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Abstract

In this article, we analyse three related preconditioned steepest descent algorithms,

which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant

subspace computations, from the viewpoint of minimization of the corresponding function-

als, constrained by orthogonality conditions. We exploit the geometry of the admissible

manifold, i.e., the invariance with respect to unitary transformations, to reformulate the

problem on the Grassmann manifold as the admissible set. We then prove asymptotical

linear convergence of the algorithms under the condition that the Hessian of the corre-

sponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the

minimizer.
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1. Introduction

On the length-scale of atomistic or molecular systems, physics is governed by the laws of

quantum mechanics. A reliable computation required in various fields in modern sciences and

technology should therefore be based on the first principles of quantum mechanics, so that ab

initio computation of the electronic wave function from the stationary electronic Schrödinger

equation is a major working horse for many applications in this area. To reduce computational

demands, the high dimensional problem of computing the wave function for N electrons is

often, for example in Hartree-Fock and Kohn-Sham theory, replaced by a nonlinear system of

equations for a set Φ = (ϕ1, · · · , ϕN ) of single particle wave functions ϕi(x) ∈ V = H1(R3).

This ansatz corresponds to the following abstract formulation for the minimization of a suitable

energy functional J (Φ)

Problem 1. Minimize

J : V N → R, J (Φ) = J (ϕ1, · · · , ϕN ) −→ min, (1.1)

* Received April 20, 2008 / Revised version received July 11, 2008 / Accepted July 23, 2008 /



Minimization for Calculating Invariant Subspaces in Density Functional Computations 361

with V N defined via V as above and J is a sufficiently often differentiable functional which is

(i) invariant with respect to unitary transformations, i.e.,

J (Φ) = J (ΦU) = J
(( N∑

j=1

ui,jφj

)N

i=1

)
, (1.2)

for any orthogonal matrix U ∈ R
n×n, and

(ii) subordinated to the orthogonality constraints

〈ϕi, ϕj〉 :=

∫

R3

ϕi(x)ϕj(x)dx = δi,j . (1.3)

In the present article, we shall be concerned with minimization techniques for J along the

admissible manifold characterized by (1.3). The first step towards this will be to set up the

theoretical framework of the Grassmann manifold to be introduced in Section 2, reflecting the

constraints (i) and (ii) imposed on the functional J and the minimizer Φ, respectively. In

applications in electronic structure theory, formulation of the first order optimality (necessary)

condition for the problem (1.1) results in a nonlinear eigenvalue problem of the kind:

AΦϕi = λiϕi, λ1 ≤ λ2 ≤ · · · ≤ λN (1.4)

for N eigenvalues λi and the corresponding solution functions assembled in Φ. In these equa-

tions, the operator AΦ, is a symmetric bounded linear mapping

AΦ : V = H1(R3) → V ′ = H−1(R3)

depending on Φ, so that we are in fact faced with a nonlinear eigenvalue problem. AΦ is called

the Fock operator in Hartree-Fock theory, and Kohn-Sham Hamiltonian in density functional

theory (DFT) respectively. We will illustrate the relation between (1.4) and the minimiza-

tion task above in further detail in Section 3. In this work, our emphasis will rather be on

the algorithmic approximation of the minimizer of J , i.e. an invariant subspace span[Φ] :=

span{ϕ1, · · · , ϕN}, of (1.4), in the corresponding energy space V N than on computation of the

eigenvalues λ1, · · · , λN .

One possible procedure for computing the minimum of J is the so-called direct minimization,

utilized e.g. in DFT calculation, which performs a steepest descent algorithm by updating the

gradient of J , i.e. the Kohn-Sham Hamiltonian or Fock operator, in each iteration step. Direct

minimization, as proposed in [2], is prominent in DFT calculations if good preconditioners are

available and the systems under consideration are large, e.g. for the computation of electronic

structure in bulk crystals using plane waves, finite differences [7] and the recent wavelet code

developed in the BigDFT project (see [45]). In contrast to the direct minimization procedure is

the self consistent field iteration (SCF), which keeps the Fock operator fixed until convergence

of the corresponding eigenfunctions and updates the Fock operator thereafter, see Section 3.

In the rest of this article, we will pursue different variants of projected gradient algorithms

to be compiled in Section 4. In addition, we will (for the case where the gradient J ′(Φ) can

be written as an operator AΦ applied to Φ, as it is the case in electronic structure calculation)

investigate an algorithm based on [4] following a preconditioned steepest descent along geodesics

on the manifold. so that no re-projections onto the admissible manifold are required. It turns
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out that all these algorithms to be proposed perform in a similar way. For matters of rigorous

mathematical analysis, let us note at this point that the mathematical theory about Hartree-

Fock is still too incomplete to prove the assumptions required in the present paper; even less is

known for Kohn-Sham equations, due to the fact that there are so many different models used

in practice. If the assumptions are not met for a particular problem, it is not clear whether it is

a deficiency of the problem or a real pathological situation. Along with (1.1), we will therefore

consider the following simplified prototype problem for a fixed operator A:

Simplified Problem 2. Minimize

JA(ϕ1, · · · , ϕN ) :=

N∑

i=1

〈ϕi, Aϕi〉 −→ min, 〈ϕi, ϕj〉 = δi,j . (1.5)

Analogous treatment with Lagrange techniques shows that this special case of Problem 1

is the problem of computing the first N eigenfunctions, resp. the lowest N eigenvalues of A

(see Lemma 3.2). While this is an interesting problem by itself, e.g. if λ is an eigenvalue of

multiplicity N , it is also of interest as a sort of prototype: Properties that can be proven for

this problem may hold in the more general case for Hartree-Fock or Kohn-Sham. In particular,

we will show that for A symmetric and bounded from below, the Hessian of the Lagrangian,

taken at the solution Ψ, is elliptic on a specific tangent manifold at Ψ, an essential ingredient to

prove linear convergence of all of the proposed algorithms in Section 5. The same convergence

results will be shown to hold for (1.1) if we impose this ellipticity condition on the Lagrangian

of J of the nonlinear problem. Note that the problem type (1.5) also arises in many other

circumstances, which we will not consider here in detail. Let us just note that the algorithms

presented in Section 4 also provide reasonable routines for the inner cycles of the SCF procedure.

In the context of eigenvalue computations, variants of our basic Algorithm 1, applied to

Problem 2, have been considered by several authors (see, e.g., [8, 28, 34]) reporting excellent

performance, in particular if subspace acceleration techniques are applied and the preconditioner

is chosen appropriately; in [11,40], an adaptive variant was recently proposed and analysed for

the simpler case N = 1. In contrast to all these papers, we will view the algorithms as steepest

descent algorithms for optimization of J under the orthogonality constraints given above, as

such a systematic treatment does not only simplify the proofs but also provides the insight

necessary to understand the direct minimization techniques for the more complicated nonlinear

problems of the kind (1.1) in DFT and HF.

Our analysis will cover closed (usually finite dimensional) subspaces of Vh ⊂ V as well as

the energy space V itself, so that finite dimensional approximations by Ritz-Galerkin methods

and also finite difference approximations are included in our analysis. In particular, our results

are also valid if Gaussian type basis functions are used. The convergence rates will be inde-

pendent of the discretization parameters like mesh size. However, the choice of an appropriate

preconditioning mapping to be used in our algorithms is crucial. Fortunately, such precondi-

tioners can often easily be constructed, e.g. by the use of multigrid methods for finite elements,

finite differences or wavelets, polynomials [2,7,25]. Our analysis will show that for the gradient

algorithms under consideration, it suffices to use a fixed preconditioner respectively relaxation

parameter. In particular, our analysis reflects some kind of worst case in the sense that invok-

ing techniques like line search can only improve the local linear convergence of the analysed

algorithms. All results proven will be local in nature meaning that the initial guess is supposed

to be already sufficiently close to the exact one. At the present stage, we will for the sake

of simplicity consider only real valued solutions for the minimization problem. Nevertheless,
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complex valued functions can be treated by minor modifications. Note that since the present

approach is completely based on a variational framework, i.e. considering a constrained opti-

mization problem, it does not include unsymmetric eigenvalue problems or the computation of

other eigenvalues than the lowest ones.

2. Optimization on Grassmann Manifolds

The invariance of the functional J with respect to uniform transformations among the

eigenfunctions shows a certain redundance inherent in the formulation of the minimization

task (1.1). Therefore, it will be more advantageous to factor out the unitary invariance of the

functional J , resulting in the usage of the Stiefel and Grassmann manifolds, originally defined

in finite dimensional Euclidean Hilbert spaces in [4], see also [1] for an extensive exposition.

In this section, we will generalize this concept for the present infinite dimensional space V N

equipped with the L2 inner product. In the next section, we will then apply this framework to

the minimization problems for the HF and KS functionals. First of all, we shall briefly introduce

the spaces under consideration and some notations.

2.1. Basic notations

Letting H = L2 := L2(R
3) or a closed subspace of L2, we will work with a Gelfand triple

V ⊂ H ⊂ V ′ with the usual L2 inner product 〈·, ··〉 as dual pairing on V ′ × V , where either

V := H1 = H1(R3) or an appropriate subspace corresponding to a Galerkin discretization.

Because the ground state is determined by a set Φ of N one-particle functions ϕi ∈ V , we will

formulate the optimization problem on an admissible subset of V N . To this end, we extend

inner products and operators from V to V N by the following

Definition 2.1. For Ψ = (ψ1, · · · , ψN ) ∈ V N , Φ = (ϕ1, · · · , ϕN ) ∈ (V N )′ = (V ′)N , and the

L2 inner product 〈·, ··〉 given on H = L2, we denote
〈
ΦT Ψ

〉
:= (〈ϕi, ψj〉)N

i,j=1 ∈ R
N×N ,

and introduce the dual pairing

〈〈Φ,Ψ〉〉 := tr
〈
ΦT Ψ

〉
=

N∑

i=1

〈ϕi, ψi〉

on (V ′)N × V N .

Because there holds V N = V ⊗ R
N , we can canonically expand any operator R : V → V ′ to

an operator

R := R ⊗ I : V N = V ⊗ R
N → V ′N ,Φ 7→ RΦ = (Rϕ1, · · · , RϕN ). (2.1)

Throughout this paper, for an operator V → V ′ denoted by a capital letter as A,B,D, · · · , the

same calligraphic letter A,B,D, · · · , will denote this expansion to V N .

Further, we will make use of the following operations:

Definition 2.2. For Φ ∈ V N and M ∈ R
N×N , we define the set ΦM = (I⊗M)Φ by (ΦM)j :=∑N

i=1mi,jϕi, cf. also the notation in (1.2), and for φ ∈ V and v = (v1, · · · , vN ) ∈ R
N the

element φ ⊗ v ∈ V N by (v1φ, · · · , vNφ). Finally, we denote by O(N) the orthogonal group of

R
N×N .
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2.2. Geometry of Stiefel and Grassmann manifolds

Let us now introduce the admissible manifold and prove some of its basic properties. Note

in this context that well established results of [4] for the case in the finite dimensional Euclidean

spaces cannot be applied to our setting without further difficulties, because the norm induced

by the L2 inner product is weaker than the norm on V = H1.

Our aim is to minimize the functionals J (Φ), where J is either JHF , JKS or JA, under

the orthogonality constraint 〈ϕi, ϕj〉 = δi,j , i.e.,

〈
ΦT Φ

〉
= I ∈ R

N×N . (2.2)

The subset of V N satisfying the property (2.2) is called the Stiefel manifold (cf. [4])

VV,N := {Φ = (ϕi)
N
i=1|ϕi ∈ V,

〈
ΦT Φ

〉
− I = 0 ∈ R

N×N} ,

i.e., the set of all orthonormal bases of N -dimensional subspaces of V .

All functionals J under consideration are unitarily invariant, i.e. there holds (1.2). To get

rid of this nonuniqueness, we will identify all orthonormal bases Φ ∈ VV,N spanning the same

subspace VΦ := span {ϕi : i = 1, · · · , N}. To this end we consider the Grassmann manifold,

defined as the quotient

GV,N := VV,N/∼

of the Stiefel manifold with respect to the equivalence relation Φ∼Φ̃ if Φ̃ = ΦU for any U ∈
O(N). We usually omit the indices and write V for VV,N , G for GV,N respectively. To simplify

notations we will often also work with representatives instead of equivalence classes [Φ] ∈ G.

The interpretation of the Grassmann manifold as equivalence classes of orthonormal bases

spanning the same N -dimensional subspace is just one way to define the Grassmann mani-

fold. We can as well identify the subspaces with orthogonal projectors onto these spaces. To

this end, let us for Φ = (ϕ1, · · · , ϕN ) ∈ VN denote by DΦ the L2-orthogonal projector onto

span{ϕ1, · · · , ϕN}. It is straightforward to verify

Lemma 2.1. There is a one to one relation identifying G with the set of rank N L2-orthogonal

projection operators DΦ.

In the following, we will compute the tangent spaces of the manifolds defined above for later

usage.

Proposition 2.1. The tangent space of the Stiefel manifold at Φ ∈ V is given by

TΦV = {X ∈ V N |
〈
XT Φ

〉
= −

〈
ΦTX

〉
∈ R

N×N} .

The tangent space of the Grassmann manifold is

T[Φ]G = {W ∈ V N |
〈
WT Φ

〉
= 0 ∈ R

N×N}
= (span{ϕ1, · · · , ϕN}⊥)N .

Thus, the operator (I − DΦ), where DΦ is the L2-projector onto the space spanned by Φ, is an

L2-orthogonal projection from V N onto the tangent space T[Φ]G.
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Proof. If we compute the Fréchet derivative of the constraining condition

g(Φ) :=
〈
ΦT Φ

〉
− I = 0

for the Stiefel manifold, the first result follows immediately. To prove the second result, we

consider the quotient structure of the Grassmann manifold and decompose the tangent space

TΦV of the Stiefel manifold at the representative Φ into a component tangent to the set [Φ],

which we call the vertical space, and a component containing the elements of TΦV that are

orthogonal to the vertical space, the so-called horizontal space. If we move on a curve in the

Stiefel manifold with direction in the vertical space, we do not leave the equivalence class [Φ].

Thus only the horizontal space defines the tangent space of the quotient G = V/O(N). The

horizontal space is computed in the following lemma, from which the claim follows. �

Lemma 2.2. The vertical space at a point Φ ∈ V (introduced in the proof of Proposition 2.1)

is the set

{ΦM|M = −MT ∈ R
N×N} .

The horizontal space is given by

{W ∈ V N |
〈
WT Φ

〉
= 0 ∈ R

N×N} .

Proof. To compute the tangent vectors of the set [Φ], we consider a curve c(t) in [Φ]

emanating from Φ. Then c is of the form c(t) = ΦU(t) for a curve U(t) ∈ O(N) with U(0) =

IN×N . Differentiating IN×N = U(t)U(t)T at t = 0 yields U′(0) = −U′(0)T and we get that

every vector of the vertical space is of the form ΦM where M is skew symmetric.

Reversely, for any skew symmetric matrix M we find a curve U(t) in O(N) emanating from

Φ with direction M, and c(t) := ΦU(t) is a curve with direction ċ(0) = ΦM, and thus the first

assertion follows.

To compute the horizontal space, we decompose W ∈ TΦV into

W = ΦM +W⊥,

where

W⊥ := W − Φ
〈
ΦTW

〉
∈ Φ⊥, M :=

〈
ΦTW

〉
.

Then M is an antisymmetric matrix, which implies that ΦM is in the vertical space, and that

the horizontal space is given by all

{W⊥ = W − Φ
〈
ΦTW

〉
|W ∈ TΦV}.

Let us note that this set is the range of the operator (I −DΦ). This operator is continuous and

of finite codimension. If

W⊥ = W − Φ
〈
ΦTW

〉

is in the horizontal space, then
〈
WT

⊥Φ
〉

=
〈
WT Φ

〉
−

〈
ΦT Φ

〉 〈
WT Φ

〉
= 0.

Reversely, if W ∈ V N with
〈
WT Φ

〉
= 0, then W is in TΦV and from

(I − DΦ)W = W − Φ
〈
ΦTW

〉
= W

we get that W is in the range of I −DΦ, being the L2-orthogonal projection from V N onto the

tangent space T[Φ]G. �

To end this section, let us prove a geometric result needed later.
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Lemma 2.3. Let [Ψ] ∈ G, D∗ the L2-projector on span[Ψ], D∗ is its expansion as above and

||.|| is the norm induced by the L2 inner product. For any Φ = (ϕ1, · · · , ϕN ) ∈ V sufficiently

close to [Ψ] ∈ G in the sense that for all i ∈ {1, · · · , N}, ||(I − D∗)ϕi|| < δ, there exists an

orthonormal basis Ψ̄ ∈ V of span[Ψ] for which

Φ − Ψ̄ = (I −D∗)Φ + O(||(I −D∗)Φ||2).

Proof. For i = 1, · · · , N , let

ψ̃i = arg min{||ψ − ϕi||, ψ ∈ span{ψi|i = 1, · · · , N}, ||ψ|| = 1} = D∗ϕi/||D∗ϕi||,

and set Ψ̃ := (ψ̃1, · · · , ψ̃N ). If we denote by P̃i the L2 projector on the space spanned by ψ̃i, it

is straightforward to see from the series expansion of the cosine that

(I −D∗)ϕi = (I − P̃i)ϕi = ϕi − ψ̃i + O(||(I −D∗)ϕi||2). (2.3)

The fact that Ψ̃ /∈ V is remedied by orthonormalization of Ψ̃ by the Gram-Schmidt procedure.

For the inner products occurring in the orthogonalization process (for which i 6= j), there holds

〈ψ̃i, ψ̃j〉 = 〈ψ̃i − ϕi, ψ̃j〉 + 〈ϕi, ψ̃j − ϕj〉 + 〈ϕi, ϕj〉
= −〈(I −D∗)ϕi, ψ̃j〉 − 〈(I −D∗)ϕi, (I −D∗)ϕj〉 + O(||(I −D∗)ϕi||2)
= O(||(I −D∗)Φ||2),

where we have twice replaced ϕi − ψ̃i by (I − D∗)ϕi according to (2.3) and made use of the

orthogonality of D∗. In particular, for Φ sufficiently close to [Ψ], the Gramian matrix is non-

singular because the diagonal elements converge quadratically to one while the off-diagonal

elements converge quadratically to zero. By an easy induction for the orthogonalization pro-

cess and a Taylor expansion for the normalization process, we obtain that Ψ̃ differs from the

orthonormalized set Ψ̄ := (ψ̄1, · · · , ψ̄N) only by a error term depending on ||(I − D∗)Φ||2.
Therefore,

ϕi − ψ̄i = ϕi − ψ̃i + O(||(I −D∗)Φ||2)
= (I −D∗)ϕi + O(||(I −D∗)Φ||2),

so that

Φ − Ψ̄ = (I −D∗)Φ + O(||(I −D∗)Φ||2),

and the desired result is proven. �

2.3. Optimality conditions on the Stiefel manifold

By the first order optimality condition for minimization tasks, a minimizer [Ψ] ∈ G of the

functional J : G → R,Φ 7→ J (Φ) over the Grassmann manifold G satisfies

〈〈J ′(Ψ), δΦ〉〉 = 0 for all δΦ ∈ T[Ψ]G, (2.4)

i.e., the gradient J ′(Ψ) ∈ (V ′)N = (V N )′ vanishes on the tangent space TΨG of the Grassmann

manifold. This property can also be formulated by

〈
(δΦ)TJ ′(Ψ)

〉
= 0 for all δΦ ∈ T[Ψ]G,
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or equivalently, by Lemma 2.1,

〈〈(I − DΨ)J ′(Ψ),Φ〉〉 = 0 for all Φ ∈ V N ; (2.5)

that is, in strong formulation,

(I − DΨ)J ′(Ψ) = J ′(Ψ) − ΨΛ = 0 ∈ (V ′)N , (2.6)

where Λ = (〈(J ′(Ψ))j , ψi〉)N
i,j=1 and (J ′(Ψ))i ∈ V ′ is the i-th component of J ′(Ψ). Note

that this corresponds to one of the optimality conditions for the Lagrangian yielded from the

common approach of the Euler-Lagrange minimization formalism: Introducing the Lagrangian

L(Φ,Λ) :=
1

2

(
J (Φ) +

∑
λi,j(〈ϕi, ϕj〉L2

− δi,j)
)
, (2.7)

and denoting by L(1,Ψ)(Ψ,Λ) the derivative restricted to V N , the first order condition is then

given by

L(1,Ψ)(Ψ,Λ) = J ′(Ψ) − (

N∑

k=1

λi,kψk)N
i=1 = 0 ∈ (V ′)N . (2.8)

Testing this equation with ψj , j = 1, · · · , N , verifies the Lagrange multipliers indeed agree

with the Λ defined above, so that (2.5) and (2.8) are equivalent. Note also that the remaining

optimality conditions,

∂L
∂λi,j

=
1

2

(
〈ψi, ψj〉L2

− δi,j

)
= 0,

of the Lagrange formalism are now incorporated in the framework of the Stiefel manifold.

Let us denote by L(2,Φ)(Φ,Λ) the second derivative of L with respect to Φ. From the

representation (2.6), it then follows that L(2,Ψ)(Ψ,Λ), that taken at the minimizer Ψ, is given

by

L(2,Ψ)(Ψ,Λ)Φ = J ′′(Ψ)Φ − ΦΛ. (2.9)

As a necessary second order condition for a minimum, L(Ψ,Λ)(2,Ψ) has to be positive semidef-

inite on T[Ψ]G. For our convergence analysis, we will have to impose the stronger condition on

L(2,Ψ)(Ψ,Λ) being elliptic on the tangent space, i.e.

〈〈L(2,Ψ)(Ψ,Λ)δΦ, δΦ〉〉 ≥ γ ‖δΦ‖2
V N , for all δΦ ∈ T[Ψ]G. (2.10)

It is an unsolved problem if this condition holds in general for the minimization problems of the

kind (1.1) or if it depends on the functional under consideration; in particular, it is not clear

whether it holds for the functionals of Hartree-Fock and density functional theory. In the case

of Hartree-Fock, it suffices to demand that

L(2,Ψ)(Ψ,Λ) > 0 on T[Ψ]G

because this already implies L(2,Ψ)(Ψ,Λ) is bounded away from zero, cf [35]. For the simplified

problem, we will show in Lemma 5.1 that the assumption holds for symmetric operators A

fulfilling a certain gap condition.
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3. Minimization Tasks in Electronic Structure Calculations

We will now particularize the results of the last section to the functionals common in elec-

tronic structure calculation. As the following section will show, the applications of interest

in electronic structure calculations deal with the minimization of functionals J for which the

gradient can be written as J ′(Φ) = AΦΦ, where AΦ : V → V ′ (and AΦ its extension to V N

by (2.1)). We conjecture that if the functional J only depends on the electronic density, that

is, if condition (1.2) holds, this form of J (Φ) is valid in general, i.e. for each Φ ∈ G, there is

an operator AΦ so that J ′(Φ) = AΦΦ. Nevertheless, we decided to formulate the algorithms

(except Algorithm 3) for J ′(Φ) rather than for AΦ to emphasize the minimization viewpoint

we pursue in this work and to display that the concrete structure of the Fock or Kohn-Sham

operators does not enter anywhere in the proof of convergence given in Section 5.

In this section, we will remind the reader of some basic facts about Hartree-Fock and Kohn-

Sham theory, where our emphasis will be on the ansatzes leading to the problem of minimizing

a nonlinear functional (1.1). Also, we will review the concrete form the operator J ′(Φ) = AΦΦ

in (1.4) has in these applications. For a more detailed introduction to electronic structure cal-

culations, we refer the reader to the standard literature [9,12,26,43]. At the end of this section,

we will investigate the simplified problem (1.5) and its connection to eigenvalue computations.

3.1. Hartree-Fock and Kohn-Sham energy functionals in quantum chemistry

The commonly accepted model to describe atoms and molecules is by means of the Schrödinger

equation, which is in good agreement with experiments as long as the energies remain on a

level at which relativistic effects can be neglected. We are mainly interested in the stationary

ground state of quantum mechanical systems, given by the eigenfunction belonging to the low-

est eigenvalue of the Hamiltonian H of the system. In the Born-Oppenheimer approximation

the Hamiltonian of the (time-independent) electronic Schrödinger equation HΨ = EΨ is given

by

H := −1

2

N∗∑

i=1

∆i −
N∗∑

i=1

M∑

ν=1

Zν

‖xi −Rν‖
+

1

2

N∗∑

i,j=1,i6=j

1

‖xi − xj‖
.

Here, N∗ denotes the number of electrons, M the number of the nuclei, and Zν , Rν the charge

respectively the coordinates of the nuclei, which are the only fixed input parameters of the

system. Note that we use atomic units, so that no physical constants appear in the Schrödinger

equation. We also neglect the interaction energy between the nuclei, since for a given constella-

tion (R1, · · · , RM ) of the M nuclei this only adds a constant to the energy eigenvalues. Due to

the Pauli principle for fermions, the wave function is required to be antisymmetric with respect

to permutation of particle coordinates. It is easy to see that every such antisymmetric solution

can be represented by a convergent sum of Slater determinants of the form

ψΦ
SL(x1, s1, · · · , xN∗ , sN∗) :=

1√
N∗!

det(ϕi(xj , sj)), xi ∈ R
3, si = ±1

2
,

where Φ = (ϕi)
N∗

i=1 ∈ H1(R3 × {± 1
2})N∗

and 〈ϕi, ϕj〉 = δi,j . In Hartree-Fock (HF) theory, one

approximates the ground state of the system by minimizing the Hartree-Fock energy functional

Φ 7→ JHF (Φ) :=
〈
HψΦ

SL, ψ
Φ
SL

〉

over the set of all wave functions consisting of one single Slater determinant

ψΦ
SL(x1, s1, · · · , xN∗ , sN∗). Additional simplification is made by the Closed Shell Restricted
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Hartree-Fock model (RHF), given in a spin-free formulation for N = N∗/2 pairs of electrons,

so that Φ = (ϕi)
N
i=1 ∈ H1(R3)N =: V N . Abbreviating

V (x) := −
M∑

ν=1

Zν

‖x−Rν‖
,

the corresponding functional reads

JHF (Φ) :=

N∑

i=1

∫

R3

(1

2
|∇ϕi(x)|2 + V (x)|ϕi(x)|2 +

1

2

N∑

j=1

∫

R3

|ϕj(y)|2
‖x− y‖ dy |ϕi(x)|2

− 1

2

N∑

j=1

∫

R3

ϕi(x)ϕj(x)ϕj(y)ϕi(y)

‖x− y‖ dy
)
dx. (3.1)

A minimizer of JHF is named Hartree-Fock ground state. Its existence has been proven in

the case that
∑K

µ=1 Zµ > N − 1 [29, 30].

The energy functional of the Kohn-Sham (KS) model can be derived from the Hartree-Fock

energy functional by two modifications: First of all, as a consequence of the Hohenberg-Kohn

theorem (cf. [27]), it is formulated in terms of the electron density n(x) =
∑N

i=1 |ϕi(x)|2 rather

than in terms of the single particle functions; secondly, it replaces the nonlocal and therefore

computationally costly exchange term in the Hartree-Fock functional (i.e., the fourth term

in (3.1)) by an additional (a priori unknown) exchange correlation energy term Exc(n) also

depending only on the electron density. The resulting energy functional reads

JKS(Φ) =
1

2

N∑

i=1

∫

R3

|∇ϕi(x)|2dx+

∫

R3

n(x)V (x) +
1

2

∫

R3

∫

R3

n(x)n(y)

‖x− y‖ dxdy + Exc(n).

Determining the ground state energy of Kohn-Sham theory then consists in a minimization

of JKS over all Φ = (ϕ1, · · · , ϕN ) ∈ V N with 〈ϕi, ϕj〉 = δi,j . Since the exchange correlation

energy Exc is not known explicitly, further approximations are necessary. The most simple

approximation for Exc is the local density approximation (LDA, cf. [13]) defined as

ELDA
xc (n) =

∫

R3

n(x)ǫLDA
xc (n(x)) dx,

where ǫLDA
xc denotes the exchange-correlation energy of a particle in an electron gas with density

n. If we split this expression in an exchange and a correlation part, we get

ELDA
xc (n) = ELDA

x (n) + ELDA
c (n)

=

∫

R3

n(x)ǫLDA
x (n(x)) dx +

∫

R3

n(x)ǫLDA
c (n(x))dx,

where in the exchange part, ǫLDA
x (n) = −CDn

1
3 and CD := 3

4 ( 3
π )1/3 is the Dirac constant.

For the correlation part ELDA
c (n), the expression ǫLDA

c is analytically unknown, but can

be calibrated, e.g., by Monte-Carlo methods. We note that a combination of both HF and

density functional models, namely the hybrid B3LYP, is experienced to provide the best results

in benchmark computations.
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3.2. Canonical Hartree-Fock and Kohn-Sham equations

For the HF and KS functionals, we can compute the derivative of J and the Lagrange

multipliers at a minimizer explicitly.

Proposition 3.1. For the functional JHF of Hartree-Fock, J ′
HF (Φ) = AΦΦ ∈ (V ′)N , where

AΦ = FHF
Φ : H1(R3) → H−1(R3) is the so-called Fock operator and AΦ is defined by AΦ

through (2.1); using the notation of the density matrix

ρΦ(x, y) := N

∫

R3(N−1)

ψΦ
SL(x, x2, · · · , xN ) ψΦ

SL(y, x2, · · · , xN ) dx2 · · · dxN

=
N∑

i=1

ϕi(x)ϕi(y)

and the electron density nΦ(x) := ρΦ(x, x) already introduced above. It is given by

FHF
Φ ϕ(x) := −1

2
∆ϕ(x) + V (x)ϕ(x) +

∫

R3

nΦ(y)

‖x− y‖ dy ϕ(x) −
∫

R3

ρΦ(x, y)ϕ(y)

‖x− y‖ dy.

For the gradient of the Kohn-Sham functional JKS, there holds the following: Assuming that

Exc in JKS is differentiable and denoting by vxc the derivation of Exc with respect to the density

n, we have

J ′(Φ) = AΦΦ ∈ (V ′)N ,

with AΦ = FKS
n the Kohn-Sham Hamiltonian, given by

FKS
n ϕi := −1

2
∆ϕi + V (x)ϕi +

(
n ⋆

1

‖·‖

)
ϕi + vxc(n)ϕi.

In both cases, the Lagrange multiplier Λ of (2.8) at a minimizer Ψ = (ψ1, · · · , ψN ) is given by

λi,j = 〈AΨψi, ψj〉. (3.2)

There exists a unitary transformation U ∈ O(N) amongst the functions ψi, i = 1, · · · , N such

that the Lagrange multiplier is diagonal for ΨU = (ψ̃1, · · · , ψ̃N ),

λi,j := 〈Aψ̃i, ψ̃j〉 = λiδi,j ,

so that the ground state of the HS resp. KS functional (i.e., minimizer of J ) satisfies the

nonlinear Hartree-Fock resp. Kohn-Sham eigenvalue equations

FHF
Ψ ψi = λiψi, resp. FKS

n ψi = λiψi, λi ∈ R, i = 1, · · · , N, (3.3)

for some λ1, · · · , λN ∈ R and a corresponding set of orthonormalized functions Ψ = (ψi)
N
i=1 up

to a unitary transformation U.

The converse result, i.e. if for a collection Φ = (ϕ1, · · · , ϕN ) belonging to the N lowest

eigenvalues of the Fock operator in (3.3), the corresponding Slater determinant actually gives

the Hartree-Fock energy by J (Φ) = 〈HψΦ
SL, ψ

Φ
SL〉, is not known yet.
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3.3. Simplified problem

The practical significance of the simplified problem (1.5) is given by the following result,

which shows that for symmetric A, the minimization of JA is indeed equivalent to finding an

orthonormal basis {ψi : 1 ≤ i ≤ N} spanning the invariant subspace of A given by the first

eigenfunctions of A.

Proposition 3.2. Let A in the simplified problem (1.5) a bounded symmetric operator. The

gradient of the functional JA is then given by J ′(Φ) = AΦ ∈ (V ′)N . Ψ therefore is a stationary

point of L if and only if there exists an orthogonal transformation U such that

ΨU = (ψ̃1, · · · , ψ̃N ) ∈ V N

consists of N pairwise orthonormal eigenfunctions of A, i.e. Aψk = λkψk for k = 1, · · · , N ;

in this case, there holds J (Ψ) =
∑N

k=1 λk. The minimum of J is attained if and only if the

corresponding eigenvalues λk, k = 1, · · · , N are the N lowest eigenvalues. This minimum is

unique up to orthogonal transformations if there is a gap λN+1 − λN > 0, so that in this case,

the minimizers Ψ = argmin J are exactly the bases of the unique invariant subspace spanned

by the eigenvectors according to the N lowest eigenvalues.

Proof. By (2.6), the first order condition for a stationary point implies AΨ = ΨΛ. Choosing

U such that it diagonalizes the symmetric matrix Λ proves the first statement. The uniqueness

follows from noting that the second order condition (2.10) holds for γ = λN+1 − λN . �

3.4. Comparison of direct minimization and self consistent iteration

Self consistent iteration consists of fixing the Fock operator F (n) = FΦ(n) for each iterate

Φ(n); the simplified problem is then solved in an inner iteration loop for A = F (n); the solution

Φ defines the next iterate Φ(n+1) of the outer iteration, by which the Fock operator is then

updated to form F (n+1), defining the simplified problem for the next iteration step. For the

solution of the inner problems with a fixed Fock operator, Proposition 3.2 from the last section

applies and the algorithms presented in the next section can be used. Self consistent iteration is

faced with convergence problems though, which can be remedied by advanced techniques: With

an appropriate choice of the update, the ODA-optimal damping algorithm [10], convergence can

be guaranteed.

Direct minimization corresponds to the treatment of the nonlinear problem (1.1) for the

Hartree-Fock or Kohn-Sham functional with the gradient Algorithm 1 from the next section.

Direct minimization thus differs from the self consistent iteration only in that the Fock operator

is updated after each inner iteration step. Therefore, direct minimization is preferable if the

update of the Fock operator is sufficiently cheap. This is mostly the case for Gaussians but not

for the plane wave or wavelet basis or finite differences.

4. Algorithms for Minimization

In this section we will introduce three related algorithms to tackle the minimization problem

(1.1) in a rather general form. Their convergence properties will be analysed in the next section.
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4.1. Gradient and projected gradient algorithm

We will consider a gradient algorithm for the constrained minimization problem; the mo-

tivation for this is given by the following related formulation (cf. [32] for this concept): With

an initial guess Φ(0) ∈ V , [Φ(0)] ∈ G, the (negative) gradient flow on V , resp. G is given by the

differential

〈〈dΦ(t)

dt
+ J ′(Φ(t)), δΦ〉〉 = 0 ∀δΦ ∈ T[Φ(t)]G. (4.1)

Using the fact that I − D[Φ] is projecting onto the tangent space T[Φ]G, this algebraic

differential initial value problem can be rewritten by an ordinary initial value problem for the

gradient flow on V ,

d

dt
Φ(t) = −(I − D[Φ(t)])J ′([Φ(t)]), Φ(0) = Φ(0), (4.2)

or, equivalently,
d

dt
Φ(t) = −[J ′,D[Φ(t)]](Φ(t)), Φ(0) = Φ(0), (4.3)

where the bracket [·, ··] denotes the usual commutator. Denoting by (J ′(Φ(t)))i the i-th com-

ponent of the gradient J ′(Φ(t)) and letting Λ(t) :=
(
〈(J ′(Φ(t)))i, ϕj(t)〉

)N

i,j=1
, we obtain the

identification

J ′(Φ(t)) − Φ(t)Λ(t) = [J ′,D[Φ(t)]](Φ(t)), (4.4)

which we will make use of later.

There holds dΦ(t)/dt → 0 for t → ∞, so we are looking for the fixed point of this flow

Ψ = limt→∞ Φ(t) rather than its trajectory. Equation (4.3) suggests the projected gradient

type algorithms presented below. In Algorithm 1, corresponding to an Euler procedure for

the differential equation (4.1), the gradient at a certain point Φ(t) is kept fixed (and being

preconditioned) for non-differential stepsize, so that the manifold is left in each iteration step.

Therefore, a projection on the admitted set is performed in each iteration step.

Note also that the role of the preconditioners B−1
n is crucial, see the remarks following

Algorithm 1.

Algorithm 1: Projected Gradient Descent

Require: Initial iterate Φ(0) ∈ V ;

evaluation of J ′(Φ(n)) and of preconditioner(s) B−1
n (see comments below)

Iteration:

for n = 0, 1, · · · , do

(1) Update Λ(n) :=
〈
J ′(Φ(n)),Φ(n)

〉
∈ R

N×N ,

(2) Let Φ̂(n+1) := Φ(n) − B−1
n (J ′(Φ(n)) − Φ(n)Λ(n)),(

= Φ(n) − B−1
n (AΦ(n)Φ(n) − Φ(n)Λ(n)) for the case that J ′(Φ) = AΦΦ.

)

(3) Let Φ(n+1) = P Φ̂(n+1) by projection P onto V resp. G
endfor

Some remarks about this algorithm are in order. First of all, note that if Algorithm 1 is

applied to the ansatzes in electronic structure calculation as portrayed in Section 3, the gradient
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J ′(Φ) is given by J ′(Φ) = AΦΦ with AΦ the Fock- or Kohn-Sham operator or a fixed operator

AΦ = A for the simplified problem. Therefore,

(J ′(Φ(n) − Φ(n)Λ(n))i = AΦ(n)φ
(n)
i −

N∑

j=1

〈AΦ(n)φ
(n)
i , φ

(n)
j 〉φ(n)

j

is the usual “subspace residual” of the iterate Φ(n), which is a crucial fact for capping the

complexity of the algorithm in Section 6.

Next, let us specify the role of the preconditioner B−1
n used in each step. This preconditioner

is induced (according to (2.1)) by an elliptic symmetric operator Bn : V → V ′, which we require

to be equivalent to the norm on H1 in the sense that

〈Bnϕ,ϕ〉L2
∼ ‖ϕ‖2

H1 ∀ϕ ∈ V = H1(R3) . (4.5)

For example, one can use approximations of the shifted Laplacian, B ≈ α(− 1
2∆ + C), as is

done in the BigDFT project. This is also a suitable choice when dealing with plane wave ansatz

functions using advantages of FFT, or a multi-level preconditioner if one has finite differences,

finite elements or multi-scale functions like wavelets [3, 7, 16, 25].

For the simplified problem, the choice B−1 = αA−1 corresponds to a variant of simultaneous

inverse iteration. The choice

B|
V ⊥

0 :={v|〈v,ϕ
(n)
i

〉=0 ∀i=1,··· ,N}
= α(A − λ

(n)
j I)|

V ⊥

0 :={v|〈v,ϕ
(n)
i

〉=0 ∀i=1,··· ,N}

corresponds to a simultaneous Jacobi-Davidson iteration.

To guarantee convergence of the algorithm, the preconditioner B chosen according to the

guidelines above also has to be properly scaled by a factor α > 0, cf. Lemma 5.3. The optimal

choice of α is provided by minimizing the corresponding functional over span {Φ(n), Φ̂(n+1)}
(a line search over this space), which can be done for the simplified problem without much

additional effort. For the Kohn-Sham energy functional, it will become prohibitively expensive.

However, line search and subspace acceleration like DIIS [37] will improve the convergence

speed. Note that in this context, one might as well use different step sizes for every entry, i.e.,

BΦ = (α1Bϕ1, · · · , αNBϕN ).

Next, let us make a remark concerning the projection onto G. It only has to satisfy

span {ϕ(n+1)
i : 1 ≤ i ≤ N} = span {ϕ̂(n+1)

i : 1 ≤ i ≤ N}.

For this purpose any orthogonalization of {ϕ̂(n+1)
i : 1 ≤ i ≤ N} is admissible. For example,

three favorable possibilities which up to unitary transformations yield the same result are

• Gram-Schmidt orthogonalization,

• Diagonalization of the Gram matrix G = (〈ϕ̂(n+1)
i , ϕ̂

(n+1)
j 〉)N

i,j=1 by Cholesky factoriza-

tion,

• (For the problems of Section 3, i.e. where J ′(Φ) = AΦΦ:)

Diagonalization of the matrix AΦ(n+1) := (〈AΦ(n) ϕ̂
(n+1)
i , ϕ̂

(n+1)
j 〉)N

i,j=1 by solving anN×N
eigenvalue problem.

Parallel to the above algorithm, we consider the following variant in which the descent

direction is projected onto the tangent space T[Φ(n)]G in every iteration step. It will play an

important theoretical role considering convergence of the local exponential parametrization, i.e.

Algorithm 3.
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Algorithm 2: Modified Projected Gradient Descent

Require: see Algorithm 1

Iteration:

for n = 0, 1, · · · do

(1) Update Λ(n) :=
〈
J ′(Φ(n)),Φ(n)

〉
∈ R

N×N ,

(2) Let Φ̂(n+1) := Φ(n) − (I − DΦ(n))B−1
n

(
J ′(Φ(n)) − Φ(n)Λ(n)

)
,(

= Φ(n) − B−1
n (AΦ(n)Φ(n) − Φ(n)Λ(n)) for the case that J ′(Φ) = AΦΦ.

)

(3) Let Φ(n+1) = P Φ̂(n+1) by projection P onto V resp. G,

endfor

Note again that the algorithms are given in a general form, where the preconditioner (or

the corresponding parameter α, e.g., obtained by a kind of line search) may be chosen in each

iteration step. In our analysis, we will consider a fixed preconditioner Bn = B in every iteration

step, for which we will show local linear convergence without further line search invoked. Thus,

our analysis is in a way a worst case analysis for the algorithms under consideration. See also

Section 6 for improvements on the speed of convergence.

4.2. Exponential parametrization

Instead of projecting the iterate Φ(n) onto the Grassmann manifold G in every iteration

step, we will now develop an algorithm in which the iterates remain on the manifold without

further projection. This will be achieved by following geodesic paths on the manifold instead

of straight lines in Euclidean space, which has the advantage that during our calculations we

do not leave the constraining set at any time so that no orthonormalization process is required.

To apply the result of Proposition 4.1, we will for this algorithm limit our treatment to the case

where J ′(Φ) = AΦΦ is given by a linear operator (see the discussion after Algorithm 1).

Recall that a geodesic is a curve c on a manifold with vanishing second covariant derivative,

i.e.,

∇
dt
ċ(t) := πc(t)c̈(t) = 0 for all t, (4.6)

where πc(t) denotes the projection onto the tangent space at the point c(t).

Proposition 4.1. For any operator X : V → V for which XΦ ∈ T[Φ]G (where as always, X is

defined by X by (2.1)), the antisymmetric operator

X̂ = (I −DΦ)XDΦ −DΦX
†(I −DΦ), (4.7)

satisfies X̂Φ = XΦ, and c(t) := exp(tX̂ )Φ is a geodesic in G emanating from point Φ with

direction ċ(0) = XΦ.

Proof. The proof is straightforward; an application of the projection equation yields
(∇
dt
ċ(t)

)
= (I − Dc(t))c̈(t) = 0,

which completes the proof of the proposition. �

If we now let, for any iterate Φ(n),

X(n) = (I −DΦ(n))B−1(I −DΦ(n))AΦ(n) , (4.8)



Minimization for Calculating Invariant Subspaces in Density Functional Computations 375

the curve

c(t) := exp(−tX̂ (n))Φ(n)

with X̂ (n) from (4.7) is by the previous lemma a geodesic in G with direction

ċ(0) = −(I −DΦ(n))B−1(I −DΦ(n))AΦ(n)Φ(n)

which equals the (preconditioned) descent direction of the projected gradient descent algorithm

of the preceding section. If we now choose the next iterate as a point on this geodesic, we get

the following algorithm:

Algorithm 3: Preconditioned exponential parametrization

Require: see Algorithm 1

Iteration:

for n = 0, 1, · · · do

⊲ Follow a geodesic path on the Grassmann manifold with stepsize α,

Φ(n+1) := exp(−αX̂ (n))Φ(n) (with X from (4.8) and X̂ defined by X via (4.7))

endfor

Note that a similar algorithm, Conjugate Gradient on the Grassman Manifold, has already

been introduced in [4], page 327. That paper also included numerical tests for a model system.

The algorithm was also tested for electronic structure applications very different from those

of the BigDFT program in [38]. A similar approach using the density matrix representation

for electronic structure problems was also proposed in [42], where the authors move along the

geodesics in a gradient resp. Newton method direction without preconditioning.

Like in this work, the stepsize α may be calculated in each iteration step using line search

algorithms like backtracking linesearch or quadratic approximations to the energy term [36].

These often time consuming line searches may be omitted though if we choose a suitable pre-

conditioner B = Bn and set the stepsize α = 1 once and for all.

The efficiency of this algorithm strongly depends on the computation of matrix exponentials

needed to follow geodesic paths on the Grassmann manifold. A variety of methods can be found

in [33], see also [41] for an analysis of selected methods. For some of these algorithms, there exist

powerful implementations like the software package Expokit [44], which contain both Matlab

and Fortran code thus supplying a convenient tool for numerical experiments.

5. Convergence Results

5.1. Assumptions, error measures and main result

In this section, we will show linear convergence of the algorithms of the last section under

the ellipticity Assumption 5.1 given below. Additional results we give include the equivalence

of the error of Φ, measured in a norm on V , and the error of the gradient residual (I−D)J ′(Φ),

and quadratic reduction of the energy error J (Φ(n)) − J (Ψ).

Recall that in our framework introduced in Section 2, we kept the freedom of choice to

either use V := H1 = H1(R3), equipped with an inner product equivalent to the H1 inner
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product 〈·, ··〉H1 , for analysing the original equations, or to use V = Vh ⊂ H1 as a finite

dimensional subspace for a corresponding Galerkin discretization of these equations. In practice,

our iteration scheme is only applied to the discretized equations. However, the convergence

estimates obtained will be uniform with respect to the discretization parameters. The main

ingredient our analysis is based on is the following condition imposed on the functional J , cf.

Section 2.3:

Assumption 5.1. Let Ψ a minimizer of (1.1). The second order derivative of the Lagrangian

L(Ψ,Λ) with respect to Ψ (denoted by L(2,Ψ)(Ψ,Λ) : V N → (V ′)N and given by (2.9)) is assumed

to be V N -elliptic on the tangent space, i.e., there is γ > 0 so that

〈〈L(2,Ψ)(Ψ,Λ)δΦ, δΦ〉〉 ≥ γ ‖δΦ‖2
V N , for all δΦ ∈ T[Ψ]G. (5.1)

Note again that for Hartree-Fock calculations, verification of L(2,Ψ)(Ψ,Λ) > 0 on T[Ψ]G
already implies L(2,Ψ)(Ψ,Λ), cf. [35].

From Section 2.2, we recall that

L(2,Ψ)(Ψ,Λ)Φ = J ′′(Ψ)Φ − ΦΛ,

so that (5.1) is verified if and only if

〈〈J ′′(Ψ)δΦ − δΦΛ, δΦ〉〉 ≥ γ ‖δΦ‖2
V N , for all δΦ ∈ T[Ψ]G (5.2)

holds, where Λ = (〈(J ′(Ψ))j , ψi〉)N
i,j=1 as above. From the present state of Hartree-Fock theory,

it is not possible to decide whether this condition is true in general; the same applies to DFT

theory. For the simplified problem, the condition holds if the operator A fulfils the conditions

of the following lemma.

Lemma 5.1. Let A : V → V ′, ψ 7→ Aψ a bounded symmetric operator, such that A has N

lowest eigenvalues λ1 ≤ · · · ≤ λN satisfying the gap condition

λN < inf{λ | λ ∈ σ(A)\{λ1, · · · , λN}}. (5.3)

Then Assumption 5.1 holds for the simplified problem (1.5), and according to Proposition 3.2,

the minimum is unique.

Proof. We estimate the two terms of (5.2) separately. Let us denote

λ = inf{λ | λ ∈ σ(A)\{λ1, · · · , λN}}.

To the first term, the Courant-Fisher theorem [39] applies componentwise to give the estimate

〈〈AδΦ, δΦ〉〉 ≥ λ||δΦ||2V N .

For the second, choosing U = (ui,j)
N
i,j=1 ∈ O(N) so that UT ΛU = diag(λi)

N
i=1, where λi are

the lowest N eigenvalues of A, gives

〈〈δΦΛ, δΦ〉〉 = 〈〈δΦ(UUT ΛUUT ), δΦ〉〉 :=

N∑

i=1

〈
N∑

j=1

uj,iλjδϕj ,

N∑

k=1

uk,iδϕk〉

=

N∑

j,k=1

λjδj,k〈δϕj , δϕk〉 ≤ λN ||δΦ||2V N ,
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so that L(2)(Ψ,Λ) is elliptic on T[Ψ]G by the gap condition (5.3). �

To formulate our main convergence result, we now introduce a norm ||·||V N on the space V N ,

which will be equivalent to the (H1)N -norm but more convenient for our proof of convergence.

We will then state our convergence result in terms of this error measure.

Lemma 5.2. Let B : V → V ′ the preconditioning mapping introduced in Section 4, so that in

particular, B is symmetric and the spectral equivalence

ϑ||x||2H1 ≤ 〈Bx, x〉 ≤ Θ||x||2H1

holds for some 0 < ϑ ≤ Θ and all x ∈ V . Let us consider the mapping

B̂−1 : V ′ → V , B̂−1 := (I −D)B−1(I −D) +D, (5.4)

where D = DΨ projects onto the sought subspace. Then the inverse B̂ satisfies 〈B̂ϕ, ψ〉 =

〈ϕ, B̂ψ〉 for all ϕ, ψ ∈ V , and for the induced B̂-norm || · ||B̂ on V there holds

〈B̂ϕ, ϕ〉 ∼ ‖ϕ‖2
H1 .

Using the notation (2.1), a norm on V N is now induced by the || · ||B̂-norm by

‖Φ‖2
V N := 〈〈B̂Φ,Φ〉〉 . (5.5)

Note that this norm, as any norm defined on V N in the above fashion, is invariant under the

orthogonal group of R
N×N in the sense that

‖ΦU‖V N = ‖Φ‖V N (5.6)

for all U ∈ O(N). In the Grassmann manifold, we measure the error between [Φ(1)], [Φ(2)] ∈ G
by a related metric d given by

d( [Φ(1)], [Φ(2)] ) := inf
U∈O(N)

‖Φ(1) − Φ(2)U‖V N .

If [Φ(2)] is sufficiently close to [Φ(1)] ∈ G it follows from Lemma 2.3 that this measure given by

d is equivalent to the expression

‖(I − DΦ(1)
)Φ(2)‖V N , (5.7)

in which we used the L2-orthogonal projector DΦ(1)
onto the subspace spanned by Φ(1). In

the following, let us use the abbreviation D = DΨ for the projector on the sought subspace,

wherever no confusion can arise. An equivalent error measure for the deviation of Φ ∈ V from

the sought element Ψ ∈ V is then given by the expression

‖(I − D)Φ‖V N , (5.8)

which will be used in the sequel. In terms of this notation, our main convergence result is the

following.

Theorem 5.1. Under the ellipticity assumption (5.1), the following holds for any of the three

algorithms formulated in Section 4: For Φ(0) ∈ Uδ(Ψ) sufficiently close to Ψ, there is a constant

χ < 1 such that for all n ∈ N0,
∥∥∥(I − D)Φ(n+1)

∥∥∥
V N

≤ χ ·
∥∥∥(I − D)Φ(n)

∥∥∥
V N

. (5.9)
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The rest of this section will be mainly dedicated to the proof of this theorem. For the sake of

clarity, let us first sketch the proof to be performed: We will exploit the fact that the iteration

mapping can be written in the form

Φ(n) 7→ Φ(n) − B−1(I − DΦ(n))J ′(Φ(n))

and is thus a perturbation of the mapping

Φ(n) 7→ Φ(n) − B−1(I − DΨ)J ′(Φ(n)).

The estimate then splits in two main parts: The first will be a linear part incorporating the

Hessian of the Lagrangian and the task will be to show that application of this linear part to an

iterate Φ(n) ∈ G indeed reduces its error in the tangent space of Ψ (as defined by (5.8)); here,

our ellipticity assumption enters as main ingredient. The second part consists of showing that

the remaining perturbation terms (including those resulting from projection on the manifold)

are of higher order and thus asymptotically neglectable; the main lemmas entering are Lemma

2.3 above and Lemma 5.5 to be proven below.

5.2. Ellipticity on the tangent space

In this section, we will first formulate a rather general result about how ellipticity on sub-

spaces can be used to construct a contraction on these spaces and then specialize this to the

tangent space at the solution Ψ and Assumption 5.1 in the subsequent corollary. Finally, we

will then prove that our Assumption 5.1 entering here is indeed true for the simplified problem

(1.5).

Lemma 5.3. Let W ⊂ G ⊂ W ′ a Gelfand triple, U ⊂ W a closed subspace of W and S, T ′ :

W →W ′ two bounded elliptic operators, symmetric with respect to the G-inner product 〈·, ··〉G,

satisfying

γ||x||2W ≤ 〈Sx, x〉G ≤ Γ||x||2W , (5.10)

ϑ||x||2W ≤ 〈T ′x, x〉G ≤ Θ||x||2W (5.11)

for all x ∈ U . Moreover, let S, T ′ both map the subspace U to itself. Then there exists a scaled

variant T = αT ′, where α > 0, and a constant β < 1 for which

||(I − T−1S)x||T ≤ β ||x||T , (5.12)

for all x ∈ U , where ||x||2T := 〈Tx, x〉G is the inner product induced by T .

Proof. It is easy to verify that for β := (ΓΘ − γϑ)/(ΓΘ + γϑ) < 1 and α := 1
2 (Γ/ϑ+ γ/Θ)

there holds

|〈(I − T−1S)x, x〉T | ≤ β ||x||2T for all x ∈ U. (5.13)

Due to the symmetry of T, S as mappings U → U , the result (5.12) follows. �

Let λi, i = 1, · · · , N be the lowest eigenvalues of A, ψi, i = 1, · · · , N , the corresponding

eigenfunctions, and

V0 = span {ψi : i = 1, · · · , N}. (5.14)

By Lemma 2.1, there holds (V ⊥
0 )N = T[Ψ]G, where Ψ = (ψ1, · · · , ψN ). The following corol-

lary is the main result needed for estimation of the linear part of the iteration scheme.
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Corollary 5.1. Let J fulfil the ellipticity condition (5.1) and B′ : V → V ′ a symmetric oper-

ator that fulfils (5.11) with T ′ = B′. Then there exists a scaled variant B = αB′, where α > 0,

for which for any δΦ ∈ T[Ψ]G there holds

‖δΦ − B̂−1(I − D)L(2,Ψ)(Ψ,Λ)δΦ‖V N ≤ β ‖δΦ‖V N ,

where β < 1 and B̂ is defined by B via (5.4).

Proof. Note that the restriction of B̂′ is a symmetric operator V ⊥
0 → V ⊥

0 , so that the same

holds for the extension B̂′ as mapping T[Ψ]G → T[Ψ]G. Moreover, (I−D)L(2,Ψ) maps V ⊥
0 → V ⊥

0

symmetrically, so Lemma 5.3 applies. �

5.3. Residuals and projection on the manifold

For the subsequent analysis, the following result will be useful. It also shows that the

“residual” (I − DΦ(n))J ′(Φ(n)) may be utilized for practical purposes to estimate the norm of

the error (I −D)Φ(n).

Lemma 5.4. For δ sufficiently small and ||(I − D)Φ(n)||B̂ < δ, there are constants c, C > 0

such that

c||(I − D)Φ(n)||V N ≤ ||(I − DΦ(n))J ′(Φ(n))||(V N )′ ≤ C||(I − D)Φ(n)||V N . (5.15)

An analogous result holds for gradient error ||(I − D)J ′(Φ(n))||(V N )′ .

Proof. Let us choose Ψ̄ ∈ [Ψ] according to Lemma 2.3 (applied to Φ = Φ(n)). Letting

∆Ψ := Φ(n) − Ψ̄, there holds by linearization and Lemma 2.3 (recall that we let D = DΨ)

(I − DΦ(n))J ′(Φ(n))

= (I − D)J ′(Ψ) + (I − D)L(2,Ψ)(Ψ̄,Λ)∆Ψ̄ + O(||(I − D)Φ(n)||2V N

= (I − D)L(2,Ψ)(Ψ̄,Λ)(I − D)Φ(n) + O(||(I − D)Φ(n)||2V N ).

By Assumption 5.1,

||(I − D)L(2,Ψ)(Ψ,Λ)(I − D)Φ(n)||(V N )′ ∼ ||(I − D)Φ(n)||V N ,

from which the assertion follows. The assertion for ||(I − D)J ′(Φ(n))||(V N )′ follows from the

same reasoning by replacing L(2,Ψ)(Ψ,Λ) by J ′′(Ψ) in the above. �

The last ingredient for our proof of convergence is following lemma which will imply that the

projection following each application of the iteration mapping does not destroy the asymptotic

linear convergence.

Lemma 5.5. Let Φ̂(n+1) = (φ̂1, · · · , φ̂N ) the intermediate iterates as resulting from iteration

step (2) in Algorithm 1 or 2, respectively. For any orthonormal set Φ ∈ V fulfilling span[Φ] =

span[Φ̂(n+1)], its error deviates from that of Φ̂(n+1) only by a quadratic error term:

||(I − D)Φ||V N = ||(I − D)Φ̂(n+1)||V N + O(||(I − D)Φ̂(n)||2V N ). (5.16)
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Proof. First of all, note that if (5.16) holds for one orthonormal set Φ with span[Φ] =

span[Φ̂(n+1)], it holds for any other orthonormal set Φ̃ with span[Φ̃] = span[Φ̂(n+1)] because

||(I − D)ΦU||V N = ||(I − D)Φ||V N

for all orthonormal U ∈ O(N). Therefore, we will show (5.16) for Φ = (ϕ1, · · · , ϕN ) yielded

from Φ̂(n+1) by the Gram-Schmidt orthonormalization procedure. Denote ϕ̂i = ϕ
(n)
i + r

(n)
i ,

where for

s
(n)
i = B−1

(
I − DΦ(n))J ′(Φ(n)),

we set r
(n)
i = s

(n)
i or r

(n)
i = (I−DΦ(n))s

(n)
i for Algorithm 1 or 2, respectively. From the previous

lemma, we get in particular that

||r(n)
i ||V . ||(I −D)φ

(n)
i ||V

for both cases (remember that D = DΨ). With the Gram-Schmidt procedure given by

ϕ′
k = ϕ̂k −

∑

j<i

〈ϕ̂k, ϕj〉ϕj , ϕk = ϕ′
k/||ϕ′

k||,

the lemma is now proven by verifying that in each of the inner products involved, there occurs

at least one residual ||r(n)
i ||; and that, on top of this, for the correction directions ϕj there holds

(I −D)ϕ′
j = O(||(I − D)Φ(n)||V N ) + O

( ∑

i<k

||r(n)
i ||V N

)
= O(||(I − D)Φ(n)||V N ).

Therefore, the correction terms are of O(||(I − D)Φ̂(n)||2V N ), thus proving

ϕ′
k − ϕ̂k = O(||(I −D)Φ||2V N ).

It is easy to verify that the normalization of ϕ′
k only adds another quadratic term, so the result

follows. �

5.4. Proof of Convergence

To prove (5.9) for Algorithm 1, we define F(Φ) = Φ−B−1(I −DΦ)J ′(Φ), so that Φ(n+1) =

P (F(Φ(n))), where P is a projection on the Grassmann manifold for which [P (F(Φ(n)))] =

[F(Φ(n))]. For fixed n, let us choose Ψ̄ ∈ span[Ψ] according to Lemma 2.3, so that, using the

abbreviation D := DΨ,

Ψ̄ − Φ(n) = (I − D)Φ(n) + O(||(I − D)Φ(n)||2LN

2
)

≤ (I − D)Φ(n) + O(||(I − D)Φ(n)||2V N ). (5.17)

Introducing ∆Ψ := Φ(n) − Ψ̄, there follows by linearization

‖(I − D)Φ(n+1)‖V N

= ‖(I − D)F(Φ(n))‖V N + O(‖(I − D)Φ(n)‖2
V N )

= ‖(I − D)F(Ψ̄) + (I − D)F ′(Ψ̄)∆Ψ‖V N + O(‖(I − D)Φ(n)‖2
V N )

= ‖(I − D)F ′(Ψ̄)(I − D)Φ(n)‖V N + O(‖(I − D)Φ(n)‖2
V N )

= ‖(I − D)
(
I − B−1(I − D)L(2,Ψ)(Ψ̄,Λ)

)
(I − D)Φ(n)‖V N + O(‖(I − D)Φ(n)‖2

V N ), (5.18)
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where we have used Lemma 5.5, (5.17) and the fact that (I − D)F(Ψ̄) is zero. The proof is

now finished by noticing that

(I − D)
(
I − B−1(I − D)L(2,Ψ)(Ψ̄,Λ)

)
(I − D)Ψ

=
(
I − B̂−1(I − D)L(2,Ψ)(Ψ̄,Λ)

)
(I − D)Ψ,

so that Corollary 5.1 applies to give

‖(I − D)Φ(n+1)‖V N ≤ ϑ||(I − D)Φ(n)||V N + O(‖(I − D)Φ(n)‖2
V N )

≤ χ||(I − D)Φ(n)||V N ,

where χ < 1 for ||(I − D)Φ(n)||V N small enough to neglect the quadratic term.

The convergence estimate (5.9) for Algorithm 2 is easily derived from this: Consider

F2(Φ) = Φ − (I − DΦ)B−1(I − DΦ)J ′(Φ), (5.19)

for which Φ(n+1) = P (F2(Φ
(n))) for the iterates of Algorithm 2. Differentiation of F2 at Ψ̄

chosen as before gives

F ′
2(Ψ̄)∆Ψ = I − (I − D)B−1(I − D)L(2)(Ψ̄,Λ)∆Ψ + O(‖(I − D)Φ(n)‖2

V N ),

(note that derivation of the projector DΨ̄ on the left hand side with respect to Ψ̄ results in a

zero term), so that the same reasoning as above gives

‖(I − D)Φ(n+1)‖V N

≤ ||(I − D)
(
I − B̂−1(I − D)L(2,Ψ)(Ψ̄,Λ)

)
(I − D)Ψ||V N + O(‖(I − D)Φ(n)‖2

V N

≤ χ||(I − D)Φ(n)||V N ,

with χ < 1 for Φ(n) close enough to Ψ.

To prove the convergence of the exponential parametrisation (Algorithm 3) defined by

Φ(n+1) := exp
(
− αX̂

)
(Φ(n)),

it is enough to notice, cf. the remarks after Lemma 4.1, that we follow a geodesic path in

direction (I − DΦ(n))B−1(AΦ(n)Φ(n) − Φ(n)Λ(n)), which is equal to the descent direction of

Algorithm 2. Due to the definition of the tangent manifold, Φ(n+1) again differs from F2(Φ
(n))

(defined by (5.19)) only by an asymptotically neglectable quadratic error term.

5.5. Quadratic convergence of the energy

For the Rayleigh quotient R(φ(n)), i.e. for the simplified problem and N = 1, it is known

that

R(φ(n)) −R(ψ) . ‖ψ − φ(n)‖2
V .

To end this section, we will show that this property holds also for the computed energies,

provided that the constraints are satisfied exactly and the functional is sufficiently often differ-

entiable. The latter is only known for Hartree-Fock and the simplified problem, since they both

depend polynomially on Φ. For density functional theory, the exchange correlation potential is

not known exactly, so the question remains open in general in this case.
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Theorem 5.2. Provided that J is two times differentiable on a neighborhood Uδ(Ψ) ⊆ V N of

the minimizer Ψ, and that for fixed Φ ∈ Uδ(Ψ), J ′′ is continuous on {tΨ + (1 − t)Φ|t ∈ [0, 1]},
the error in the energy depends quadratically on the approximation error of the minimizer Ψ,

i.e.,

J (Φ) − J (Ψ) . ‖(I −DΨ)Φ(n)‖2
V N . (5.20)

Proof. Let us choose a representant of the solution Ψ according to Lemma 2.3. Abbreviating

e = Φ − Ψ, we can use J ′(Ψ)((I − D)Φ) = 0 to find that

J ′(Ψ)(e) = J ′(Ψ)((I − D)Φ) + O(||(I − D)Φ||2) = O(||(I − D)Φ||2)

so that

J (Φ) − J (Ψ) =

1∫

0

J ′(Ψ + se)(e)ds+
1

2
J ′(Φ)(e)

− 1

2
(J ′(Ψ)(e) + J ′(Φ)(e)) + O(||(I − D)Φ||2).

By integration by parts,

1

2

(
f(0) + f(1)

)
=

1∫

0

f(t)dt+

1∫

0

(
s− 1

2

)
f ′(s)ds,

so that

J (Φ) − J (Ψ) =
1

2
〈〈J ′(Φ),Φ − Ψ〉〉 −

1∫

0

(s− 1

2
)J ′′(Φ + se)(e, e)ds+ O(||(I − D)Φ||2).

For estimation of the first term on the right hand side, recall from (5.15) that

||(I − D)J ′(Φ)||V N . ‖(I −D)Φ‖V N ,

and therefore

1

2
〈〈J ′(Φ),Φ − Ψ〉〉 =

1

2
〈〈(I − D)J ′(Φ), (I − D)Φ〉〉 + O(‖(I −D)Φ||2)

= O(||(I −D)Φ||2),

while for the second term,

∣∣∣
1∫

0

(s− 1

2
)J ′′(Φ + se)(e, e)ds

∣∣∣ = O(||e||2) = O(||(I −D)Φ||2)

follows from the continuity of J ′′ and, again, the usage of Lemma 2.3. �

6. Further Comments and Conclusions

Before we conclude this article with numerical examples, we would like to make some com-

ments about the complexity of the numerical schemes when applied to the problems of Section

3, and about the potentialities for accelerating convergence of the iteration scheme.
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6.1. Complexity

Concerning disk storage, the task is to compute N functions ψ ∈ Vh, so O(NdimVh) memory

is needed to store the orbital functions, while storage of the discretization of the Fock operator

A requires at most O((dimVh)2) in the general and worst case, but only O(dimVh) for sparse

discretizations. Regarding computational demands, the non-zero entries of a sparse discretiza-

tion of A are of O(dimVh), so that the complexity of the application of A depends linearily

on dimVh. The computation of 〈Aφ̂(n+1)
i , φ̂

(n+1)
j 〉, and 〈φ̂(n+1)

i , φ̂
(n+1)
j 〉 needs O(N2(dimVh))

operations in the case of sparse discretizations (and O(N2(dimVh)2) in the worst case). The

orthogonalization procedure, i.e. the projection onto the Stiefel manifold usually has a com-

plexity O(N2dimVh). To relate the above complexities to the size N of the electronic system,

it is also interesting to discuss how large dimVh,min has to be chosen for a given size N . To

this end, we might fix a given maximal error e per atom or electron (usually requested to be

smaller than the intrinsic modeling error of DFT or HF models) and determine the minimal

ansatz space dimension dimVh,min(N) that keeps the numerical error under that error e. If we

then consider the scaling of dimVh,min with respect to the size of the system N , it turns out

that

dimVh,min(N) = O(N),

where the constant in front of N is extremely large for systematic basis functions and surpris-

ingly small for Gaussian type basis functions. Therefore, the natural scaling of the orbital based

DFT and/or HF computations with respect to the size N of the underlying system gives an

overall complexity of O(N3) (or even O(N4) for non-sparse discretizations).

This can be improved if the discretization of the individual orbitals φ
(n)
i requires substan-

tially less than dimVh DOFs. In an optimal case, one may achieve O(1) for a fixed accuracy

per atom; this is for example the case if the diameter of support of φ
(n)
i is of O(1), i.e., the

support is local. In this case, the total complexity scales only linearly with respect to N . Usu-

ally, the eigenfunctions ψ̆i have global support. For insulating materials, though, there exists a

representation Ψloc such that

[Ψloc] = [Ψ̆] ∈ G, |ψloc,i(x)| . e−α|x−xi|, α≫ 0

sufficiently large. These representations are called maximally localized or Wannier orbitals.

Linear scaling O(N) can be achieved if, during the iteration, the representant Φ
(n)
loc in the

Grassmann manifold is selected and approximated in a way that the diameter of support is of

O(1). This is the strategy pursued in Big DFT to achieve linear scaling, [17, 22]. We defer the

further details to a forthcoming paper. A related approach, computing localized orbitals in an

alternative way was proposed by [6] and exhibits extremely impressing results.

6.2. Convergence and acceleration

In the present paper we have considered linear convergence of a preconditioned gradient al-

gorithm. For the simplified model, this convergence is guaranteed by the spectral gap condition,

in physics referred as the HOMO-LUMO gap (i.e., highest occupied molecular orbital-lowest

unoccupied molecular orbital gap). For the Hartree-Fock model, this condition is replaced by

the coercivity condition 5.1. The same condition applies to models in density functional theory,

provided the Kohn-Sham energy functionals are sufficiently often differentiable. Let us mention

that a verification of this conditions will answer important open problems in Hartree-Fock the-

ory, like uniqueness etc. The performance of the algorithm may be improved by an optimal line
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search, replacing B by an optimal αnB. Except for the simplified problem, where an optimal

line search performed like in the Jacobi-Davidson algorithm as a particular simple subspace

acceleration, optimal line search is rather expensive though and not used in practice.

Since the present preconditioned steepest decent algorithm is gradient directed, a line search

based on the Armijo rule will guarantee convergence in principle, even without a coercivity

condition [5, 14].

In practice, convergence is improved by subspace acceleration techniques, storing iterates

Φ(n−k), · · · ,Φ(n), Φ̂(n+1) and compute Φ(n+1) from an appropriately chosen linear combination

of them. Most prominent examples are the DIIS [37] and conjugate gradient [2, 4] algorithm.

The DIIS algorithm is implemented in the EU NEST project BigDFT, and frequently used in

other quantum chemistry codes. Without going into detailed descriptions of those methods

and further investigations, let us point out that the analysis in this paper provides the conver-

gence of the worst case scenario. Second order methods, in particular Newton methods have

been proposed in literature [35], but since these require the solution of a linear system of size

NdimVh ×NdimVh, they are to be avoided.

7. Numerical Examples

The proposed direct minimization Algorithm 1 is realized in the recent density functional

code bigDFT [45], which is implemented in the open source ABINIT package, a common

project of the Université Catholique de Louvain, Corning Incorporated, and other contribu-

tors [15,23,24,46]. It relies on an efficient Fast Fourier Transform algorithm [19] for the conver-

sion of wavefunctions between real and reciprocal space, together with a DIIS subspace accel-

eration. We demonstrate the convergence for the simple molecule cinchonidine (C19H22N2O)

of moderate size N = 57 for a given geometry of the nuclei displayed in Fig. 7.1. Despite the

fact that the underlying assumptions in the present paper cannot be verified rigorously, the

proposed convergence behavior is observed by all benchmark computations. The algorithm is

experienced to be quite robust also if the HOMO-LUMO gap is relatively small.

Fig. 7.1. Atomic geometry and electronic structure of cinchonidine.

For our computations, we have used a simple LDA (local density approximation) model

proposed by [20] and norm-conserving non-local pseudopotentials [21]. The orbital functions

ψi are approximated by Daubechies orthogonal wavelets with 8 vanishing moments based on
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Fig. 7.2. Convergence history for the direct minimization scheme (left) and with DIIS acceleration

(right) for different mesh sizes.
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Fig. 7.3. Memory requirements (left) and computing time (right) for direct minimization algorithm

with and without DIIS acceleration.

an approximate Galerkin discretization [18]. For updating the nonlinear potential, the electron

density is approximated by interpolating scaling functions (of order 16). The discretization

error can be controlled by an underlying basic mesh size hgrid.

In Fig. 7.2, we demonstrate the convergence of the present algorithm for 4 different choices

of mesh sizes, where the error is given in the energy norm of the discrete functions. The

initial guess for the orbitals is given by the atomic solutions. Except in case of non-sufficient

resolution (hgrid = 0.7), where we obtain a completely wrong result, convergence is observed.

If the discretisation is sufficiently good, we do not observe much difference in the convergence

history for different mesh sizes. Since the convergence speed depends on the actual solution, it

is only possible to observe that the convergence is bounded by a linear rate.

The number of iterations is relatively moderate bearing in mind that one iteration step only

requires matrix-vector multiplications with the Fock operator and not a corresponding solution

of linear equations. The DIIS implemented in BigDFT accelerates the iteration by almost halv-

ing the number of iterations and the total computing time at the expense of additional storage

capacities, see also Fig. 7.2. Further benchmark computations have already been performed

and will be reported in different publications by the groups involved in the implementation of

BigDFT.
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