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Abstract

In this paper, we study the explicit expressions of the constants in the error estimates

of the lowest order mixed and nonconforming finite element methods. We start with an ex-

plicit relation between the error constant of the lowest order Raviart-Thomas interpolation

error and the geometric characters of the triangle. This gives an explicit error constant

of the lowest order mixed finite element method. Furthermore, similar results can be ex-

tended to the nonconforming P1 scheme based on its close connection with the lowest order

Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as

computable error bounds, which are also consistent with the maximal angle condition for

the optimal error estimates of mixed and nonconforming finite element methods.
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1. Introduction

Finite element methods for the accurate numerical solution of partial differential equations
are of great practical interest in the engineering and scientific computing applications. Up to
now, their mathematical theory such as a priori error estimates have been well established in
the literature, see, e.g., [9, 14, 36]. Let u, uh denote the exact solution of the model problem
and the associated discretized solution, respectively. The convergence analysis of finite element
method is typically of the form

‖u− uh‖ ≤ Chk|u|, (1.1)

where h denotes the maximal diameter of the triangulation, ‖ · ‖ and | · | stand for some
appropriate norm and seminorm in certain function spaces, respectively.

Such a result may not be effective unless the dependence of the constant C is specified.
The classical finite element theories, see, e.g., [9, 14], show that the constant C in (1.1) does
not dependent on the function u, but may dependent on the sine of the minimal angle of the
triangulation for the two dimensional case, which is equivalent to the well-known nondegenerate
assumption or regular assumption of finite element meshes. In fact, the minimal angle condition
for the finite elements can be relaxed, which results in the so-called degenerate elements. Error
estimates for degenerate elements can go back to the works by Babus̆ka and Aziz [5] and by
Jamet [20]; both of them proved the optimal error estimate for the linear Lagrange triangular
element under the assumption that the underlying meshes satisfy the maximal angle condition.
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Since late 1980’s degenerate elements have been extensively studied; interested readers are
referred to [2, 12,22] and references therein.

As is known that there appear various constants in the process to derive the error estimates.
It is good to evaluate these constants explicitly for a quantitative error bound purpose. Actually,
there are some works on an explicit error estimate of the finite element methods, see, e.g.,
[3,6,7,18,21] for linear finite element methods and [25] for bilinear quadrilateral finite element
methods. However, almost all of them are concentrated on the standard conforming finite
element methods, which only involves an explicit interpolation error estimate. To the best of
our knowledge, as far as other type finite element methods are concerned, for example, mixed
elements and nonconforming elements, there seem no explicit error bounds are given. In order
to obtain an explicit error bounds for such type elements, only having the interpolation error
estimate is not enough. The mixed element methods and the nonconforming element methods
need further an explicit bound of the discrete inf-sup constant and of the consistency error,
respectively.

In this paper, we are aim to obtain an explicit error bound for the lowest order mixed finite
element and nonconforming finite element for the second order problems ( [33,34]). Firstly, we
prove some results on the error constants of the Raviart-Thomas interpolation, which plays an
essential role in the a priori error estimates of finite element methods. The technical tool is an
explicit trace theorem on the reference unit triangle. On the other hand, the Babus̆ka-Brezzi
condition is well-known to guarantee the stability of a mixed finite element and play a key
role in the error estimates (cf. [10, 11]). It is also essential to give an explicit expression of
the inf-sup constant. Based on these results we can derive a constructive error bound for the
mixed finite element. Finally, we also obtain an explicit error estimate for the nonconforming
Crouzeix-Raviart [16] element by its close relation to the mixed finite element method (cf.
[4, 26]). Note that Kikuchi and Liu [21] recently derived an explicit interpolation error bounds
for the nonconforming Crouzeix-Raviart element, but that can not implies an explicit bounds
for the finite element error. The explicit a priori error estimates obtained in this paper provide
computable error bounds and can serve as a posteriori error estimates for finite element methods
[1, 35]. Furthermore, our explicit error estimates for the mixed and nonconforming elements
are consistent with the maximal angle condition as the conforming linear Lagrange triangular
element [5, 22].

The rest of the paper is organized as follows. In section 2, we introduce the set-up and
approximation of the model problem along with some notations and preliminary results for
subsequent use. Section 3 presents the an explicit priori error estimate for the lowest order
Raviart-Thomas finite element. Similar estimates are extended to the nonconforming Crouzeix-
Raviart element in section 4. Some numerical experiments are carried out in section 5. Finally,
some comments and extensions of the results are given in section 6.

2. An Explicit Bound of the Inf-Sup Constant

In this section, after recalling the model formulation and some notation, we give a sharp
Friedrichs’ type inequality, based on which we obtain an explicit bound of the inf-sup constant.

Throughout this paper, we denote with small letters the scalar functions, with small bold
fonts the vectorial ones. We will adopt the standard conventions for Sobolev norms and semi-
norms of a function v defined on an open set G:
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‖v‖m,p,G =




∫

G

∑

|α|≤m

|Dαv|p



1
p

,

|v|m,p,G =




∫

G

∑

|α|=m

|Dαv|p



1
p

.

We shall also denote by Pl(G) the space of polynomials on G of degrees no more than l.
Without specific explanations, Ω ⊂ R2 is denoted a bounded convex polygonal domain in

this paper. We consider the following second order elliptic equations: Find u ∈ H1
0 (Ω) such

that {
−∆u = f, in Ω,

u = 0, on ∂Ω.
(2.1)

It is known that for convex domain with ∂Ω ∈ C2, the above problem has a unique solution
u ∈ H2(Ω)∩H1

0 (Ω). Furthermore, the following Miranda-Talenti estimate holds (cf. [27− 29]),

|u|2,Ω ≤ ‖f‖0,Ω, (2.2)

which was extended to general convex polygonal domain in [7]. Note that (2.2) holds for any
function belongs to H2

0 (Ω), so the results of this paper can be extended to more general second
order problems.

We denote by (·, ·)G the L2(G) inner product, and if G = Ω, we will drop the notation Ω
for simplicity. Let V = H1

0 (Ω). The standard variational form of (2.1) is:
{

Find u ∈ V such that

(∇u,∇v) = (f, v), ∀ v ∈ V.
(2.3)

A mixed formulation for (2.1) can be obtained by introducing a flux variable:

p = −∇u. (2.4)

Then the problem (2.1) is equivalent to seeking a pair (p, u) with u ∈ V such that
{

p +∇u = 0, in Ω,

∇ · p = f, in Ω.
(2.5)

In order to derive a variational form for the system of linear equations (2.5), we introduce
the following Hilbert space:

H(div; Ω) := {q ∈ L2(Ω)2;∇ · q ∈ L2(Ω)} (2.6)

with the norm:
‖q‖

H(div;Ω)
:= {‖q‖20,Ω + ‖∇ · q‖20,Ω}

1
2 . (2.7)

Then the variational formulation for (2.5) is to seek (p, u) ∈ H(div; Ω)× L2(Ω) such that
{

(p,q)− (∇ · q, u) = 0, ∀q ∈ H(div; Ω),

(∇ · p, v) = (f, v), ∀ v ∈ L2(Ω),
(2.8)
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The well-posedness of problem (2.8) has been well established in the literatures, see. e.g. [11].
The key ingredient in the process is the well known Babus̆ka-Brezzi condition (or Ladyzhenskaja-
Babus̆ka-Brezzi condition) which reads as: there exists a constant β(Ω) > 0 such that

sup
p∈H(div;Ω)\0

(∇ · p, u)
‖u‖0,Ω‖p‖H(div;Ω)

≥ β(Ω), ∀ u ∈ L2(Ω) \ 0. (2.9)

The condition (2.9) is often called the inf-sup condition in view of the equivalent representation

inf
u∈L2(Ω)\0

sup
p∈H(div;Ω)\0

(∇ · p, u)
‖u‖0,Ω‖p‖H(div;Ω)

≥ β(Ω). (2.10)

Generally speaking, the above inf-sup constant β(Ω) is only dependent on the domain Ω and the
final error constants for the mixed finite element methods will dependent on β(Ω). Therefore,
for some quantitative purposes, it is better to give an explicit bound of β(Ω). To this end, we
firstly prove an explicit bound for the well-known Friedrichs’ type inequality [19].

Lemma 2.1. Suppose the domain Ω is star-shaped with respect to a point, which we just choose
to be the origin for simplicity. Let the boundary of Ω be represented in the plane polar coordinates
by r = ρ(θ). Then for any u ∈ H1

0 (Ω), we have

‖u‖0,Ω ≤ max
θ

ρ(θ)‖∇u‖0,Ω. (2.11)

Proof. A density argument shows that we only need to prove (2.11) for smooth functions u ∈
C∞0 (Ω). For any fixed point x = (r1, θ1) ∈ Ω, there exists one another point y = (ρ(θ1), θ1) ∈
∂Ω. Assume ν(x) = (ν1(x), ν2(x)) is the unit vector from the point yto x. Noticing that
u(ρ(θ1), θ1) = 0, we have

u(r1, θ1) = u(r1, θ1)− u(ρ(θ1), θ1)

=
∫ ρ(θ1)

r1

∂u

∂r

(
r, θ1)dr

≤
√

ρ(θ1)
r1

− 1

(∫ ρ(θ1)

r1

∣∣∣∣
∂u

∂r

(
r, θ1)

∣∣∣∣
2

rdr

) 1
2

. (2.12)

Then an application of the Cauchy-Schwarz inequality yields that

‖u‖20,Ω =
∫ 2π

0

∫ ρ(θ1)

0

∣∣u(r1, θ1)
∣∣2r1dr1dθ1

≤
∫ 2π

0

∫ ρ(θ1)

0

(ρ(θ1)− r1)
∫ ρ(θ1)

r1

∣∣∣∣
∂u

∂r

(
r, θ1)

∣∣∣∣
2

rdrdr1dθ1

≤
∫ 2π

0

(∫ ρ(θ1)

0

∣∣∣∣
∂u

∂r

(
r, θ1)

∣∣∣∣
2

rdr

)∫ ρ(θ1)

0

(ρ(θ1)− r1)dr1dθ1

≤ 1
2

max
θ

ρ(θ)2
∫ 2π

0

∫ ρ(θ1)

0

∣∣∣∣
∂u

∂r

(
r, θ1)

∣∣∣∣
2

rdrdθ1

≤ max
θ

ρ(θ)2‖∇u‖20,Ω (2.13)

which implies the desired assertion. ¤
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Remark 2.1. The constant maxθ ρ(θ) can be easily characterized in practice for some domains
with simple structure. For example,

max
θ

ρ(θ) =
dΩ

2
,

where dΩ is the diameter of Ω if Ω is symmetric to a point, which is the case for the circles,
triangles, rectangles, and so on. As for the convex polygonal domains which are interested the
main concern of this paper, the value of maxθ ρ(θ) is also not difficult to bound. Moreover, in
general, we have

dΩ

2
≤ max

θ
ρ(θ) < dΩ.

Remark 2.2. The estimate (2.11) provides a satisfactory explicit bound for the constant of the
Friedrichs’ inequality, which is particulary useful for some quantitative estimates in numerical
analysis of partial differential equations. In the following part of this section, we will derive an
explicit estimate for the inf-sup constant in (2.10).

Lemma 2.2. Suppose the domain Ω is star-shaped with respect to a point which we just choose
to be the origin for simplicity. Let the boundary of Ω be represented in the plane polar coordinates
by r = ρ(θ). Then we have the following inf-sup condition

inf
u∈L2(Ω)\0

sup
p∈H(div;Ω)\0

(∇ · p, u)
‖u‖0,Ω‖p‖H(div;Ω)

≥ β∗(Ω) (2.14)

with
β∗(Ω) =

1√
1 + maxθ ρ(θ)

.

Proof. For any fixed u ∈ L2(Ω) \ 0, there exists a unique w ∈ H1
0 (Ω) satisfying

{
−∆w = u, in Ω

w = 0, on ∂Ω.
(2.15)

From a simple variational analysis we conclude that the sup in (2.9) is attained at p = −∇w

and

sup
p∈H(div;Ω)\0

(∇ · p, u)
‖u‖0,Ω‖p‖H(div;Ω)

=
‖u‖0,Ω

(‖u‖20,Ω + ‖∇w‖20,Ω)
1
2
. (2.16)

On the other hand, integrating both sides of the first identity of (2.15) gives that

(−∆w, w) = ‖∇w‖20,Ω = (u,w) ≤ ‖u‖0,Ω‖w‖0,Ω, (2.17)

which, together with (2.11), gives

‖∇w‖0,Ω ≤ max
θ

ρ(θ)‖u‖0,Ω. (2.18)

Then the proof is completed by combining (2.16)-(2.18). ¤

Remark 2.3. From Lemma 2.2 we see that the inf-sup constant is independent of the aspect
ratio of the domain. This is an advantage against the inf-sup constant of Stokes problem. It is
known that the inf-sup constant deteriorates on domains with large aspect ratios which is well
known for rectangles [13, 30]. This results in poor behaviors of the conjugate gradient method
for the numerical solution of the discrete Schur complement operator, cf. [17, 23,31].
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3. Explicit Error Estimates for the Raviart-Thomas Element

In this section, we present the lowest order Raviart-Thomas element approximation of the
mixed formulation (2.8) and aim to obtain an explicit error estimates. The main ingredients
involve the accuracy bounds for the interpolation error and the discrete inf-sup constant.

We firstly give an introduction of the finite element space. To this end, let Jh be a finite
element triangulation of Ω, with each element K being an open triangle of size hK , h = max

K∈Jh

hK .

For a general element K with its three vertexes ai, i = 1, 2, 3, without lost of generality, assume
the maximal angle of K is ∠a1a3a2 = αM,K . Let ni,vi and li be the unit exterior normal,
direction and length of the edges from a3 to a2 and from a3 to a1, respectively, i = 1, 2. We
denote by K̂ the reference unix simplex in the (ξ, η) space with vertices â1 = (0, 0), â2 = (1, 0)
and â3 = (0, 1). Then for any K, let FK be the affine mapping such that FK(K̂) = K, where

FK(x̂) = Bx̂ + a3 with B = (l1v1, l2v2),

see Fig. 1 as for an illustration.
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Fig. 1. An illustration of the affine mapping.

The Raviart-Thomas element defined on K (cf. [33, 34]) reads

RT0(K) = P0(K)2 ⊕ xP0(K) (3.1)

with its interpolation operator RTK : H1(K)2 −→ RT0(K) defined by
∫

li

RTKw · vids =
∫

li

w · vids, i = 1, 2, 3. (3.2)

For the global versions of the interpolation operator, it is denoted as

RTh|K = RTK , ∀K ∈ Jh.

The Raviart-Thomas space Qh ⊂ H(div; Ω) is defined as

Qh = {qh ∈ H(div; Ω);qh|K ∈ RT0(K), ∀ K ∈ Jh}. (3.3)

Furthermore, let Uh be the space of piecewise constant functions, which is the discrete approx-
imation of L2(Ω). Define the operator Ph : L2(Ω) −→ Uh by

Phw|K = P0Kw =
1
|K|

∫

K

wdxdy,
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for any K ∈ Jh. It is well known that the above interpolation operator RTh satisfies the
following commutative diagram property:

H1(Ω)2 div−→ L2(Ω)

RTh ↓ ↓ Ph

Qh
div−→ Uh. (3.4)

The subsequent work we need to do is to prove an explicit local error estimates for the
interpolation operators defined above. As a preparation, we firstly present the following classic
Poincaré inequality which can be found in [8, 32].

-

6
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@
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â3

ξ

â4

â2

K̂

â1

η

Fig. 2. The relation between the unit square domain T̂ and the reference simplex K̂.

Lemma 3.1. Let Ω be a bounded convex domain and let w ∈ H1(Ω) be a function with van-
ishing average. Then

‖w‖0,Ω ≤ dΩ

π
|w|1,Ω. (3.5)

Remark 3.1. This above inequality was firstly proved by Payne and Weinberger in [32].
However, the proof contains an error, and recently [8] gave a modified proof. Fortunately, the
optimal constant d/π in the Poincaré inequality remains valid.

For the convenient of the subsequent use, we will prove a sharp trace theorem on the reference
element K̂.

Lemma 3.2. For a general element K, let l̂i = F−1
K (li), i = 1, 2. Then ∀ŵ ∈ H1(K̂) and for

all ε > 0, we have

‖ŵ‖2
0,l̂i

≤
(

2 +
2
ε2

)
‖ŵ‖2

0,K̂
+ ε2|ŵ|2

1,K̂
, i = 1, 2. (3.6)

Proof. We will use a direct argument. Let T̂ be the unit square domain containing K̂, i.e.,

T̂ = {x̂ = (ξ, η); 0 < ξ, η < 1},

see Fig. 2. Then we can extend ŵ to T̂ by reflection with respect to the line ξ + η = 1 as the
following:

ŵ∗ =

{
ŵ(ξ, η), if (ξ, η) ∈ K̂,

ŵ(1− η, 1− ξ), if (ξ, η) ∈ T̂\K̂.
(3.7)

Due to the symmetry of ŵ∗, we have

‖ŵ∗‖2
0,T̂

= 2‖ŵ‖2
0,K̂

, |ŵ∗|2
1,T̂

= 2|ŵ|2
1,K̂

. (3.8)
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Consider a smooth function ŵ∗ ∈ C1(T̂ ). We have

ŵ∗(ξ, η)2 = ŵ∗(ξ, 0)2 +
∫ η

0

∂(ŵ∗(ξ, t)2)
∂t

dt

= ŵ∗(ξ, 0)2 + 2
∫ η

0

ŵ∗(ξ, t)
∂ŵ∗(ξ, t)

∂t
dt, (3.9)

which implies that

ŵ∗(ξ, 0)2 ≤ ŵ∗(ξ, η)2 + 2
∫ η

0

|ŵ∗(ξ, t)|
∣∣∣∣
∂ŵ∗(ξ, t)

∂t

∣∣∣∣ dt. (3.10)

Integrating both sides of (3.10) over ξ and η on T̂ , we get

‖ŵ∗‖2
0,l̂2

≤ ‖ŵ∗‖2
0,T̂

+ 2‖ŵ∗‖0,T̂

∥∥∥∥
∂ŵ∗

∂η

∥∥∥∥
0,T̂

≤
(

1 +
1
ε2

)
‖ŵ∗‖2

0,T̂
+ ε2

∥∥∥∥
∂ŵ∗

∂η

∥∥∥∥
2

0,T̂

=
(

2 +
2
ε2

)
‖ŵ‖2

0,K̂
+ ε2|ŵ|2

1,K̂
. (3.11)

This is just (3.6) for the case i = 2. The other case can be proved by the same argument. The
proof of the lemma is complete. ¤

The following result can be regarded as a generalization of the Poincaré inequality, which
will play an important role in the interpolation error estimate of the Raviart-Thomas element.

Lemma 3.3. Let w ∈ H1(K) be a function with vanishing average on the side livi, i = 1 or 2.
Then we have

∥∥w
∥∥

0,K
≤

√
4 + 2

√
2π

π

∥∥∥∥∥∥

2∑

j=1

lj
∂w

∂vj

∥∥∥∥∥∥
0,K

, (3.12)

where ∂/∂vj denotes the derivative along the direction of vi.

Proof. Let P0l̂i
be the mean value interpolation operator over l̂i. Then on the reference

element, we can derive K̂

∥∥ŵ
∥∥2

0,K̂
=

∥∥∥ŵ − P0l̂i
ŵ

∥∥∥
2

0,K̂

=
∥∥∥(ŵ − P0K̂ŵ)− P0l̂i

(ŵ − P0K̂ŵ)
∥∥∥

2

0,K̂

≤
∥∥(ŵ − P0K̂ŵ)

∥∥2

0,K̂
+

1
2

∥∥(ŵ − P0K̂ŵ)
∥∥2

0,l̂i

≤ (2 +
1
ε2

)
∥∥(ŵ − P0K̂ŵ)

∥∥2

0,K̂
+ ε2

∥∥∥∇̂ŵ
∥∥∥

2

0,K̂

≤
(

4 + 2
ε2

π2
+ ε2

) ∥∥∥∇̂ŵ
∥∥∥

2

0,K̂

≤ 4 + 2
√

2π

π2

∥∥∥∇̂ŵ
∥∥∥

2

0,K̂
, (3.13)
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where we have used Lemmas 3.1 and 3.2 in the above steps. Noticing that

∇̂ŵ = B>∇w =
2∑

j=1

lj
∂w

∂vj
.

Then the desired result can be obtained by a scaling argument. ¤

Remark 3.2. It is noted that the constant in the Poincaré inequality and its generalization in
Lemma 3.3 can be taken explicitly. This allows us to give quantitative and accuracy estimates
in numerical analysis of PDEs.

Now, we are in the position to bound the Raviart-Thomas interpolation error in an explicit
manner.

Lemma 3.4. Let K be a general element and w ∈ H1(K)2. Then we have

∥∥w−RTKw
∥∥

0,K
≤ 2

√
2 +

√
2π

π
hK

(
2

sin αM,K
‖∇w‖0,K +

∥∥∇ ·w∥∥
0,K

)
. (3.14)

Proof. Set N be the matrix with n1 and n2 as its rows. Since ni, i = 1, 2 are unit vectors,
it follows that |det(N)| = sin αM,K . By using of the decomposition

w−RTKw = N−1
(
(w−RTKw) · n1, (w−RTKw) · n2

)>

together with a simple calculation, we have

∥∥w−RTKw
∥∥2

0,K
=

1
sin2 αM,K

(
2∑

i=1

‖(w−RTKw) · ni‖20,K

−2n1 · n2

∫

K

(w−RTKw) · n1(w−RTKw) · n2

)

≤ 2
sin2 αM,K

2∑

i=1

‖(w−RTKw) · ni‖20,K . (3.15)

Since (w−RTKw) · ni has zero mean value on the edge lini, by Lemma 3.3 we obtain

∥∥w−RTKw
∥∥2

0,K

≤ 4(2 +
√

2π)
π2 sin2 αM,K

2∑

i=1

∥∥∥∥∥∥

2∑

j=1

lj
∂(w−RTKw) · ni

∂vj

∥∥∥∥∥∥

2

0,K

=
4(2 +

√
2π)

π2 sin2 αM,K

2∑

i=1

∥∥∥∥∥∥
B>∇w · ni −

2∑

j=1

lj
vj · ni

2
P0K∇ ·w

∥∥∥∥∥∥

2

0,K

≤ 8(2 +
√

2π)
π2 sin2 αM,K

2∑

i=1

∥∥B>∇w · ni

∥∥2

0,K
+

2(2 +
√

2π)
π2

2∑

j=1

l2j
∥∥P0K∇ ·w∥∥2

0,K

≤ 16(2 +
√

2π)
π2 sin2 αM,K

h2
K

∥∥∇w
∥∥2

0,K
+

4(2 +
√

2π)
π2

h2
K

∥∥∇ ·w∥∥2

0,K
, (3.16)
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where we have used the fact that

∂(RTKw) · ni

∂vj
=

1
2
(∇ ·RTKw)vj · ni =

vj · ni

2
P0K∇ ·w

which can be proved by a simple computation. Then the proof is complete. ¤

Remark 3.3. If αM,K ≥ π
2 , i.e., the triangle is an obtuse-angled (or right-angled) triangle, by

the Cosine Theorem we have
2∑

j=1

l2j ≤ h2
K .

Then the constant of the term
∥∥∇ ·w

∥∥2

0,K
of (3.16) can be improved by 2(2 +

√
2π)h2

K/π2.
A direct corollary of Lemma 3.4 is the following global interpolation error estimate.

Theorem 3.1. Let α = max
K∈Jh

αM,K and w ∈ H1(Ω)2. Then we have

∥∥w−RThw
∥∥

0,Ω
≤ 2

√
2 +

√
2π

π
h

(
2

sin α
|w|1,Ω +

∥∥∇ ·w∥∥
0,Ω

)
. (3.17)

Now, let us consider the mixed finite element formulation of (2.8), which is to seek (ph, uh) ∈
Qh × Uh such that {

(ph,qh)− (∇ · qh, uh) = 0, ∀qh ∈ Qh,

(∇ · ph, vh) = (f, vh), ∀ vh ∈ Uh.
(3.18)

For the purpose of the examination of the existence and uniqueness of the discrete problem
(3.18), we need to give a characterization of the discrete inf-sup constant, which is the task of
the following lemma.

Lemma 3.5. Let Ω be a convex polygonal and its boundary is represented in the plane polar
coordinates by r = ρ(θ). For the Raviart-Thomas finite element space, we have the following
discrete inf-sup condition

inf
vh∈Uh\0

sup
qh∈Qh

(∇ · qh, vh)
‖vh‖0,Ω‖qh‖H(div;Ω)

≥ β0(Ω) (3.19)

with

β0(Ω) =

(
8(2 +

√
2π)

π2

(
4 max

K∈Jh

R2
K + h2

)
+ 2 max

θ
ρ(θ) + 1

)− 1
2

,

where RK is the circumcircle diameter of the element K.

Proof. We proceeding along the same lines of Lemma 2.2. For any fixed vh ∈ Uh \ 0, there
exists a unique w ∈ H1

0 (Ω) satisfying

{
−∆w = vh, in Ω

w = 0, on ∂Ω.
(3.20)
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Set q = −∇w and let qh = RThq ∈ Qh, Using (2.17), (2.2) Theorem 3.5, we have

∥∥RThq
∥∥

H(div;Ω)

≤
(
2
∥∥q−RThq

∥∥2

0,Ω
+ 2

∥∥q∥∥2

0,Ω
+

∥∥∇ ·RThq
∥∥2

0,Ω

) 1
2

≤
(

8(2 +
√

2π)
π2

(
max
K∈Jh

4h2
K

sin2 αM,K

+ h2

)
+ 2 max

θ
ρ(θ) + 1

) 1
2 ∥∥vh

∥∥
0,Ω

, (3.21)

which, together with the fact that

(∇ · qh, vh) = (∇ ·RThq, vh) = (∇ · q, vh) =
∥∥vh

∥∥2

0,Ω
(3.22)

yields the desired result. ¤

Remark 3.4. From Lemma 3.6 we can see that the discrete inf-sup constant is bounded if
there exists a general constant σ such that

max
K∈Jh

RK ≤ σ.

This is the case when the triangulation satisfies the maximal angle condition. Moreover, the
above condition is weaker than the maximal angle condition since it admits the maximal triangle
αM,K = π −O(hK), which may be very close to π when hK → 0.

Having established the inf-sup condition of the mixed finite element method, we conclude
that problem (3.18) has a unique solution pair (ph, uh) ∈ Qh × Uh with the following error
estimate

‖p− ph‖H(div;Ω) + ‖u− uh‖0,Ω

≤ C

(
inf

qh∈Qh

‖p− qh‖H(div;Ω)
+ inf

vh∈Uh

‖u− vh‖0,Ω

)
. (3.23)

In general, the above constant C is dependent of the discrete inf-sup constant. However, for
the purpose of a more precise error estimates, we will not utilize (3.23) directly.

Theorem 3.2. Let (p, u) ∈ H(div; Ω) × L2(Ω), (ph, uh) ∈ Qh × Uh be the solutions of (2.8)
and (3.18), respectively. Then we have

∥∥p− ph

∥∥
0,Ω

≤ 2
√

2 +
√

2π

π
h

(
2

sin α
+ 1

) ∥∥f
∥∥

0,Ω
(3.24)

and
∥∥u− uh

∥∥
0,Ω

≤ h

π

(
2
√

2 +
√

2π

β0(Ω)

(
2

sin α
+ 1

)
+ max

θ
ρ(θ)

)
∥∥f

∥∥
0,Ω

. (3.25)

If in addition f ∈ H1(Ω), then we have

∥∥∇ · p−∇ · ph

∥∥
0,Ω

≤ h

π

∣∣f
∣∣
1,Ω

. (3.26)
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Proof. Taking q = qh in (2.8) and subtracting (3.18) from (2.8), we get
{

(p− ph,qh)− (∇ · qh, u− uh) = 0, ∀qh ∈ Qh,

(∇ · (p− ph), vh) = 0, ∀ vh ∈ Uh.
(3.27)

The second equation of (3.27) implies immediately that

∇ · ph = P0h∇ · p = ∇ ·RThp, (3.28)

which together with Lemma 2.1, gives
∥∥∇ · p−∇ · ph

∥∥
0,Ω

=
∥∥∇ · p− P0h∇ · p

∥∥
0,Ω

=

( ∑

K∈Jh

∥∥∇ · p− P0K∇ · p
∥∥2

0,K

) 1
2

≤ h

π

∣∣∇ · p
∣∣
1,Ω

=
h

π

∣∣f
∣∣
1,Ω

. (3.29)

Recalling the first equation of (3.27) and noticing (3.28), we can derive
∥∥p− ph

∥∥2

0,Ω
= (p− ph,p−RThp) + (p− ph, RThp− ph)

= (p− ph,p−RThp) + (∇ · (RThp− ph), u− uh)

= (p− ph,p−RThp). (3.30)

Then by the interpolation error estimate of Theorem 3.5, we have
∥∥p− ph

∥∥
0,Ω

≤ ∥∥p−RThp
∥∥

0,Ω

≤ 2
√

2 +
√

2π

π
h

(
2

sinα

∣∣p∣∣
1,Ω

+
∥∥∇ · p∥∥

0,Ω

)

=
2
√

2 +
√

2π

π
h

(
2

sinα

∣∣u
∣∣
2,Ω

+
∥∥f

∥∥
0,Ω

)
, (3.31)

which, together with Miranda-Talenti estimate (2.2), implies (3.24).
Now, we are in the position to estimate

∥∥u− uh

∥∥
0,Ω

. To this end, we only need to estimate∥∥P0hu−uh

∥∥
0,Ω

. Let us revisit the problem (3.20) with vh = P0hu−uh. By (3.22) and the first
equation of (3.27), we obtain

∥∥P0hu− uh

∥∥2

0,Ω

= ∇ ·RThq, P0hu− uh) = (∇ ·RThq, u− uh)

= (p− ph, RThq) ≤
∥∥p− ph

∥∥
0,Ω

∥∥RThq
∥∥

0,Ω

≤ 1
β0(Ω)

∥∥p− ph

∥∥
0,Ω
‖P0hu− uh

∥∥
0,Ω

. (3.32)

Consequently, ∥∥P0hu− uh

∥∥
0,Ω

≤ 1
β0(Ω)

∥∥p− ph

∥∥
0,Ω

, (3.33)

which, together with (3.24) and the fact

∥∥u− P0hu
∥∥

0,Ω
≤ h

π

∥∥∇u
∥∥

1,Ω
=

maxθ ρ(θ)
π

h
∥∥f

∥∥
0,Ω

, (3.34)

yields the desired result. The proof is complete. ¤
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4. Error Bounds for Nonconforming Crouzeix-Raviart Element

Let V n
h denote the nonconforming P1 finite element space (Crouzeix-Raviart element [16]

over Jh), which is given by

V n
h :=

{
vn

h ∈ L2(Ω); ∀K ∈ Jh, vn
h |K ∈ P1(K);∀E ∈ Eh,

∫

E

[vn
h ]Eds = 0

}
. (4.1)

Here [vn
h ]E stands for the jump of vn

h across E and vanishes when E ⊂ ∂Ω.
The finite element approximation of (2.3) reads

{
Find un

h ∈ V n
h , such that

ah(un
h, vn

h) = f(vn
h), ∀ vn

h ∈ V n
h

(4.2)

with

ah(un
h, vn

h) =
∑

K∈Jh

∫

K

∇un
h∇vn

hdxdy.

Set

‖ · ‖h =

( ∑

K∈Jh

| · |21,K

) 1
2

. (4.3)

Then it is easy to see that ‖ · ‖h is a norm over V n
h .

It is known that the nonconforming finite element method has a close relationship with the
mixed finite element [26], which is stated as follows:

Lemma 4.1. Let ph ∈ Qh and un
h ∈ V n

h be the unique solution of (3.18) and (4.2), respectively.
Then we have

∇un
h|K(x) = ph(x)|K +

1
2
fK(x− xK), ∀ x ∈ K, ∀K ∈ Jh, (4.4)

where fK =
∫

K
fdx/|K|, x = (x, y) is a point contained in K, xK is the barycenter of K.

Then a combination of Lemma 4.1 and Theorem 3.7 yields

Theorem 4.1. Let u and un
h be the solution of (2.8) and (4.2), respectively. Then we have the

following error estimate

‖u− un
h‖h ≤

(
2
√

2 +
√

2π

π

(
2

sin α
+ 1

)
+
√

3
12

)
h‖f‖0,Ω. (4.5)

Proof. By (4.4) and Young’s inequality, for any ε > 0, we have

‖u− un
h‖2h ≤ (1 + ε)‖p− ph‖20,Ω +

(
1 +

1
ε

)
h2

48

∥∥f
∥∥2

0,Ω
. (4.6)

Then by (3.24) and taking a proper value of ε, we can obtain the desired result. ¤
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5. Numerical Experiment

In this section, we test the error bounds studied in the above sections by numerical compu-
tation. Consider the following Dirichlet problem:

{
−4u = f, in Ω = [−1, 1]× [−1, 1],

u = 0, on ∂Ω,

with f(x, y) = 4− 2x2 − 2y2. The exact solution of this problem is u(x, y) = (1− x2)(1− y2).
We first divide Ω into n2 equal squares. which are further divided into triangles by the

diagonals parallel to x + y = 1, except in the top right and bottom left squares which are
divided by the diagonals parallel to x− y = 0.

Numerical calculations are carried out by employing the lowest order mixed finite element
method and nonconforming P1 finite element method, respectively. Numerical results for both
methods are listed in Table 5.1 and Table 5.2, respectively. Herein, the constants CM and CN

denotes the error constants defined by

CM =
‖p− ph‖0,Ω

h‖f‖0,Ω

and

CN =
‖u− uh‖h

h‖f‖0,Ω
,

respectively. From the numerical results one can easily see that the experimentally determined
constants are below the theoretical estimates.

Table 5.1: Numerical results of the lowest order mixed finite element method

n 8 16 32 64 128

‖p− ph‖0,Ω 0.5507207331 0.2763366501 0.1382911861 0.0691609781 0.0345824130

CM 0.2784718819 0.2794591972 0.2797076960 0.2797699314 0.2797854963

‖f‖0,Ω 5.5936471902 5.5936471902 5.5936471902 5.5936471902 5.5936471902

h 0.3535533906 0.1767766953 0.0883883476 0.0441941738 0.0220970869

Table 5.2: Numerical results of nonconforming P1 finite element method

n 8 16 32 64 128

‖u− uh‖h 0.3765794544 0.1889822268 0.0945784952 0.0473001982 0.0236514689

CN 0.1904173623 0.1911176869 0.1912944253 0.1913387229 0.1913498046

‖f‖0,Ω 5.5936471902 5.5936471902 5.5936471902 5.5936471902 5.5936471902

h 0.3535533906 0.1767766953 0.0883883476 0.0441941738 0.0220970869

6. Conclusion

We have developed explicit error estimates for the lowest-order mixed and nonconforming
finite elements based on a careful exploration. The explicit constants of some inequalities,
together with the continue and discrete inf-sup constants, have been obtained. These estimates
allow us to derive some computable upper bound of the finite element errors, which can serve
as a posteriori error estimate. Another feature of our error estimates is that we do not need to
assume any mesh conditions on the triangulation.
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