4].

de Casteljau algorithm

Given

s(x) =

n
∑

i=0

biBi,n(x), x ∈ [0, 1]

and specify u ∈ [0, 1].

Set:

br
i (u) = (1 − u)br−1

i (u) + ubr−1
i+1 (u)

{

r = 1, · · · , n

i = 0, · · · , n − r
(2.6)

and b0
i (u) = bi. Then bn

0 (u) is the function value s(u) of Bézier curve s(x) on u.

Meanwhile, the coefficients

b1
l (u) = (b0

0(u), b1
0(u), · · · , bn

0 (u)), b1
r(u) = (bn

0 (u), bn−1
1 (u), · · · , b0

n(u))

are called the Bézier coordinates with respect to the Bézier curves sl(x) and sr(x) defined on

the intervals [0, u] and [u, 1], respectively.

Now, we introduce an algorithm for isolating real roots of Bézier curve si(x) based on de

Casteljau algorithm together with Lemma 2.1.

72 R.H. WANG AND J.M. WU

Algorithm 2.1. Algorithm for isolating real roots of Bézier curves

Given

si(x) =

n
∑

j=0

bi,jBj,n(t), x ∈ (ti, ti+1)

under the coordinate transformation (2.5), and let bi = (bi,0, bi,1, · · · , bi,n). Here, u is simply

chosen to be 1
2 in de Casteljau algorithm.

1. If S(bi) = 0 or S(bi) = 1, then si(x) has no root or only one root in the interval

x ∈ (ti, ti+1).

2. If S(bi) ≥ 2, then we can obtain bi,l(u) = (b0
i,0(u), b1

i,0(u), · · · , bn
i,0(u)), and bi,r(u) =

(bn
i,0(u), bn−1

i,1 (u), · · · , b0
i,n(u)) by using de Casteljau algorithm. If bn

i,0(u) = 0, then

x = ti+ti+1

2 is a root of si(x). If S(bi,l(u)) = 0 or S(bi,l(u)) = 1, then si(x) has no

root or only one root in the interval x ∈ (ti,
ti+ti+1

2). If s(bi,l(u)) ≥ 2, then si,l(x) is

subjected to the same subdivision. Similarly, if S(bi,r(u)) = 0 or S(bi,r(u)) = 1, then

si(x) has no root or only one root in the interval x ∈ (ti+ti+1

2 , ti+1). If s(bi,r(u)) ≥ 2,

then si,r(x) is subjected to the same subdivision.

0b

1
lb 1

rb

2
llb 2

lrb 2
rlb 2

rrb

Fig. 2.1. Bézier curve real root isolation.

The implementation of Algorithm 2.1 can be represented in a form of the binary tree (see

Fig. 2.1).

Since the subdivision algorithm converges quadratically [3], the algorithm will terminate

rapidly, i.e., the binary tree is finite.

Remark 2.1. It can be verified that the proposed algorithm is faster than the Sturm algorithm

for isolating the real roots of a given polynomial.

3. Spline Real Root Isolation

In this section, an algorithm is introduced to isolate all real roots of a given spline function.

Let

s(x) =

m
∑

i=0

ciNi,n(x), t0 < x < tm+n+1, c = (c0, · · · , cm).

The problem of spline real root isolation is to compute all the isolating intervals such that each

of them contains exactly one root of the spline s(x).

Real Root Isolation of Spline Functions 73

If the two adjacent non-zero coefficients ci1 and ci2 (i1 < i2) have distinct signs, then the in-

terval (ti2 , ti1+n+1) is called a feasible isolating interval. Here, we assume that (ti2 , ti1+n+1) =

∅ when i2 − i1 > n. Hence, the feasible isolating intervals of s(x) are defined by

I =
⋃

sign(ci1
ci2

)=−1,

ci1+1=···=ci2−1=0

(ti2 , ti1+n+1), (3.1)

where sign(·) denotes the sign function.

The feasible isolating intervals generally can be written in the union form of disjoint maximal

open intervals.

Example 3.1. If we let t = {i}8
i=0 be an integer sequence and s(x) =

∑5
i=0 ciNi,2(x), where

c0 > 0, c1 > 0, c2 < 0, c3 = 0, c4 > 0, and c5 > 0, then the feasible isolating intervals of s(x) are

(2, 4) and (4, 5).

Proposition 3.1. With the above notations, let c(k) = (ck−n, ck−n+1, · · · , ck). If

sign(s(tk)s(tk+1)) = 1, S(c(k)) ≤ 1,

then s(x) has no root in the interval [tk, tk+1]. If

sign(s(tk)s(tk+1)) = −1, S(c(k)) ≤ 2,

then (tk, tk+1) is an isolating interval of s(x). In other cases, we have to further isolate the real

roots of s(x) in the interval [tk, tk+1].

For any maximal interval (ti, tj) of the feasible isolating intervals, we denote by S(cij)

the sign variations in the sequence cij , where cij = (ci−n, ci−n+1, · · · , cj−1). Moreover, if we

compute bij = (s(ti), s(ti+1), · · · , s(tj)), then we have the following result.

Proposition 3.2. With the above notations,

∑

S(cij) = S(c), S(bij) ≤ S(cij).

Moreover, if S(bij) = S(cij), then all the real roots of s(x) on the interval (ti, tj) lie in the

intervals (tk, tk+1), i ≤ k ≤ j if and only if sign(s(tk)s(tk+1)) = −1.

In particular, if s(tk) = 0, i ≤ k ≤ j, then x = tk is a root of s(x) and [xk, xk] is an isolating

interval of s(x). Propositions 3.1 and 3.2 are referred to the isolating intervals pre-computed

process.

Example 3.2. We continue to consider Example 3.1. Suppose c = (3, 1,−4, 0, 1, 1). For the

interval (2, 4), we can compute b24 = (2,− 3
2 ,−2) and c24 = (3, 1,−4, 0), then (2, 3) is an

isolating interval for s(x) from Proposition 3.2. Similarly, we conclude that (4, 5) is an isolating

interval for s(x).

With the above preparations, we propose an algorithm for computing all the isolating in-

tervals of a given spline function.

74 R.H. WANG AND J.M. WU

Algorithm 3.1. Algorithm for isolating real roots of spline functions

Input:

s(x) =

m
∑

i=0

ciNi,n(x), x ∈ (t0, tm)

(i.e., given degree n, a knot sequence (t0, t1, · · · , tm+n+1), and a coefficient sequence

(c0, c1, · · · , cm)).

Output: A sequence of isolating intervals of s(x).

Step 1. Determine the feasible isolating intervals (3.1) of s(x).

Step 2. Actualize the isolating intervals pre-computed process.

Step 3. Further isolate real roots of s(x) in the required intervals using Algorithm 2.1.

If an univariate spline s(x) does not satisfy the Condition(c, t), then we can simply split

it into pieces which satisfy the Condition(c, t) as done in [5]. Applying Algorithm 3.1 to each

piece, we can easily isolate all real roots of the given spline.

4. Examples

In this section, several examples are provided to illustrate the flexibility of the proposed

algorithm for isolating the real roots of given spline functions.

2 4 6 8

2

4

6

Fig. 4.1. Spline function s(x) for Example 4.1.

Example 4.1. Given degree n = 3, a knot sequence t = {i}9
i=0, and a coefficient sequence

c = (12,−2, 1, 0, 1,−1). Here, the spline function s(x) is the combination of uniform B-splines

as demonstrated in Fig. 4.1.

Step 1. (1, 5) and (5, 8) are the feasible isolating intervals.

Step 2. For the interval (5, 8), we have b58 = (1
3 , 1

2 ,− 1
2 ,− 1

6) and c58 = (1, 0, 1,−1, 0, 0). Hence,

(6, 7) is an isolating interval of s(x) from Proposition 3.2. Moreover, since sign(s(1)s(2)) =

1 and S(c(1)) = 1, it follows from Proposition 3.1 that s(x) has no root in the interval

[1, 2]. Similarly, we conclude that s(x) has no root in the interval [4, 5]. Therefore, the

real roots of s(x) in the intervals (2, 4) required to be further isolated.

Step 3. It follows from Algorithm 2.1 that (3, 7
2) and (7

2 , 4) are the isolating intervals of s(x).

Hence, the isolating intervals of s(x) are (3, 7
2), (7

2 , 4), and (6, 7).

Real Root Isolation of Spline Functions 75

Example 4.2. Given degree n = 3, a knot sequence t = (0, 0, 0, 0, 1, 1, 1, 1), and a coefficient

sequence c = (1,−2, 2,−2). Here, the spline function s(x) is reduced to a Bézier curve on (0, 1).

The isolating interval of s(x) is (0, 1
2) from Algorithm 2.1.

5. Conclusion and Outlook

An algorithm for isolating real roots of a given spline function is proposed in this work.

It is primarily based on the Descartes’ rule of signs and de Casteljau algorithm. The above

examples indicate that the algorithm is effective, especially for the cases that the spline function

has many zeros in the sequence of its B-spline coefficients.

Our ultimate aim is to compute the real piecewise algebraic varieties [10], i.e., the set of

common real zeros of multivariate splines. For example, if we can isolate the common real

roots of several bivariate splines based on the use of the sign variations of their coefficients

and other additional information, then it is significant to the computation of real piecewise

algebraic curves. That is to say, we wish to determine a sequence of disjoint region (simplex,

hyperrectangle) such that each of them contains exactly one real root of piecewise algebraic

varieties. This remains to be our future work.

Acknowledgments. This project is supported by the National Natural Science Foundation

of China (Project Nos. 60373093 and 60533060). We are very grateful to the referees for their

careful reading of the manuscript and many valuable suggestions.

References

[1] C. de Boor, The multiplicity of a spline zero, Ann. Numer. Math., 4 (1997), 229-238.

[2] G.E. Collins and A.G. Akritas, Polynomial real root isolation using Descarte’s rule of signs, in:

SYMSAC, 1976, pp. 272-275.

[3] W. Dahmen, Subdivision algorithm converge quadratically, J. Comput. Appl. Math., 16 (1986),

145-158.

[4] G. Farin, Curves and Surfaces for Computer Aided Geometry Design: A Pratical Guide, Academic

Press, 1997.

[5] T.N.T. Goodman, New bounds on the zeros of spline functions, J. Approx. Theory, 76:1 (1994),

123-130.

[6] T.A. Grandine, Computing zeros of spline functions, Comput. Aided Geom. Design, 6 (1989),

129-136.

[7] F. Rouillier and P. Zimmermann, Efficient isolation of polynomial’s real roots, J. Comput. Appl.

Math., 162 (2004), 33-50.

[8] L.L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.

[9] R.H. Wang, Numerical Approximation, Higher Education Press, Beijing, 1999.

[10] R.H. Wang, Multivariate Spline Functions and Their Applications, Science Press/Kluwer Pub.,

Beijing/New York, 2001.

