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Abstract

This paper deals with the preconditioning of the curl-curl operator. We use H(curl)-
conforming finite elements for the discretization of our corresponding magnetostatic model
problem. Jumps in the material parameters influence the condition of the problem. We will
demonstrate by theoretical estimates and numerical experiments that hierarchical matrices
are well suited to construct efficient parallel preconditioners for the fast and robust iterative
solution of such problems.
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1. Introduction

A major field of occurrence of the curl-curl operator is computational electromagnetism. An
example is the ungauged vector potential based magnetostatic problem

1
curl;curlu =jo in £, (1.1a)
u =0 on 09, (1.1b)

which we choose as our model problem with given source current jo,. For theoretical purposes
we assume that 2 C R3 is a convex (curved) polyhedron, while in pratice this property does not
seem to be required. We denote n as the exterior normal at the boundary 992 and uy :=u x n
as the tangential surface trace of the vector potential u. A typical setting to be simulated in
magnetostatics is shown in Fig. 7.1. The computational domain 2 = QU consists of different
materials that are characterized by their material parameters, i.e. their conductivity o satisfying
0 < o(x) < o1 and their magnetic permeability p == p, - po € L=(Q) with 1 < p,-(z) < pa/po
for some constants p1,01 € R and pg := 47-10~7 (Vs)/(Am). jo vanishes in the non-conducting
domain ;.

The ungauged magnetostatic problem is singular, because any gradient field grad ¢ can
be added to the solution. The magnetic field B := curlu, which is the measurable physical
quantity of interest, is not affected by this alternative solution uyew := u+ grad ¢. The vector
potential u itself is not a measurable physical quantity.
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The ungauged vector potential based magnetostatic problem is a special case of the vector
potential based full Maxwell problem in frequency domain and temporal gauge

1
curl;curlu + iw(o + iwe)u = — (o + iwe)grad po. (1.2)

Herein, the electric permittivity is assigned by € := €,-eg with €, > 1, 9 := 8.85:10712 (As)/(Vm)
and ¢ denotes the scalar electric potential. The magnetostatic equation (1.1a) follows from
(1.2) in the case of vanishing angular frequency w = 0. The operator that arises from the full
Maxwell problem is regular for all w > 0, whereas the curl-curl operator has a large kernel.
Since the electromagnetic fields that emerge at low frequencies in the full Maxwell model are
a good approximation of magnetostatic fields, it can be expected that the operator (1.2) at
small frequencies is a good approximation for the operator (1.1). It is therefore an obvious
idea to regularize the " magnetostatic operator” by adding a multiple of the identity. Hence, we
consider the operator

L, = curlicurl +al (1.3)
with constant 1/u; < a € R as a preconditioner for the magnetostatic operator

1
Lo = curl—curl.

One of the most established methods for the iterative solution of electromagnetic problems
are multigrid methods; see [1,16]. Algebraic multigrid methods (AMG) can be applied if no
finite element (FE) grid hierarchy is available; see [26] and [8] for an improved version. However,
they lack a comprehensive theoretical analysis. A major difference of the method in [26] and
the method presented in this article is that we do not regularize the problem itself. We rather
use the regularized operator for generating preconditioners for the original problem (1.1), while
in [26] an approximate solution which depends on the regularization parameter « is computed.
See [18] for a preconditioning technique that relies on solvers for the discrete Poisson problem.
In this article we propose the usage of hierarchical matrices (H-matrices) [14,15] due to their
robustness with respect to non-smooth coefficients in the differential operator.

Hierarchical matrices provide a setting in which approximations of fully populated matrices
(such as the inverse or the factors of the LU decomposition of sparse matrices) can be computed
with logarithmic-linear complexity. The existence of such approximations in the case of FE
discretizations was proved in [2,4, 7] for general scalar elliptic boundary value problems. A
strategy that is also based on H-matrices was proposed in [27]. There, the discretization A of
Ly is regularized by adding UU” to A, where U is the matrix consisting of the kernel vectors
of A (the so-called discrete grad-div regularization).

After the introduction of appropriate spaces and the variational formulation of our problem
in Sect. 2, we will review hierarchical matrices in Sect. 3 in the context of nested dissection
reorderings; see [10]. In Sect. 4 we will lay theoretical ground to the H-matrix approximation
of the factors of the LU decomposition in the case of discretizations of the operator (1.3)
with Nédélec’s edge elements [24]. The regularization (1.3) guarantees that low-precision LU
factorizations can be computed in the methodology of hierarchical matrices, which can be used
for preconditioning. In Sect. 5 we will investigate the influence of the regularization parameter
« and the accuracy €3y of the hierarchical matrix approximation on the condition number of
the preconditioned problem. In Sect. 6 it will be shown how the nested dissection structure
of the hierarchical LU decomposition can be exploited for parallelization. Finally, Sect. 7 will
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contain numerical results which document the applicability of the presented methods. It will
be seen that the preconditioner can be computed with almost linear complexity and that the
number of iterations is bounded by a constant.

2. Variational Formulation

Let L2() = [L2(Q)]?, HY(Q) := [H'(Q)]?, and H. (Q) = [H].

loc loc

H(curl; Q) := {v € L*(Q) : curlv € L*(Q)}, Ho(curl;Q) := {v € H(curl;Q) : vi = 0 on 99}

(2)]3. We define the spaces

equipped with the norm Hu||%l(cur1;9) = Hu||%2(Q) + chrluH%Q(Q). Testing equation (1.1a) and
using the integration by parts formula

/V’CHI‘]W*W%ZUI‘IVdIZ/ vi - wds
Q o0

leads to the variational formulation of our magnetostatic model problem: search u € Hy(curl; 2)
such that )
(;curl u, curlv)pz (o) = (jo, vV)r2(q) for all v € Ho(curl; ). (2.1)

The variational problem (2.1) is not uniquely solvable. The infinite dimensional kernel of the
operator consists of all functions in

Hy(curl0; Q) := {v € Hy(curl; Q) : curlv = 0}.
For domains of simple topology the orthogonal complement of Hy(curl0;$?) is the set
Zo(Q) == {v € Hy(curL; Q) : (v,grad ¢)12(q) = 0 for all p € Hj(Q)}.
There it holds a Poincaré-Friedrichs type of inequality
lullz) < cflcurlul|gzq) for all u € Zo() (2.2)

with a constant ¢ > 0; see [17].
The regularized version of (2.1) is: search u € Hy(curl; ) such that

1
(—curlu, curl v)iz o) + a(u, v)rz) = (Jo, V)L2() for all v e Hy(curl; ©2). (2.3)
L
The symmetric bilinear form
1
a(u,v) := (—curlu, curl v)g: ) + a(u, v)r2(q)

induced by equation (2.3) is continuous and H(curl; Q)-coercive for all a > 0. Continuity can
be obtained by making use of the Cauchy-Schwarz inequality. Coercivity follows from

1 1
la(u,u)| = /Q ;|cur1u\2dx+/ﬂa|u|2dx > EchrluHiQ + aflulli (2.4a)
o1
> mln{aﬂa}”u“%{(curl;ﬂ)‘ (24b)

As a consequence, the H(curl)-conforming edge element (see [17]) discretization results in a
matrix A, € R™"*™ with entries

(Aa)ij = alpi,@5), 4,j=1,...,n,

where @;, i = 1,...,n, denote the corresponding basis functions, is a symmetric positive definite
matrix.
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3. Hierarchical Matrices

The setting in which the preconditioner will be computed are hierarchical matrices. This
methodology introduced by Hackbusch et al. [14,15] is designed to handle fully populated
matrices such as approximations of the inverse or the factors of the LU decomposition with
logarithmic-linear complexity; see [5] and [21] for parallel H-matrix algorithms. In this section
we review H-matrices in the context of nested dissection reorderings, which are well-suited for
efficient LU factorizations.

The efficiency of hierarchical matrices is based on low-rank approximations of each submatrix
of a suitable partition P of the full set of matrix indices I x I, I := {1,...,n}. The construction
of P has to account for two aims. On one hand it has to guarantee that the rank &k of the
approximation

By~ XYT X eCltxk vy e lslxk, (3.1)

to each block By, t x s € P, of a given matrix B € R"*" depends logarithmically on its
approximation accuracy. Here, B denotes a fully populated matrix, e.g., the inverse or the
factors of the LU decomposition of the matrix A resulting from a finite element discretization.
On the other hand P must be computable with logarithmic-linear complexity. The former issue
will be addressed by the so-called admissibility condition in Sect. 3.2, while the latter problem
can be solved by so-called cluster trees.

3.1. Cluster tree

Searching the set of possible partitions of I x I for a partition P which guarantees (3.1)
seems practically impossible since this set is considerably large. By restricting ourselves to
blocks t x s made up from rows ¢ and columns s which are generated by recursive subdivision,
P can be found with almost linear complexity. The structure which describes the way I is
subdivided into smaller parts is the cluster tree. Since we are aiming at nested dissection LU
factorizations, we adapt the usual definition to this special situation. To this end, a cluster ¢,
is referred to as a separator for t; and to in ¢ if ¢ = ¢; Uteep Uto and Asyp, = Atye, = 0. A tree
Ty is called a cluster tree for an index set I if it satisfies the following conditions:

(i) I is the root of Ty;

(ii) if ¢ € Ty is not a leaf and if it is not a separator cluster, then ¢ is a disjoint union of
its sons S7(t) = {t1,tsep, ta} C T, where tyep is a separator for ¢; and ¢ in ¢;

(iii) if t € Ty is not a leaf and if it is a separator cluster, then ¢ is a disjoint union of its
sons S[(t) = {tl,tg} c1Try.

Due to (ii), the matrix Ay for a cluster ¢t € T\ £(T7) that is not a separator has the structure

Atl t1 t1tsep
Ay = Atyty Atytey
Atepts Atets Ateoptecn

We denote the set of leaves of the tree T7 by £(T7). Each level of T7 contains a partition of the
index set I.
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A cluster tree for I can be computed for instance by the bounding box method [11] or
the principal component analysis [5]. The latter methods take into account the geometric
information associated with the matrix indices. A nested dissection approach based on the
matrix graph Gy = (I, Ey) with

Eyr:={(i,j) € I x I :a;; # 0 or aj; # 0}

of A has recently [6] turned out to give significantly better results. Each nested dissection
step can be separated into two phases. In the partitioning phase the bipartition of ¢ into #}
and t}, is computed using spectral bisection [25] combined with the multi-level ideas from [20].
Subdividing ¢ in this manner in some sense minimizes the size of the edge cut, i.e., a set of edges
C C E; such that G} = (¢, E; \ C) is no longer connected. The partition phase of the cluster
algorithm ensures that the cardinality of ¢] equals t5.

In the second step the vertex set ¢y, which separates ¢; and ¢y is computed. To this end
one considers the boundaries

oty := {i €t} : 3j € t}, such that (i,j) € E;},
Oty = {j €ty : Ji € ¢} such that (j,i) € F;}

of ¢ and t; and the edge set E1o = {(i,7) € E; : i € Ot},j € Ot} between Ot] and 9t},. To get
a small separator tsep, the minimal vertex cover algorithm [19] is applied to the bipartite graph
(0t} UOth, Eqa). Finally, the vertices belonging to the minimal vertex cover are moved out of ¢}
and t5 to teep. This generates the desired partition {¢1,tsep,t2} of ¢. The previous construction
is recursively applied to ¢; and t», while t, is recursively subdivided using spectral bisection.

3.2. Block cluster tree

The approximation results from [2,7] show that in order to be able to guarantee a sufficient
approximation of each submatrix B;s, t X s € P, of B by a matrix of low rank, the subblock
t x s has to satisfy the so-called admissibility condition

min{diam Xy, diam X} < ndist(Xy, X;) (3.2)

for a given parameter n > 0 or min{|¢|,|s|} < 7Tmin holds for a given block size parameter
Nmin € N. Here,

diam X; := max |z —y| and dist(Xy, X5):= min |z — y]
T,yeXy reXy, yeXs

and the support X; := (J;c, Xi of a cluster ¢ € T} is the union of the supports of the basis
functions corresponding to its indices. Notice that in order to satisfy (3.2) the supports of ¢
and s have to be far enough away from each other. This condition is caused by the fact that
the fundamental solution of elliptic differential operators possesses a singularity for x = y only.

The results in [6] indicate that instead of the geometric condition (3.2) one is better off
using the algebraic condition

min{diam(t), diam(s)} < ndist(t, s), (3.3)
where for t, s C I we set

diam(t) := Ii%%)t(dij and dist(t,s) := ,nin dij.
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Here, the expression d;; is the length of a shortest path connecting two indices 4, j € I within
the matrix graph G. In [6] a multi-level Dijkstra algorithm is presented which computes approx-
imations to the expressions appearing in (3.3) in such a way that the overall logarithmic-linear
complexity is preserved.

The construction of the desired partition P can be done no matter what the actual admis-
sibility condition is. The partition is usually generated by recursive subdivision of I x I. The
recursion stops in blocks which satisfy (3.2) or (3.3), respectively, or which are small enough.
The numerical method from this article uses a block cluster tree Ty, which is a cluster tree
for the set of matrix indices I x I associated with the descendant mapping S« ; defined by

if S7(t) =0 or Si(s) =0,

if ¢ # s and neither ¢ nor s are separators,

b

)

ijj(t,s) =

ST SSTER S

if t or s are separators and satisfy (3.3),

)

Sr(t) x Si(s), else.

The set of leaves L(Tr«) of the block cluster tree Ty forms a partition P of I x I such that
(3.3) is satisfied for large enough blocks.
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Fig. 3.1. Block structure of a nested dissection hierarchical Cholesky decomposition.

Given a suitable partition P, the set of H-matrices with blockwise rank k is defined as
H(P, k) := {M € R™>! : rank M, < k for all b € P}.

The storage requirement for M € H(P, k) is of the order knlogn. Multiplying M by a vector
can be done with O(knlogn) arithmetic operations. Since the sum of two H-matrices My, Ms €
H(P, k) exceeds blockwise rank k, the sum has to be truncated to H(P, k). This can be done
with complexity O(k*n logn) if an approximation error of controllable size can be tolerated. The
complexity of computing an approximation to the product of two H-matrices is O(k?n(logn)?);
see [13-15].

4. Degenerate Approximation of Solution Operators

In [2,7] it is proved that inverse finite element stiffness matrices of scalar elliptic boundary
value problems can be approximated by hierarchical matrices with logarithmic-linear complex-
ity. The core of the proof is the construction of a degenerate approximation to the Green
function. It is remarkable that this result holds for arbitrary coefficients of the operator. Based
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on the approximation of the inverse it was proved in [4] that also the factors of the LU de-
composition can be handled by hierarchical matrices with logarithmic-linear complexity. This
paves the way to approximate direct methods that do not suffer from the well-known effect of
fill-in.

Our aim in this section is to show that discrete solution operators of homogeneous Dirichlet
boundary value problems of the operator

L, = curllcurl +al, o> i,
2
can be approximated by hierarchical matrices with logarithmic-linear complexity. While it is
easy to extend the scalar situation to vector-valued problems in the usual Sobolev space setting,
the H(curl) spaces require some non-trivial adaptation of the results from [2,7] to this situation.
Assume that there is a Green function G(z,y) € R3*3 for L, and € such that for each row
G®, i =1,23, and all z € Q it holds that

(i) LoG@(2,-) = 6,e; in Q,
(ii) [G@(z,-)]s =0 on IN.

Since we do not want to repeat the proofs from [2,7], we concentrate on the central problem
of constructing degenerate kernel expansions to G, i.e., we will prove that for any k > |loge|*
there is

k
Gile,y) == > wia)ve(y)”
/=1

such that
1G(z, ) — Gr(z,-)|lL2(py) < €l G(z, '>||L2(D2) for all x € Dy,

where the pair of domains Dy, Dy C  satisfies the admissibility condition (see (3.2))
ndist(Dy, Dy) > diam Dy (4.1)

and D, is some domain enclosing Ds. The rest of the proof in [2] is based on this existence
result and can be applied without changes.

Remark 4.1. Since the technique in [2] uses a relation between the FE inverse and the dis-
cretization of L3, it allows to prove any approximation accuracy up to the finite element error.
Numerical experiments (see also Sect. 7), however, indicate that any precision can be reached.

Remark 4.2. In this section it will be assumed for theoretical purposes that  is convex
(curved) polyhedron. Furthermore, in practice the admissibility condition (4.1) is checked for
convex polyhedral supersets D}, D5 C R3 of Dy and Ds, respectively. Hence, we may assume
that Ds is the intersection of two convex polyhedrons D) and €2, which is a convex polyhedron,
too.

Let ) # D C Q be a convex polyhedron and let K be a convex subset of D having positive
distance to the boundary of D in €2, i.e.

o(K,D) = dist(K,0D N ) > 0.
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By X (D) we denote a given family of closed subspaces of L2(D) which have the property that
ulg € X(K) for u € X(D). The following proof will rely on the existence of a subspace
V C X(K) of finite dimension dim V' < k such that

. ca diam K
‘}Ielf"/ lu— vk < ?ﬁmﬂunmw) for all u € X (D). (4.2)

Estimate (4.2) will be proved in the second part of this section for an appropriate choice of
X (D).
Lemma 4.1. Assume that (4.2) is valid. Let Dy C D be a convex polyhedron satisfying

0 < diam Dy < no(Ds, D)

with given n > 0. Then for any € > 0 there is a subspace V- C X (Dq) with dimV < c%| log e|*
so that
‘}gfv [u—vL2p,) <ellullLzpy for allu € X(D), (4.3)

where ¢, = cae(2+1n).
Proof. Let £ = [|loge|] and ro = (D2, D). We consider a nested sequence of domains
K; ={x € Q:dist(z, D) <mo(£—3)/L}, j=0,...,L

Notice that Dy = K, C K-y C --- C Ko C D with o(K;,K;_1) = ro/l, j = 1,...,L
Furthermore, it is easy to see that diam K; < (24 n)r and that each Kj is a convex (curved)
polyhedron.
Let u € X(D) and eg := u|g, € X(Kp). Applying estimate (4.2) to the pair (Ko, K1) with
the choice
k= [(ca(2+n)ee ),

there is V7 C X (K1) such that eg|x, = v1 + €1 with vi € V] and

ca diam K4
leillLz(x,) < Tk oK Ko) leollrz(xy) < ¢ lleollne i)

Since eg| i, € X (K1), the new remainder e; also belongs to X (K7). Similarly, forallj =1,...,¢
we are able to find subspaces V; C X(K;) with dim V; < k and approximants v; € V; so that
ej_1|lx; = vj+e; and

lejllLe(x;) < e/t llej—1llLz(x, 1)

Using the restrictions of V; to the smallest domain Dy = Ky, let
V :=span{V}|p,, j=1,...,¢}.
Then V is a subspace of X (Dz) and, since eg|p, = €¢ + Z§=1 v;|p,, we are led to
Inf [leo = vllra(p,) < lleellLz(pa) < elleollrz(xoy < ellullza(n),

where the last inequality is due to Ko C D.
The dimension of V' is bounded by Z§:1 dimV; < k. Since e~1/¢ < ¢ we obtain that
dimV < (cae(2+n))30* + L. O
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We define the closed space X (D) by the following conditions: u € X (D) if

(i) u € H(curl; D),
(ii) a(u,v) =0 for all v € Hy(curl; D),

(iii) ug =0 on 9D N AN

Notice that (ii) implies that
(u,grad )r2(py =0 for all ¢ € Hy(D), (4.4)

which can be seen from using v := grad ¢ as a test function and exploiting that curlgrad ¢ = 0.
The previous lemma will now be applied to the i-th row GO (x,-) of G(z,-). It is obvious
that that g := G (x, Vs, 18 in X(Q\ Dy) for x € Dy.

Theorem 4.1. Let D1 C Q and let Dy C §2 be a convex polyhedron satisfying (4.1). Then for
any € > 0 there is a separable approrimation

k
Gi(z,y) =Y ue(@)ve(y)” with k< c}llogel*,
=1

so that for all x € Dy
||G(CL', ) - Gk(xa ')||L2(D2) < 5‘|G(337 ')||L2(ﬁ2)7 (4'5)
where Dy := {y € Q: 2ndist(y, Dy) < diam Dy} and ¢, = 2cae(1 + 7).

Proof. Notice that because of dist(Dy, Dg) > 0, we have gg) € X(ﬁg) for all z € D;. Since
in addition diam Dy < 210 (D3, D2), Lemma 4.1 can be applied with 5 replaced by 2.
Let {vi1,...,vi} be a basis of the subspace V C X (Ds) with k = dimV < ¢3,[loge|*. By

means of (4.3) gg) can be decomposed into g,gf) = géf) + el with gﬁ) €V and

lells o) < elle liagpyy: i = 1.2,
Expressing gfj) in the basis of V', we obtain

k
g => u (@)
/=1

with coefficients ugi) depending on = € D;. The function Gy(z,y) = 25:1 u(2)ve(y)T with
uy = (uél), uf),ué?’))T satisfies estimate (4.5). O

It remains to show (4.2) for our choice of X (D). The first step is the interior regularity for
elements from X (D), which is proved in the following lemma.

Lemma 4.2. Let D C Q be a convex polyhedron and let u € X (D). Then for any set K C D
satisfying o (K, D) > 0 it holds that

‘L M1
[ale ) < (K. D)HUHLZ(D): cL Muo +1,

where pg, p1 are defined in (1.1).
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Proof. Let n € CY(D) satisfy 0 <7 < 1,n=11in K, n = 0 in a neighborhood of D N Q
and

2

< —-.
We have that n?u € H(curl; D) and (n*u); = 0 on 9D = (0D N Q) U (0D N dN). Hence, n*u
can be used as a test function in the definition of X (D), which leads to

1
(;CUHU,CUI‘I(WQU))B(D) +alnuzpy = 0.
Using curl(pu) = ¢ curlu + Vo x u for ¢ € C*(D), from
1 1
(;curl u, curl(n*u))rz2(p) = (;curl u,n curl(nu) +nVn x u)rz(p)

= (gcurl u, curl(nu) + Vn x u)r2(p)

1 1
= (;curl(nu) - ;Vn x u, curl(nu) + Vn x u)r2(p)

1/2

= [~ 2eurl(nu)|32 p) — ln™"2Vn x ulls p)

we obtain that
HnuH%—I(curl;D) < ||7711Hiz(D) + H1|\M_1/2C11r1(77u)||i2(p)
= [l 2V X ullfap) + (1= ap)llnullgsp)
M1
< %”VWHEO,DHUH%R(D)
d >1 d —-1/2 < —1/2
ue to a > 1/py and [|p=2Vn x ullLz(py < pg " IIVilloo,plul|L2 (D)
Furthermore, (4.4) shows that nu also belongs to Hg(curl; D) N H(div; D) with divyu =

u - V. The latter space can be imbedded into H!(D); see [12, Theorem 3.7]. From |9,
Theorem 2.3 and Remark 2.4] we obtain that

lgrad nu|[fzpy < [leurlnullz. p) + [divoullgz p),

because the second fundamental form is positive definite due to the convexity of 2. The assertion
follows from

allfr ) < Il oy < lnallfrearsp) + 1diviualf o

H1
19125 (MO " 1) JulZs o,

4 (1
< + 1) [ullfz(py- O

IN

IN

o2 \ po

Remark 4.3. Notice that the constant ¢, depends on the ratio of p; and pg but not on the
smoothness of y. In the numerical experiments it will even be hard to observe a dependence

on 1 /-

Before we prove (4.2) in Lemma 4.4, let us state the following lemma from [7]. There we
actually proved a scalar version; the generalization to vector-valued functions u is, however,
obvious.
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Lemma 4.3. Let D C Q be convez. If X is a closed subspace of L?(D), then for any k € N
there is a subspace V C X satisfying dim V < k so that

. diam D

‘}gfv [u—vL2p) < 637\/E||gradu||Lz(D) for allu € X NnHY(D).

Lemma 4.4. Let D C Q be a convex polyhedron and let K C D, o(K, D) > 0, be convex. Then
for any k € N there is a subspace V C X(K) satisfying dim V < k so that

. ca diam K
‘}1615 [u—vrex) < %WHUHL?(D) for allu € X(D).

Proof. By Lemma 4.3 there is V C X (K) such that

diam K
\}Ielfv [u— vk < C%ngaduHLz(m for all u € X(K) NnH(K).

Hence, Lemma 4.2 gives the estimate

. cq diam K
‘}g‘f/ [u—vlL2x) < %WHUHL%D) for all u € X(D),
where we set ¢4 := ccy,. O

5. Preconditioning the Curl-Curl Operator

Let A € R™*" be the coefficient matrix resulting from the edge element discretization of the
variational formulation (2.1) and let

O:>\1::>\m71<)\m§§)\n

denote the eigenvalues of the symmetric positive semi-definite matrix A. Notice that the small-
est non-vanishing eigenvalue A, is bounded by a constant from below due to (2.2).

In this section it will be shown that the regularization leads to a positive definite matrix
which provides a spectrally equivalent preconditioner on the orthogonal complement (ker A)+
of the kernel of A. Note that the spectral equivalence on (ker A)~ is sufficient for a bounded
number of iterations since the conjugate gradient method (CG) suppresses kernel components
of the initial vector. Given xg € R"™, a scalar product (-,-) and a positive-semidefinite matrix
A which is self-adjoint with respect to (-,-), CG generates a sequence {ry} defined by

ro:=b—Axg € R", rg LkerAd, wog=1,
k41 :wkrk—k(l—wk)rk,l —OlkkaT'k, k:0,1,2,....
The choice of the parameters

(T k) 1 1 ook (T, TE)
———= and w, =1-w, !

(Ary, 1) oo (Pe—1,Tk=1)

o =

guarantee that 7,11 L ker A. Let AT € R™*" be the pseudo-inverse of A. Then the following
generalization (see [23]) of the well-known CG error estimate holds

1- V&
14+¢

2k
(1, At ry) <4( ) (ro,Atro), k=0,1,2,..., (5.1)



Parallel Hierarchical Matrix Preconditioners for the Curl-Curl Operator 635

where £ = Ay /.

Consider a positive definite preconditioner C' € R™*™. Then AC is positive semi-definite
with respect to the scalar product (x,y)c := y? Cx. Hence, the mentioned properties of CG
also hold for the preconditioned matrix AC' if the scalar product (-, )¢ is used. In particular,
the residuals 7y are still in (ker A)* provided 7y L ker A. This follows from C~1x € ker AC for
x € ker A and

rie = (ry, O z)e = 0.

Furthermore, instead of (5.1) we have that

1— 7
T{A-'—Tk §4(1+£

where £’ denotes the ratio of the m-th and the n-th eigenvalue of AC.

Due to (2.4) the regularization (1.3) leads to positive definite coefficient matrices A, :=
A+aM, where M denotes the mass matrix M;; = (goj, w;)L2(0) and ¢;, i = 1,...,n, correspond
to edge elements. The stiffness matrix A € R"*" has entries A;; = (Lop;, ¢;)L2(0)-

Let C := LHL7T1(7 Ly € H(P, k), be an approximate Cholesky decomposition of A, satisfying

2k
) rdAtry, k=0,1,2,...,

[Aa = Cll2 < e[| Aall2- (5.2)

Then an appropriate choice of the hierarchical matrix rounding precision €3; guarantees that
A and C are spectrally equivalent on the orthogonal complement (ker A)+ of the kernel of A.
This can be seen from the following arguments. Let A}, \;, > 0 denote the smallest and the
largest eigenvalue of M. From (5.2) it follows that

11— AZ2CAL Y,
= A2 (A = CYALM P2 = (A2 (An — C)ALM?)
=p(AJ (Ao — C)) < |AZ (Aq = O) |2
<A 2l Aa = Cll2 < er,

where p(A) denotes the spectral radius of A and

An +aX A A
= || Ag|l2]|AS e < 22— = T n
= Malaldg e < 200 — Sy 2

denotes the spectral condition number of A,. Setting y := A;l/Qx for all x € R™, it holds that

1T — A 2CATY 2
_JaTA P (A0 — OV A 2| yT(Aa = Oy

et $T

x y" Ay
We obtain that
(1 —er)al Agr <27Cx < (1+¢er)aT Az for all x € R™.

From zT Az > A\, ||z||3 for all z € (ker A)* it follows that

)\/
2T Agze < 2T Az + o) ||z)|2 < (1 + a)\" ol Az

m
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Hence, we obtain for all x € (ker A)* and ex < 1 that

! !/
(I—-er)(1+ a;—l)mTAx <2TCr < (1+er)(1+ a))\\—")xTAac

n m

due to ,

zl Agz > (1 + a%)mTAm.

n

The choice

leads to spectral equivalence

1 by Al

—(1+ o)t Ax < 2”Cx < §(1 +a )T Ax,  x € (ker A)L,

2 An 2 Am
of A and C on (ker A)* provided o > 1/py is chosen such that a\/, ~ \,,. Since the ratio
Al /Am is bounded by a constant, choosing a as a constant leads to spectral equivalence.

Remark 5.1. From the point of preconditioning it would be more efficient to use a multiple
of the identity matrix I instead of the mass matrix because then A, /A] = 1.

6. Parallel Approximate LU Factorization

Assume that p = 2¥, L € N, processors are at our disposal. It is a well-known fact that in
addition to reducing the fill-in, nested dissection reorderings have the advantage that the LU
factorization allows for an efficient parallelization. This follows from the special structure of
the matrix.

We present an LU factorization as a recursion over ¢. Consider a diagonal block A from the
£-th level, ¢ < L, of the block cluster tree. The LU factorization of A can be computed from

An Ais Ly Un Uis
Agg Aoz = Lo Uy Uos
Az Agzy Ass L3 L3z L3 Us3

Indices 1 and 2 correspond to clusters separated by an interface. The latter corresponds to the
index 3. The previous factorization is equivalent to

compute Lq1,Uq; from A1y = Ly1Uqq, compute Los, Uss from Agy = LogUss, (6.1a)
compute Uiz from A3 = L11U;3, compute Usz from Agg = LooUss, (6.1b)
compute L3y from A3y = L31Uqq, compute Lgs from Azs = L3oUss, (6.1c)
compute X := L3 Uqs, compute Xs := L3oUss, (6.1d)

and
compute L3z, Ussg from L33Usz = Azz — X7 — Xo. (6.2)

Hence, each of the two tasks in (6.1a), (6.1b), (6.1c), and (6.1d) can be done in parallel.
Since in the ¢-th level 2X~* processors can be used to compute the factorization, we use
2L=t=1 processors to solve the left part of (6.1) (the part corresponding to the first cluster)

and the other 2£=*~! processors to solve the right part (the second cluster). If £ = L, then the
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sequential H-matrix factorization algorithm introduced in [3] is used; see also [22] for the first
algorithm for the computation of hierarchical LU decompositions.
Problem (6.1b) is a block forward substitution, i.e., a problem of type

A A Ly X1 X2
Ag1 Ax| = Los Xo1 Xoo (6.3)
Az1 Asp L3y L3z L3z [ X311 X3

has to be solved for X;;, ¢ = 1,2,3, j = 1,2. Assume this problem is to be solved with
2L=t processors. Then 2E~¢~1 processors will be used to solve the left and the other 2L—¢~1
processors will solve the right column of the following block forward substitutions

A = L1 Xy, Ag1= Lo Xo1,

Ao = L11 X329, Ao = Lo X
and multiplications

Yy == L31 X1, Yy := L3y X0,

Zy = L31X12, Zy:= L3 Xogs.

To parallelize these operations on p processors one can exploit the nested dissection sub-
structure

C :=[Ay, Ay, A3]"[By1, B, Bs] = A1 By + A3 By + A3Bs,
which can be accomplished by computing each of the products
Cl = AlBl, Cg = AQBQ,

on p/2 processors and computing C = A3Bs + C; + Co on one of the p processors.
The last step to solve (6.3) is the computation of X3; and X35 from

L33X31 = A31 — Y1 —Ys and L3s3Xgo = Azp — Z1 — Zo.

processor 0

processor 1

processor 2

JHE N

processor 3

Fig. 6.1. Distribution of blocks among processors.
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Since L33 does not possess a nested dissection substructure, we solve each of the two problems
sequentially on the first processor of each half of the p processors. To this end, Z; and Y5 have
to be sent to the respective processor, while Z5 and Y; are already in the right place. Again, the
case £ = L is treated by applying the sequential H-matrix block forward substitution presented
in [3]. The backward substitution (6.1c) can be done analogously.

Only the last step (6.2), the computation of L3z and Ussz, requires the completion of all
previous steps (6.1a) through (6.1d). We solve (6.2) sequentially, which requires to communicate
either X7 or X5. The parallelization of the Cholesky decomposition used in this article is
now straightforward. Since the dimension of (6.2) is significantly smaller than the previous
problems, one can expect a reasonable speedup. The resulting distribution of blocks (and
hence the memory distribution) among the processors is shown in Fig. 6.1 in the case p = 4.

7. Numerical Experiments

Numerical experiments were made on the test geometry of Fig. 7.1. This geometry consists
of a coil with material parameters o = 10° (Q m)~!, u, = 1 and a highly permeable core with
o =0 (Qm)"!, g =500 which are surrounded by air with ¢ = 0 (2m)~1, g, = 1. Therefore
the magnetic permeability jumps between a value of 1.3 - 1076 (Vs)/(Am) in the air and the
coil to a value of 6.3 - 10=% (Vs)/(Am) in the core. The diameter of the coil is 2.45 cm.

Table 7.1 contains the time required to setup the hierarchical matrix preconditioner for
various problem sizes n and different numbers of processors p, while Table 7.2 shows the time

Fig. 7.1. Results of the magnetostatic field computations. The upper left picture shows the setting,
the upper right picture shows the exciting current density jo = —ograd o in A/mQ7 and the lower
pictures show the resulting magnetic field B = curlu in Tesla on two different scales. The magnetic
flux is trapped in the highly permeable core of the coil.
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2

required for the iterative solution. The columns labeled “E,” contain the parallel efficiency

_ _t)
"opet(p)
i.e., the ratio of the execution time required on one processor and p times the time used on p
processors.
Table 7.1: Cholesky factorization time on p = 1, 2,4 processors.
n non-zeros partition p=1 p=2 Eo p=4 Ey
163693 2679725 3.4s 31.8s 16.1s 98.8% 9.7s 82.0%
297 302 4884262 7.2s 65.5s 33.5s 97.8% 17.8s 92.0%
420881 6909 745 11.3s 112.3s 59.3s 94.7% 33.9s 82.8%
523989 8626 747 14.2s 131.3s 66.4s 98.9% 40.5s 81.0%
664 539 10921019 20.0s 181.6s 91.1s 99.7% 50.0s 90.8%
742 470 12192476 22.3s 212.4s 115.6s 91.9% 60.3s 88.1%
810412 13284530 25.2s 234.7s 131.2s 89.4% 70.6s 83.1%
955 968 15715398 29.5s 273.4s 159.6s 85.7% 82.7s 82.6%

Table 7.2: Preconditioned CG solution on p = 1,2, 4 processors.

cca = 104 cca = 107

n #It | p=1 p=2 Ey p=4 FE4|#It| p=1 p=2 FEy p=4 E4
163693 | 60| 17.7s 9.3s 95% 6.2s 7T1% | 82| 24.2s 12.7s 95% 858 71%
297302 | 75| 42.0s 24.2s 87% 14.6s 72% | 103 | 57.6s 33.2s 87% 20.0s 72%
420881 | 96| 81.4s 43.5s 94% 28.8s 71% | 131 |110.8s 64.6s 86% 39.0s 71%
523989 | 92| 93.9s 50.3s 93% 33.6s T0% | 124 | 126.6s 73.8s 85% 45.1s 70%
664539 | 88 |118.9s 63.6s 93% 42.2s T0% | 120 | 162.3s  86.8s 93% 57.4s 70%
742470 | 771117.9s 69.9s 84% 42.1s 70% | 106 | 162.3s  89.1s 91% 57.9s 70%
810412 | 81 |134.0s 74.0s 91% 47.3s 71% | 109 | 180.3s 99.8s 90% 64.1s 70%
955968 | 85|163.3s 92.5s 88% 58.4s T0% | 115 |221.0s 124.7s 89% 79.0s 70%
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Fig. 7.2. Total solution time per dof for p = 1, 2,4 processors.
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The results were obtained on a system consisting of two Intel Xeon 5160 processors (dual
core, 3 GHz). In all tests we have used a multiple of the identity matrix for regularization,
where the regularization parameter o was set to 2w /ug. Notice that the size of the matrix
entries in A is of the order 1/u; see also the proof of Lemma 4.2 where o > 1/p1 is exploited.
The rounding accuracy 3 of the hierarchical matrix Cholesky factorization was chosen 1072,

Apparently, the complexity scales almost linearly (see Fig. 7.2 which depicts the overall
solution time per degree of freedom for ecg = 10™%) and the parallelization of the hierarchical
LU factorization algorithm shows a competitive speedup. The number of iterations is bounded
independently of n. The major part of the total solution time is used to construct the precon-
ditioner. This ensures a quick computation of the magnetic field in case of varying exciting
currents jg, i.e. for multiple right-hand sides.

Acknowledgments. The authors wish to thank Ralf Hiptmair and the referees for helpful
suggestions.
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