
Journal of Computational Mathematics

Vol.28, No.6, 2010, 848–863.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1001.m2729

BLOCK-TRIANGULAR PRECONDITIONERS FOR SYSTEMS
ARISING FROM EDGE-PRESERVING IMAGE RESTORATION*

Zhong-Zhi Bai

LSEC, ICMSEC, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China

Email: bzz@lsec.cc.ac.cn

Yu-Mei Huang

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

Email: ymhuang08@gmail.com

Michael K. Ng

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Email: mng@math.hkbu.edu.hk

Abstract

Signal and image restoration problems are often solved by minimizing a cost function

consisting of an `2 data-fidelity term and a regularization term. We consider a class of

convex and edge-preserving regularization functions. In specific, half-quadratic regulariza-

tion as a fixed-point iteration method is usually employed to solve this problem. The main

aim of this paper is to solve the above-described signal and image restoration problems

with the half-quadratic regularization technique by making use of the Newton method.

At each iteration of the Newton method, the Newton equation is a structured system of

linear equations of a symmetric positive definite coefficient matrix, and may be efficiently

solved by the preconditioned conjugate gradient method accelerated with the modified

block SSOR preconditioner. Our experimental results show that the modified block-SSOR

preconditioned conjugate gradient method is feasible and effective for further improving

the numerical performance of the half-quadratic regularization approach.

Mathematics subject classification: 65C20, 65F10.

Key words: Block system of equations, Matrix preconditioner, Edge-preserving, Image
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1. Introduction

We consider the signal and image restoration problems for which a vector x̂ ∈ Rp (an
image or a signal) is estimated based upon a degraded data vector b ∈ Rq by minimizing a
cost function J : Rp → R. The function J is a combination of a data-fidelity term with a
regularization term Φ that is weighted by a parameter β > 0. More precisely, the problems are
of the form

x̂ = min
x∈Rp

J(x),

J(x) = ‖Ax− b‖22 + βΦ(x),

where A ∈ Rq×p is the known blurring matrix. The data-fidelity term given above assumes that
b and x satisfy an approximate linear relation Ax ≈ b, but that b is contaminated by noise.
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Such data-fidelity terms are popular in numerous inverse problems such as seismic imaging,
non-destructive evaluation, and x-ray tomography, see for instance [11]. Here, we consider
regularization terms Φ of the form

Φ(x) =
r∑

i=1

φ(gT
i x), (1.1)

where φ : R → R is a continuously differentiable function, and gi : Rp → R, for i = 1, · · · , r,
are linear operators. Typically, {gT

i x} are the first- or the second-order differences between the
neighboring samples in x. Let G denote the r× p matrix whose ith row is gT

i , for i = 1, · · · , r,
and assume that

A 6≡ 0, G 6≡ 0, φ 6≡ 0 and ker(AT A) ∩ ker(GT G) = {0}, (1.2)

where ker(·) denotes the kernel of the corresponding matrix. Clearly, this assumption guarantees
that α1AT A + α2GT G is a symmetric positive definite matrix provided both α1 and α2 are
positive constants.

In this paper, we focus on convex, edge-preserving potential functions φ : R→ R defined in
(1.1), because they can yield image and signal estimates of high quality, involving edges and
homogeneous regions. Typical examples of such functions are:

φ1(t) = |t|/α− log(1 + |t|/α), (1.3)

φ2(t) =
√

α + t2, (1.4)

φ3(t) = log(cosh(αt))/α, (1.5)

φ4(t) =
{

t2/(2α), if |t| ≤ α,

|t| − α/2, if |t| > α,
(1.6)

where α > 0 is a prescribed parameter. See [15] and the references therein. We will consider
the case that φ is convex, even, and is C2, and that

AT A is invertible and/or φ”(t) > 0, ∀t ∈ R. (1.7)

The assumptions in (1.7) and (1.2) guarantee that for every x ∈ Rp, the function J has a
unique minimum and that this minimum is strict. As now AT A is symmetric positive definite,
we know that ker(AT A) ∩ ker(GT G) = {0} holds true. Moreover, we easily see that AT A is
symmetric positive definite if and only if q ≥ p and A is of full column rank.

However, the minimizers x̂ of the cost-functions J involving edge-preserving regularization
are nonlinear with respect to x and their computations are quite costly. To simplify the com-
putation, a half-quadratic reformulation of J was pioneered in [12] and [13]. One of the basic
idea is to construct an augmented cost function J̃ : Rp × Rr → R that involves an auxiliary
variable z ∈ Rr in the following form:

J̃(x, z) = ‖Ax− b‖22 + β

r∑

i=1

(
1
2
(gT

i x− zi)2 + ψ(zi)
)

, (1.8)

where

ψ(t) = min
s∈R

{
−1

2
(t− s)2 + φ(s)

}
, ∀t ∈ R, (1.9)
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and ψ : R → R is a prescribed dual potential function. We remark that φ(·) is a potential
function used as the regularization term in (1.1). Usually, such a dual potential function ψ can
be determined by using the theory of convex conjugacy. The condition (1.9) ensures that

J(x) = min
z∈Rr

J̃(x, z), ∀x ∈ Rp.

The regularization term involved in J̃ is half-quadratic, hence the name of the method is termed.
The minimizer (x̂, ẑ) of J̃ can be calculated by using alternating minimization. That is to say,
if the solution at iteration (k − 1) reads (x(k−1), z(k−1)), then at iteration k one calculates

{
z(k) such that J̃(x(k−1), z(k)) ≤ J̃(x(k−1), z), ∀z ∈ Rr,

x(k) such that J̃(x(k), z(k)) ≤ J̃(x, z(k)), ∀x ∈ Rp.

The major cost at each iteration of this approach is in computing x(k), which requires to solve
a linear system of the form:

(
2AT A + βGT G

)
x(k) = 2AT b + βGT z(k). (1.10)

We consider spatial-invariant blurring in which case A is a Toeplitz-like matrix [16]. In the
regularization term, G is the discretization matrix of the first-order difference operator. Thus
we can solve (1.10) quite efficiently by utilizing the special properties of the involved matrices.
Numerical results have shown that the minimization using half-quadratic regularization can
speed up computation. Unfortunately, the main drawback of this method is that its convergence
rate is only linear [15].

In order to speed up the convergence of the method, we may adopt the Newton-type method
to solve (1.8). To this end, we revisit the Hessian of J̃(x, z), which is given by

H(x, z) =
[

2AT A + βGT G −βGT

−βG βI + β diag(ψ”(zi))

]
:=

[
H11 H12

H21 H22(z)

]
. (1.11)

Here, I represents the identity matrix, diag(ψ”(zi)) is a diagonal matrix whose diagonal entries
are given by {ψ”(zi)}, and {zi} are the entries of the vector z.

Theorem 1.1. Under the assumptions in (1.7) and (1.2), the Hessian matrix H(x, z) is sym-
metric positive definite for all x and z.

Proof. Obviously, H(x, z) is symmetric and its diagonal blocks 2AT A + βGT G and βI +
β diag(ψ”(zi)) are symmetric positive definite. Because the Schur complement of H(x, z) with
respect to its (2,2) block is given by

2AT A + βGT G− β2GT
(
βI + β diag(ψ”(zi))

)−1

G,

which is symmetric positive definite due to

xT [2AT A + βGT G− β2GT
(
βI + β diag(ψ”(zi))

)−1

G]x ≥ xT [2AT A]x > 0, ∀x ∈ Rp,

we know that H(x, z) is a symmetric positive definite matrix. ¤

In each Newton’s iteration, the Newton equation leads to a structured linear system

H(x, z)d = r.
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The main aim of this paper is to construct effective iterative methods such that this kind of
structured linear systems can be solved quickly and efficiently. We employ the preconditioned
conjugate gradient (PCG) method with modified block SSOR (symmetric successive overrelax-
ation) preconditioners [8,9,14,21] for H(x, z) to solve these structured linear systems. We will
show that the PCG method with these modified block SSOR preconditioners is very effective
for solving the edge-preserving signal and image restoration problems.

The rest of this paper is outlined as follows. In Section 2, we construct modified block
SSOR preconditioners and discuss their preconditioning properties. In Section 3, we analyze
the modified block SSOR preconditioners when they are specified to the edge-preserving signal
and image restoration problems. Experimental results are presented in Section 4.

2. Modified Block SSOR Preconditioners

In this section, we present modified block SSOR preconditioners for the block 2-by-2 linear
system H(x, z)d = r, which was first established and studied in [8, 9] for general symmetric
positive definite matrices of block structures. By decomposing the symmetric positive definite
block 2-by-2 matrix H(x, z) (or H for simplicity) into its block lower-triangular part L, block
diagonal part D and block upper-triangular part LT , i.e.,

H = L + D + LT ,

with

L =
[

0 0
H21 0

]
=

[
0 0

−βG 0

]
,

D =
[

H11 0
0 H22(z)

]
=

[
2AT A + βGT G 0

0 βI + β diag(ψ”(zi))

]
,

we can construct the following modified block SSOR preconditioner for the matrix H:

P(ω) = (D̃ + ωL)T Q(ω)−1(D̃ + ωL), (2.1)

where D̃ is an approximation to D and

Q(ω) = ω(D̃ + D̃T − ωD).

From [8,9] we know that the preconditioner P(ω) possesses the following property.

Lemma 2.1. ([8, 9]) Let Q(ω) be nonsingular. Then

(a) P(ω) = H + F(ω), with

F(ω) = [ω(D + L)− D̃T ]T Q(ω)−1[ω(D + L)− D̃T ];

(b) if H and Q(ω) are symmetric positive definite matrices, it holds that




max
x 6=0

〈x,Hx〉
〈x,P(ω)x〉 = 1, for (ωD− D̃T ) singular,

max
x 6=0

〈x,Hx〉
〈x,P(ω)x〉 < 1, for (ωD− D̃T ) nonsingular.
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Define

µ1 = max
x 6=0

〈x,P(ω)x〉
〈x,Hx〉 and µ2 = max

x 6=0

〈x,Hx〉
〈x,P(ω)x〉 .

Then it is obvious that the condition number of the matrix P(ω)−1H, denoted by κ(P(ω)−1H),
is given by

κ(P(ω)−1H) = µ1µ2.

It follows from Lemma 2.1 that µ2 is always less than or equal to one and, therefore,

κ(P(ω)−1H) ≤ µ1.

Hence, to estimate κ(P(ω)−1H), we only need to estimate µ1.
To this end, we first symmetrically scale the involved matrices by the block-diagonal matrix

D−1/2 and then estimate the Rayleigh quotients about some matrix pairs among them. Let

W =
1
2
(D̃ + D̃T ), V = D−1/2WD−1/2, (2.2a)

Z =
1
2
(D̃− D̃T ), Y = D−1/2ZD−1/2, (2.2b)

K = D−1/2D̃D−1/2, R = D−1/2LD−1/2, (2.2c)

M = D−1/2HD−1/2, B(ω) = D−1/2P(ω)D−1/2. (2.2d)

Then we immediately have

V =
1
2
(K + KT ), Y =

1
2
(K−KT ), K = V + Y, KT = V −Y,

M = I + R + RT , B(ω) =
1
ω

(K + ωR)T (2V − ωI)−1(K + ωR).

Assume that W º D (i.e., W −D is symmetric positive semidefinite). Then it is easily seen
that

V º I and 2V − ωI º (2− ω)V.

Hence, when 0 < ω < 2 the matrix 2V − ωI is symmetric positive definite. It follows from the
definition of B(ω) that

B(ω) ¹ 1
ω

(K + ωR)T [(2− ω)V]−1(K + ωR),

or

B(ω) ¹ 1
ω(2− ω)

(K + ωR)T V−1(K + ωR)

=
1

ω(2− ω)
(V + Y + ωR)T V−1(V + Y + ωR)

=
1

ω(2− ω)

(
V + ω(R + RT ) + YT V−1Y + ω(RT V−1Y + YT V−1R)

+ ω2RT V−1R
)
. (2.3)
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Note that for all x, it holds that

xT (RT V−1Y + YT V−1R)x =2xT (RT V−1Y)x

=2(V−1/2Rx)T (V−1/2Yx)

≤2(xT RT V−1Rx)1/2(xT YT V−1Yx)1/2

≤xT RT V−1Rx + xT YT V−1Yx

=xT
(
RT V−1R + YT V−1Y

)
x.

Combining (2.2)-(2.3), we obtain

B(ω) ¹ 1
ω(2− ω)

(
V + ωM + ω2I + (1 + ω)YT V−1Y + ω(1 + ω)(RT V−1R− I)

)

¹ 1
ω(2− ω)

(
V + ωM + ω2I + (1 + ω)YT V−1Y + ω(1 + ω)(RT R− I)

)
.

It then follows that

P(ω) ¹ 1
ω(2− ω)

(
W + ωH + ω2D + (1 + ω)ZT W−1Z + ω(1 + ω)(LT D−1L−D)

)
.

By using this property of P(ω), we can estimate µ1 as follows:

µ1 = max
x 6=0

〈x,P(ω)x〉
〈x,Hx〉

≤ max
x 6=0

〈x, 1
ω(2−ω) [W + ωH + ω2D + (1 + ω)ZT W−1Z + ω(1 + ω)(LT D−1L−D)]x〉

〈x,Hx〉
=

1
ω(2− ω)

(
γ2τ2 + ω + γ2ω2 + (1 + ω)γ2θ2 + ω(1 + ω)δ

)

=
1

ω(2− ω)

(
γ2(θ2 + τ2) + (1 + γ2θ2 + δ)ω + (γ2 + δ)ω2

)

:= f(ω),

where

γ2 = max
x 6=0

〈x,Dx〉
〈x,Hx〉 , τ2 = max

x 6=0

〈x,Wx〉
〈x,Dx〉 , θ2 = max

x 6=0

〈Zx,Zx〉
〈Dx,Dx〉 , (2.4a)

δ = max
x 6=0

〈x, (LT D−1L−D)x〉
〈x,Hx〉 . (2.4b)

In addition, because

f ′(ω) =
−2γ2(θ2 + τ2) + 2γ2(θ2 + τ2)ω + 2(γ2 + δ)ω2 − 2(γ2 + δ)ω3

ω2(2− ω)2

=
2(1− ω)[(γ2 + δ)ω2 − γ2(θ2 + τ2)]

ω2(2− ω)2
,

we know that

ω1 = 1, and ω2 =
γ
√

θ2 + τ2

√
γ2 + δ

for γ2 + δ > 0, (2.5)
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are two stationary points of the function f(ω). After direct computations we have

f(ω1) = 1 + 2δ + γ2(1 + τ2 + 2θ2), (2.6a)

f(ω2) =
2γ

√
(θ2 + τ2)(γ2 + δ) + γ2θ2 + δ + 1√
γ2 + δ[2

√
γ2 + δ − γ

√
θ2 + τ2]

, (2.6b)

for

δ > γ2

[
1
4
(θ2 + τ2)− 1

]
. (2.7)

Hence, the optimal relaxation parameter ω∗ is given by

ω∗ =
{

ω1, if f(ω1) ≤ f(ω2),
ω2, if f(ω2) ≤ f(ω1),

(2.8)

and the corresponding optimal estimate for µ1 is given by

µ1 ≤ min{f(ω1), f(ω2)}.

In particular, when δ ≤ −γ2, we have ω∗ = ω1 = 1 and µ1 ≤ f(ω1).
By summarizing the above analysis, we can immediately obtain the following theorem.

Theorem 2.1. Let H := H(x, z) defined in (1.11) be the coefficient matrix of the Newton
equation, and

H = L + D + LT

be a splitting such that L is a strictly block-lower triangular matrix and D a block-diagonal
matrix. Assume that D̃ is an approximation of D satisfying 1

2 (D̃ + D̃T ) º D. Then for the
modified block SSOR preconditioner P(ω) defined in (2.1), it holds that

κ(P(ω∗)−1H) ≤ min{f(ω1), f(ω2)},

provided (2.7) is satisfied, where ω∗ is given by (2.8) and (2.5), and f(ω1) and f(ω2) are given
by (2.6), with the constants γ, τ and θ being defined by (2.4a) and the constant δ being defined
by (2.4b).

When δ ≤ −γ2, it holds that ω∗ = 1 and

κ(P(ω∗)−1H) ≤ f(ω1) = 1 + 2δ + γ2(1 + τ2 + 2θ2).

We remark that τ ≥ 1 because of W º D. When W = D, it holds that τ = 1 and θ = 0.
In general, to estimate the optimal condition number κ(P(ω∗)−1H) and the optimal relaxation
parameter ω∗, we need to compute the constants γ, τ , θ and δ. This can be done by making use
of either the actual structure and properties of the original problem, or some iterative methods
for computing the largest eigenvalues of symmetric matrix pairs [14,19].

3. Application and Analysis of Modified Block SSOR Preconditioners

In this section, we apply the modified block SSOR preconditioners discussed in Section 2 to
the edge-preserving signal and image restoration problems, see also [8, 9].
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Let C be a preconditioner for the matrix H11 = 2AT A + βGT G such that

1
2
(C + CT ) º 2AT A + βGT G,

i.e.,

C ≈ 2AT A + βGT G,

and define

D̃ =
[

C 0
0 βI + β diag(ψ”(zi))

]
.

Then it obviously holds that 1
2 (D̃ + D̃T ) º D.

According to Theorem 2.1, to obtain an estimate about the condition number κ(P(ω)−1H),
we only need to specifically estimate the constants γ2, τ2, θ2 and δ. To this end, we note that

LT D−1L =
[

βGT [I + diag (ψ”(zi))]−1G 0
0 0

]

and, therefore,
[

βGT G 0
0 0

]
º LT D−1L.

Since

LT D−1L−D ¹
[

βGT G 0
0 0

]
−

[
2AT A + βGT G 0

0 βI + β diag(ψ”(zi))

]

=−
[

2AT A 0
0 βI + β diag(ψ”(zi))

]

¹0,

or in other words, LT D−1L ¹ D, we have

δ =max
x 6=0

〈x, (LT D−1L−D)x〉
〈x,Hx〉

=max
x 6=0

{ 〈x, (LT D−1L−D)x〉
〈x,Dx〉 · 〈x,Dx〉

〈x,Hx〉
}

≤max
x 6=0

〈x, (LT D−1L−D)x〉
〈x,Dx〉 ·min

x 6=0

〈x,Dx〉
〈x,Hx〉

=max
x 6=0

〈x, (LT D−1L−D)x〉
〈x,Dx〉 · η2,

where

η2 = min
x 6=0

〈x,Dx〉
〈x,Hx〉 .
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Let x = [x1,x2]T . As

max
x 6=0

〈x, (LT D−1L−D)x〉
〈x,Dx〉 =−min

x 6=0

xT
1 (2AT A)x1 + xT

2 (βI + β diag(ψ”(zi)))x2

xT
1 (2AT A + βGT G)x1 + xT

2 (βI + β diag(ψ”(zi)))x2

≤− min
x1 6=0

min
{

xT
1 (2AT A)x1

xT
1 (2AT A + βGT G)x1

, 1
}

=− min
x1 6=0

xT
1 (2AT A)x1

xT
1 (2AT A + βGT G)x1

=− 1 + max
x1 6=0

xT
1 (βGT G)x1

xT
1 (2AT A + βGT G)x1

≤− 1 + ν2,

where

ν2 = max
x1 6=0

xT
1 (βGT G)x1

xT
1 (2AT A + βGT G)x1

< 1, (3.1)

we obtain
δ ≤ −(1− ν2)η2. (3.2)

Next, we can demonstrate that the matrix H satisfies the Cauchy-Bunyakovski-Schwarz
(CBS) inequality [1, 5–7,10,20], i.e.,

|xT
1 H12x2| ≤ ν

(
xT

1 H11x1

)1/2

·
(
xT

2 H22x2

)1/2

.

See also [2–4]. In fact,

|xT
1 H12x2|2 = |xT

1 (−βGT )x2|2
≤ β2xT

1 GT Gx1 · xT
2 x2

≤ βν2xT
1 (2AT A + βGT G)x1 · xT

2 x2

≤ ν2xT
1 (2AT A + βGT G)x1 · xT

2 (βI + β diag(ψ”(zi)))x2

= ν2 · xT
1 H11x1 · xT

2 H22x2.

By using this CBS inequality, we have

xT Hx = xT Dx + 2xT
1 H12x2

≤ xT Dx + 2|xT
1 H12x2|

≤ xT Dx + 2ν
(
xT

1 H11x1

)1/2

·
(
xT

2 H22x2

)1/2

≤ xT Dx + ν
(
xT

1 H11x1 + xT
2 H22x2

)

= (1 + ν)xT Dx.

Hence,

η2 = min
x 6=0

xT Dx
xT Hx

≥ 1
1 + ν

and from (3.2),

δ ≤ −(1− ν2)η2 ≤ −(1− ν2) · 1
1 + ν

= −(1− ν).
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Analogously, we can obtain

xT Hx ≥ xT Dx− 2|xT
1 H12x2|

≥ xT Dx− 2ν
(
xT

1 H11x1

)1/2

·
(
xT

2 H22x2

)1/2

≥ xT Dx− ν
(
xT

1 H11x1 + xT
2 H22x2

)

= (1− ν)xT Dx.

Therefore,

γ2 = max
x 6=0

xT Dx
xT Hx

≤ 1
1− ν

.

In addition, by noticing the special structure of the matrix D̃, we can straightforwardly obtain
the estimates about the constants τ and θ. In fact, from (2.4a) we have

τ2 = max
x 6=0

〈x,Wx〉
〈x,Dx〉 ≤ max

{
max
x1 6=0

〈x1, 1
2 (C + CT )x1〉

〈x1, (2AT A + βGT G)x1〉 , 1
}

, (3.3)

and

θ2 = max
x 6=0

〈Zx,Zx〉
〈Dx,Dx〉

≤ max
{

max
x1 6=0

〈12 (C−CT )x1, 1
2 (C−CT )x1〉

〈(2AT A + βGT G)x1, (2AT A + βGT G)x1〉 , 1
}

. (3.4)

By summarizing the above analysis, we can obtain the following theorem.

Theorem 3.1. Let H := H(x, z) defined in (1.11) be the coefficient matrix of the Newton
equation, and

H = L + D + LT

be a splitting such that L is a strictly block-lower triangular matrix and D a block-diagonal
matrix. Assume that C is an approximation of 2AT A + βGT G satisfying

1
2
(C + CT ) º 2AT A + βGT G.

Then for the modified block SSOR preconditioner P(ω) defined in (2.1), it holds that

κ(P(ω∗)−1H) ≤ min{f(ω1), f(ω2)},

where

ω1 = 1, ω2 =

√
θ2 + τ2

ν(2− ν)
,

f(ω1) =
ν(3− 2ν) + τ2 + 2θ2

1− ν
,

f(ω2) =
2
√

ν(2− ν)(θ2 + τ2)− θ2 + ν(1− ν)
2ν(2− ν)−

√
ν(2− ν)(θ2 + τ2)

,
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and

ω∗ =
{

ω1, if f(ω1) ≤ f(ω2),
ω2, if f(ω2) ≤ f(ω1),

with ν the CBS constant defined in (3.1) and τ and θ the constants defined in (3.3) and (3.4),
respectively.

Remark 3.1. When C is symmetric, we have θ = 0. In particular, when C = 2AT A+βGT G,
we have θ = 0 and τ = 1.

Remark 3.2. In actual implementations, the modified block SSOR preconditioner can be ap-
plied by adopting the Eisenstat trick [18] to save the computing cost.

4. Numerical Results

In this section, we present experimental results to illustrate the effectiveness of the pre-
conditioning and the corresponding PCG for solving the image restoration problem in which
half-quadratic regularization is applied. All codes are written in MATLAB 7.01 and all ex-
periments are implemented on a personal computer with 1.86GHz central processing unit and
512M memory. In our computations, the initial vector x is set to be the observed image and
z is set to be a constant vector; and the outer Newton iteration is stopped once the current
residual satisfies the criteria

‖r(k)‖2
‖r(0)‖2

≤ 10−6.

The image “Cameraman” from the MATLAB toolbox is used in our experiments. The
original “Cameraman” image is shown in Figure 4.1. An averaging function [17] is used to
blur this image and a Gaussian white noise with the standard deviation 0.001 is added. The
observed image is shown in Figure 4.2 (left).

Fig. 4.1. The original “Cameraman” image.

In computations of the image restoration, we take C = 2AT A + βGT G. With this choice,
we obtain the estimates stated in Remark 3.1. In the Newton method, the updating scheme is
given by [

x(k+1)

z(k+1)

]
=

[
x(k)

z(k)

]
− γkH(x(k), z(k))−1∇J̃(x(k), z(k))T ,
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where γk is the step-size determined by a line-search procedure of lower computational cost. The
PCG iteration method incorporated with the modified block SSOR preconditioner is applied to
solve the sub-system of linear equations H(x, z)d = r. In general, the Newton method is more
efficient than the alternating iteration method proposed in [15] when an accurate solution is
desired. Figure 4.2 (right) shows the restored image using the edge-preserving regularization
function φ1 in (1.3). We see from this figure that the edge-preserving solution tends to sharpen
the edges. Table 4.1 summarizes the computing results corresponding to this image restoration,
where the column labelled with “I” represents the results without using a preconditioner, while
the column labelled with “P” represents the results using the modified block SSOR precon-
ditioner P. In addition, we use “IT” to denote the number of iteration steps of the Newton
method, “PCG” the average number of iteration steps of the PCG method with respect to
different values of the relaxation parameter ω listed in the first column, and “CPU” the to-
tal computing time for the overall iteration process. From Table 4.1 we see that the average
number of PCG iteration steps is greater than 200 when no preconditioner is applied, and it is
less than 10, however, when the modified block SSOR preconditioner is used. The computing
efficiency can be improved up to about 50 times for the preconditioned case. Also, we note that
the number of PCG iteration steps is about the same for different values of ω, which shows
that the modified block SSOR preconditioner is not sensitive to the relaxation parameter ω. In
particular, when ω = 1 we get the modified block symmetric Gauss-Seidel preconditioner, and
the corresponding computing results are: IT = 3, PCG = 4.7 and CPU = 14.9. It is interesting
that these results are the best among all values of ω in the table. We remark that the image
restoration effect and computing results of using other regularization functions φ2, φ3 and φ4

defined by (1.4)-(1.6), respectively, are about the same.

Next, we present experimental results in which the “Cameraman” image is blurred by a

Table 4.1: The numerical results for the image restoration where “Cameraman” is blurred by the

average function.

I P

ω IT PCG CPU IT PCG CPU

0.3 3 7.3 22.6

0.6 3 6.3 19.8

0.9 3 > 200 > 240 3 5.0 16.0

1.2 3 5.0 16.1

1.5 3 6.0 18.5

1.8 3 8.0 24.1

Table 4.2: The numerical results for the image restoration where “Cameraman” is blurred by the

Gaussian function.

I P

ω IT PCG CPU IT PCG CPU

0.3 2 6.5 12.2

0.6 2 5.0 10.6

0.9 3 > 200 > 240 2 4.0 8.4

1.2 2 4.0 8.6

1.5 2 5.5 11.7

1.8 2 6.5 12.7
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Fig. 4.2. The blurred and noisy image by the average blur (left) and the restored image (right).

Fig. 4.3. The blurred and noisy image by Gaussian blur (left) and the restored image (right).

two-dimensional Gaussian function, say,

h(i, j) = e−2(i/3)2−2(j/3)2 ,

that is truncated such that the blurring function has a support of 7×7. A Gaussian white noise
with standard deviation 0.001 is added, too. The blurred and noisy image is shown in Figure
4.3 (left). Again, we take C = 2AT A + βGT G. As an example, the restored image using the
edge-preserving regularization function φ1 in (1.3) is shown in Figure 4.3 (right). In Table 4.2
we list the computing results corresponding to this restoration. The computing efficiency for
this example can be improved up to about 50 times for the preconditioned case. Hence, we
can conclude that the modified block SSOR preconditioner shows about the same efficiency for
image restoration degraded by different blurs.

Figure 4.4 depicts the spectral distribution of the original coefficient matrix H and the
preconditioned matrix P−1H when the Newton method is applied to the first restoration. This
figure clearly shows that the matrices without preconditioning are very ill-conditioned and,
therefore, the corresponding conjugate gradient method may be convergent slowly; the matrices
with preconditioning are, however, well-conditioned as they have tightly clustered eigenvalues
and, therefore, the corresponding PCG method converges faster.

Numerical implementations also indicate that using the other regularization functions φ2,
φ3 and φ4 defined by (1.4)-(1.6), respectively, and different parameters α and β, leads to similar
numerical results.

Finally, let us discuss the computational aspects of the Newton method and the proposed
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Fig. 4.4. The spectral distributions without preconditioner (left) and with the modified block SSOR

preconditioner (right).

modified block SSOR preconditioner. In the method proposed in [15] , the calculation of z(k)

is of linear complexity. The iterate x(k) is the solution of the linear system

(2AT A + βGT G)x(k) = 2AT b + βGT z(k). (4.1)

Evidently, the coefficient matrix is constantly fixed, and only the right-hand side is changing
with the iteration step. When A is a Toeplitz or a block-Toeplitz-Toeplitz-block matrix and
G is the discretization matrix of the first-order or the second-order difference operator, the
transform-based preconditioning techniques have been proved to be very successful [16]. For
instance, if A is a blurring matrix generated by a symmetric point spread function, then the
coefficient matrix of the linear system (4.1) can be diagonalized by a fast transform matrix. It
then follows that this linear system can be solved by using three fast transforms in O(p2 log p)
operations [16], where p is the size of the solution of the linear system (4.1). For the afore-
established modified block SSOR preconditioner, the main computational cost is to solve linear
systems with the coefficient matrix P(ω) defined by (2.1), with

D̃ =

[
C 0
0 βI + β diag(ψ”(z(k)

i ))

]
, L =

[
0 0

−βG 0

]
.

It is interesting to see that we have chosen C ≈ 2AT A + βGT G such that

1
2
(C + CT ) º 2AT A + βGT G

(see Section 3). Note that the matrix βI + β diag(ψ”(z(k)
i )) is diagonal and the matrix C

may be more easily invertible than the matrix 2AT A + βGT G. Both Newton method and
the approach proposed in [15] require to solve linear systems of the same type in about the
same computational costs. However, after the modified block SSOR preconditioner is used,
each inner PCG iteration converges fast, and outer Newton iteration requires only several steps
to achieve the prescribed tolerance, the computing time costed in the proposed Newton-PCG
iteration process is much less, too.

In summary, we have considered a class of convex and edge-preserving regularization func-
tions for image restoration problems and solved them by the Newton method incorporated with
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the preconditioned conjugate gradient method using the modified block SSOR preconditioner.
The experimental results have shown that this approach is more feasible and effective than the
alternating iteration method in [15].
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