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Abstract

We introduce a new and efficient numerical method for multicriterion optimal control

and single criterion optimal control under integral constraints. The approach is based on

extending the state space to include information on a “budget” remaining to satisfy each

constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The

efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of

characteristic curves in one of the newly added dimensions. A semi-Lagrangian “marching”

method is used to approximate the discontinuous viscosity solution efficiently. We compare

this to a recently introduced “weighted sum” based algorithm for the same problem [25].

We illustrate our method using examples from flight path planning and robotic navigation

in the presence of friendly and adversarial observers.
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1. Introduction

In the continuous setting, deterministic optimal control problems are often studied from the
point of view of dynamic programming; see, e.g., [1, 8]. A choice of the particular control a(t)
determines the trajectory y(t) in the space of system-states Ω ⊂ Rn. A running cost K is inte-
grated along that trajectory and the terminal cost q is added, yielding the total cost associated
with this control. A value function u, describing the minimum cost to pay starting from each
system state, is shown to be the unique viscosity solution of the corresponding Hamilton-Jacobi
PDE. Once the value function has been computed, it can be used to approximate optimal
feedback control. We provide an overview of this classic approach in section 2.

However, in realistic applications practitioners usually need to optimize by many different
criteria simultaneously. For example, given a vehicle starting at x ∈ Ω and trying to “optimally”
reach some target T , the above framework allows to find the most fuel efficient trajectories and
the fastest trajectories, but these generally will not be the same. A natural first step is to
compute the total time taken along the most fuel-efficient trajectory and the total amount of
fuel needed to follow the fastest trajectory. Computational efficiency requires a method for
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computing this simultaneously for all starting states x. A PDE-based approach for this task is
described in section 3.1.

This, however, does not yield answers to two more practical questions: what is the fastest
trajectory from x to T without using more than the specified amount of fuel? Alternatively,
what is the most fuel-efficient trajectory from x, provided the vehicle has to reach T by the
specified time? We will refer to such trajectories as constrained-optimal.

One approach to this more difficult problem is the Pareto optimization: finding a set of
trajectories, which are optimal in the sense that no improvement in fuel-efficiency is possible
without spending more time (or vice versa). This defines a Pareto front – a curve in a time-
fuel plane, where each point corresponds to time & fuel needed along some Pareto-optimal
trajectory. This approach is generally computationally expensive, especially if a Pareto front
has to be found for each starting state x separately. The current state of the art for this
problem has been developed by Mitchell and Sastry [25] and described in section 3.2. Their
method is based on the usual weighted sum approach to multiobjective optimization [24]. A
new running cost K is defined as a weighted average of several competing running costs Ki’s,
and the corresponding Hamilton-Jacobi PDE is then solved to obtain one point on the Pareto
front. The coefficients in the weighted sum are then varied and the process is repeated until
a solution satisfying all constraints is finally found. Aside from the computational cost, the
obvious disadvantage of this approach is that only a convex part of the Pareto front can be
obtained by weighted sum methods [13], which may result in selecting suboptimal trajectories.
In addition, recovering the entire Pareto front for each x ∈ Ω is excessive and unnecessary
when the real goal is to solve the problem for a fixed list of constraints (e.g., maximum fuel or
maximum time available).

Our own approach (described in section 3.3) remedies these problems by systematically
constructing the exact portion of Pareto front relevant to the above constraints for all x ∈ Ω
simultaneously. Given Ω ⊂ Rn and r additional integral constraints, we accomplish this by
solving a single augmented partial differential equation on a (r + n)-dimensional domain. Our
method has two key advantages. First, it does not rely on any assumptions about the convexity
of Pareto front. Secondly, the PDE we derive has a special structure, allowing for a very efficient
marching method. Our approach can be viewed as a generalization of the classic equivalency of
Bolza and Mayer problems [8]. The idea of accommodating integral constraints by extending the
state space is not new. It was previously used by Isaacs to derive the properties of constrained-
optimal strategies for differential games [21]. More recently, it was also used in infinite-horizon
control problems by Soravia [37] and Motta & Rampazzo [26] to prove the uniqueness of the
(lower semi-continuous) viscosity solution to the augmented PDE. However, the above works
explored the theoretical issues only and, to the best of our knowledge, ours is the first practical
numerical method based on this approach. In addition, we also show the relationship between
optimality under constraints and Pareto optimality for feasible trajectories.

The computational efficiency of our method is deeply related to the general difference in
numerical methods for time-dependent and static first-order equations. In optimal control
problems, time-dependent HJB PDEs result from finite-horizon problems or problems with
time-dependent dynamics and running cost. Static HJB PDEs usually result from exit-time or
infinite-horizon problems with time-independent (though perhaps time-discounted) dynamics
and running cost. In the time-dependent case, efficient numerical methods are typically based
on time-marching. In the static case, a naive approach involves iterative solving of a system
of discretized equations. Several popular approaches were developed precisely to avoid these
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iterations either by space-marching (e.g., [29,34,40]), or by embedding into a higher-dimensional
time-dependent problem (via Level Set Methods, e.g., [27]), or by treating one of the spatial
directions as if it were time (resulting in a “paraxial” approximation; see, e.g., [28]). For reader’s
convenience, we provide a brief overview of these approaches in sections 2.3 and 2.4. Our key
observation is that the augmented “static” PDE has explicit causality, allowing simple marching
(similar to time-marching) in the secondary cost direction.

Our semi-Lagrangian method is described in section 3.4. Since the augmented PDE is
solved on a higher-dimensional domain, any restriction of that domain leads to substantial
computational savings. In section 3.5 we explain how this can be accomplished by solving
static PDEs in Ω for each individual cost. This additional step also yields improved boundary
conditions for the primary value function in Rn+r.

In section 4 we illustrate our method using examples from robotic navigation (finding short-
est/quickest paths, while avoiding (or seeking) exposure to stationary observers) and a test-
problem introduced in [25] (planning a flight-path for an airplane to minimize the risk of en-
countering a storm while satisfying constraints on fuel consumption). Finally, in section 5 we
discuss the limitations of our approach and list several directions for future research.

2. Single-criterion Dynamic Programming

2.1. Exit-time optimal control

To begin, we consider a general deterministic exit-time optimal control problem. This is
a classic problem and our discussion follows the description in [1]. Suppose Ω ⊂ Rn is an
open bounded set of all possible “non-terminal” states of the system, while ∂Ω is the set of all
terminal states. For every starting state x ∈ Ω, the goal is to find the cheapest way to leave Ω.

Suppose A ∈ Rm is a compact set of control values, and the set of admissible controls A
consists of all measurable functions a : R 7→ A. The dynamics of the system is defined by

y′(t) = f(y(t), a(t)),

y(0) = x ∈ Ω, (2.1)

where y(t) is the system state at the time t, x is the initial system state, and f : Ω̄×A 7→ Rn

is the velocity. The exit time associated with this control is

Tx,a = min{t ∈ R+,0|y(t) ∈ ∂Ω}. (2.2)

The problem description also includes the running cost K : Ω̄ × A 7→ R and the terminal
(non-negative, possibly infinite) cost q : ∂Ω 7→ (R+,0 ∪ {+∞}). This allows to specify the total
cost of using the control a(·) starting from x:

J (x,a(·)) =
∫ Tx,a

0

K(y(t), a(t)) dt + q(y(Tx,a)).

We will make the following assumptions throughout the rest of this paper:

(A0) Function q is lower semi-continuous and min∂Ω q < +∞;

(A1) Functions f and K are Lipschitz-continuous;

(A2) There exist constants k1, k2 such that 0 < k1 ≤ K(x,a) ≤ k2 for ∀x ∈ Ω̄, a ∈ A;
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(A3) For every x ∈ Ω, the scaled vectogram

V (x) = {f(x,a)/K(x,a) | a ∈ A}

is a strictly convex set, containing the origin in its interior.

The key idea of dynamic programming is to introduce the value function u(x), describing
the minimum cost needed to exit Ω starting from x:

u(x) = inf
a(·)∈A

J (x, a(·)). (2.3)

Bellman’s optimality principle [6] shows that, for every sufficiently small τ > 0,

u(x) = inf
a(·)

{∫ τ

0

K(y(t), a(t)) dt + u(y(τ))
}

, (2.4)

where y(·) is a trajectory corresponding to a chosen control a(·). If u(x) is smooth, a Taylor
expansion of the above formula can be used to formally show that u is the solution of a static
Hamilton-Jacobi-Bellman PDE:

min
a∈A

{K(x,a) +∇u(x) · f(x, a)} = 0, for x ∈ Ω;

u(x) = q(x), for x ∈ ∂Ω. (2.5)

Unfortunately, a smooth solution to Eqn. 2.5 might not exist even for smooth f ,K, q, and ∂Ω.
Generally, this equation has infinitely many weak Lipschitz-continuous solutions, but the unique
viscosity solution can be defined using additional conditions on smooth test functions [11, 12].
It is a classic result that the viscosity solution of this PDE coincides with the value function of
the above control problem.

Under the above assumptions the value function u(x) is locally Lipschitz-continuous on Ω,
an optimal control a(·) actually exists for every x ∈ Ω (i.e., min can be used instead of inf in
formula 2.3), and the minimizing control value a (in equation 2.5) is unique wherever ∇u(x)
is defined [1]. The characteristic curves of this PDE are the optimal trajectories of the control
problem. The points where ∇u is undefined are precisely those, where multiple characteristics
intersect (or, alternatively, the points for which multiple optimal trajectories are available). We
will let Γ be a set of all such points. By Rademacher’s theorem, Γ has a measure zero in Ω̄.

We note that the assumptions (A2-A3) can be relaxed at the cost of additional technical
details. For example, if V (x) is not convex, the existence of an optimal control is not guaranteed
even though the value function can still be recovered from the PDE (2.5) and there exist
suboptimal controls whose cost is arbitrarily close to u(x). On the other hand, if V (x) does
not contain the origin in its interior, then the reachable set

R =
{

x ∈ Ω | there exists a control leading from x to ∂Ω in finite time
}

need not be the entire Ω. In that case, ∂R is a free boundary. We refer readers to [1] for further
details.

The above framework is also flexible enough to describe the task of optimally reaching some
compact target T ⊂ Ω without leaving Ω. To do that, we can simply pose the problem on a
new domain Ωnew = Ω\T , defining the new exit cost qnew to be infinite on ∂Ω and finite on
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∂T . The assumptions (A0-A3) guarantee the continuity of the value function on Ω even in the
presence of state-constraints; k1 > 0 and the fact that the origin is in the interior of V (x) yield
both Soner’s “inward pointing” condition along the boundary of the constraint set (as in [36])
and the local controllability (as in [2], for example).

Remark 2.1. The continuity of u on Ω̄ is a more subtle issue requiring additional compatibility
conditions on q even if that function is continuous; otherwise, the boundary conditions are
satisfied by the value function “in viscosity sense” only [1]. However, due to our very strong
controllability assumption (A3), the local Lipschitz-continuity of u in the interior is easy to
show even if q is discontinuous, as allowed by (A0). Without assumption (A3) or its equivalent,
discontinuous boundary data typically leads to discontinuities in the value function in the
interior as well. Such is the case for the augmented PDE defined in section 3.3.

Before continuing with the general case we consider two particularly useful subclasses of
problems.

Geometric dynamics. Suppose A = {a ∈ Rn | |a| ≤ 1} and, for all x ∈ Ω, a ∈ A\{0},

K(x, a) ≥ |a|K(x, a/|a|), f(x, a) = f(x, a/|a|)a, and f(x, 0) = 0.

Then it is easy to show that the cost of any trajectory is reduced by traversing it as quickly
as possible; i.e., we can redefine A = Sn−1 = {a ∈ Rn | |a| = 1} without affecting the value
function. In that case, the control value a is simply our choice for the direction of motion and
f is the speed of motion in that direction. The equation (2.5) now becomes

min
a∈Sn−1

{K(x, a) + (∇u(x) · a) f(x,a)} = 0. (2.6)

A further simplification is possible if the speed and cost are isotropic, i.e., f(x, a) = f(x) and
K(x, a) = K(x). In this case, the minimizing control value is a = −∇u(x)/|∇u(x)| and (2.5)
reduces to an Eikonal PDE:

|∇u(x)| f(x) = K(x). (2.7)

The characteristics of the Eikonal equation coincide with the gradient lines of its viscosity so-
lution. That special property can be used to construct particularly efficient numerical methods
for this PDE; see section 2.4.

Time-optimal control. If K(x,a) = 1 for all x and a, then J (x, a(·)) = Tx,a + q(y(Tx,a)).
Interpreting q as an exit time penalty, we can restate this as a problem of finding a time-optimal
control starting from x. The PDE (2.5) becomes

max
a∈A

{−∇u(x) · f(x, a)} = 1. (2.8)

We note that the value function for every exit-time optimal control problem satisfying as-
sumptions (A0-A3) can be reduced to this time-optimal control case by setting Knew = 1 and
fnew(x, a) = f(x, a)/K(x, a); a proof of this for the case of geometric dynamics can be found
in [41].

A combination of these two special cases is attained when K = 1 and f = 1, leading to a
PDE |∇u(x)| = 1. If the boundary condition is q = 0, then u(x) is simply the distance from x

to ∂Ω.
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2.2. Semi-Lagrangian discretizations

Suppose X is a grid or a mesh on the domain Ω̄ and for simplicity assume that ∂Ω is
well-discretized by ∂X. We will use M = |X| to denote the total number of meshpoints in X.

A natural first-order accurate semi-Lagrangian discretization of equation (2.5) is obtained by
assuming that the control value is held fixed for some small time τ . If U(x) is the approximation
of the value function at the mesh point x ∈ X, then the optimality principle yields the following
system:

U(x) = min
a∈A

{τK(x, a) + U (x + τf(x,a))} , ∀x ∈ X\∂Ω;

U(x) = q(x), ∀x ∈ ∂X. (2.9)

Since x̃a = x + τf(x,a) usually is not a gridpoint, a first-order accurate reconstruction is
needed to approximate U(x̃) based on values of U at nearby meshpoints1) . Discretizations of
this type were introduced by Falcone for time-discounted infinite-horizon problems, which can
be related to the above exit-time problem using the Kruzhkov transform [16,17].

In case of geometric dynamics, another natural discretization is based on the assumption
that the direction of motion is held constant until reaching a boundary of a simplex. For
notational simplicity, suppose that n = 2 and S(x) is the set of all triangles in X with a vertex
at x. For every s ∈ S(x), denote its other vertices as xs1 and xs2. Suppose x̃a = x+τaf(x, a)a
lies on the segment xs1xs2. Let

Ξ =
{

ξ = (ξ1, ξ2) | ξ1 + ξ2 = 1 and ξ1, ξ2 ≥ 0
}

.

Then x̃a = ξ1xs1 + ξ2xs2 for some ξ ∈ Ξ and U(x̃a) = ξ1U(xs1) + ξ2U(xs2). Alternatively,
given x̃ξ = ξ1xs1 + ξ2xs2, we can define

aξ = (x̃ξ − x)/|x̃ξ − x| and τξ = |x̃ξ − x|/f(x, aξ).

This yields the following system of discretized equations:

U(x) = min
s∈S(x)

min
ξ∈Ξ

{τξK(x, aξ) + (ξ1U(xs1) + ξ2U(xs2))} , ∀x ∈ X\∂Ω;

U(x) = q(x), ∀x ∈ ∂X. (2.10)

Discretizations of this type were used by Gonzales and Rofman in [18]. Both discretizations
(2.9) and (2.10) were also earlier derived by Kushner and Dupuis approximating continuous
optimal control by controlled Markov processes [23]. In the appendix of [35] we demonstrated
that (2.10) is also equivalent to a first-order upwind finite difference approximation on the
same mesh X.

2.3. Causality, dimensionality & computational efficiency

We note that both of the above discretizations result in a system of M non-linear coupled
equations. Finding a numerical solution to that system efficiently is an important practical
problem in itself.

1) If x is close to ∂Ω, it is possible that x̃a 6∈ Ω̄. This can be handled by either enlarging X to cover some

neighborhood of Ω (see, e.g., [4]) or by decreasing τ in such cases to make x̃a ∈ ∂Ω. The latter strategy is also

adopted in our implementation of the method in section 3.4.
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Suppose all meshpoints in X are ordered x1, . . . , xM and U = (U1, . . . , UM ) is a vector of
corresponding approximate values. The above discretized equations can be formally written as
U = F(U) and one simple approach is to recover U by fixed-point iterations, i.e., Uk+1 = F(Uk),
where U0 is an appropriate initial guess for U . This procedure is generally quite inefficient since
each iteration has a O(M) computational cost and a number of iterations needed is at least
O(M1/n).

A Gauss-Seidel relaxation of the above is a typical practical modification, where the en-
tries of Uk+1 are computed sequentially and the new values are used as soon as they become
available: Uk+1

i = Fi(Uk+1
1 , . . . , Uk+1

i−1 , Uk
i , . . . , Uk

M ). The number of iterations required to con-
verge will now heavily depend on the PDE, the particular discretization and the ordering of the
meshpoints. We will say that a discretization is causal if there exists an ordering of meshpoints
such that the convergence is attained after a single Gauss-Seidel iteration. For example, if the
dynamics of the control problem is such that one of the state components (say, y1) is monotone
increasing along any feasible trajectory y(t), then ordering all the meshpoints in ascending
order by x1 would guarantee that only one Gauss-Seidel iteration is needed. Such ordering is
analogous to a simple time-marching (from the past into the future) used with discretizations
of time-dependent PDEs (e.g., in recovering the value function for fixed-horizon optimal control
problems). If a causal ordering is explicitly known a priori (as in the above example), we refer
to such discretizations as explicitly causal.

Explicit causality is a desirable property since it results in computational efficiency. Suppose
u(x) is a viscosity solution of some boundary value problem. Historically, two approaches have
sought to capitalize on explicit causality in solving more general static PDEs. First, it is often
possible to formulate a different time-dependent PDE on the same domain Ω so that its viscosity
solution φ is related to u as follows:

u(x) = t ⇐⇒ φ(x, t) = 0.

The PDE for φ is then solved by explicit time-marching; moreover, since only the zero level set
of φ is relevant for approximating u, the Level Set Methods are applicable e.g., see [27,30]. Aside
from increasing the dimensionality of the computational domain, this approach is also subject
to additional CFL-type stability conditions, which often impact the efficiency substantially.
Alternatively, in some applications (e.g., seismic imaging) a “paraxial” approximation results
from assuming that all optimal trajectories must be monotone in one of the state components
(say, y1) even if the same is not true for all feasible trajectories. This leads to a time-like
marching in x1 direction (essentially solving a time-dependent PDE on an (n− 1)-dimensional
domain); see, e.g., [28]. This method is certainly computationally efficient, but if the assumption
on monotonicity of optimal trajectories is incorrect, it does not converge to the solution of the
original PDE.

2.4. Efficient methods for non-explicitly causal problems

Finding the right ordering without increasing the dimensionality has been the subject of
much work in the last fifteen years. This task can be challenging for discretizations which are
causal, but not explicitly causal.

For the isotropic control problems and the Eikonal PDE (2.7), an equivalent of discretiza-
tion (2.10) on a Cartesian grid is monotone-causal in the sense that Ui cannot depend on Uj

if Uj > Ui. This makes it possible to find the correct ordering of gridpoints (ascending in U)
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at run-time, effectively de-coupling the system of discretized equations. This idea, the basis of
Dijkstra’s classic method for shortest paths on graphs [14], yields the computational complexity
of O(M log M). Tsitsiklis has introduced the first Dijkstra-like algorithm for semi-Lagrangian
discretization on a Cartesian grid in [40]. A Dijkstra-like Fast Marching Method was introduced
by Sethian for Eulerian upwind finite-difference discretizations of isotropic front propagation
problems [29]. The method was later extended by Sethian and collaborators to higher-order
accurate discretizations on grids and unstructured meshes, in Rn and on manifolds, and to re-
lated non-Eikonal PDEs; see [30], [33], and references therein. For anisotropic control problems,
the discretization (2.10) generally is not causal, but the computational stencil can be expanded
dynamically to regain the causality. This is the basis of Ordered Upwind Methods [34, 35, 41],
whose computational complexity is O(ΥM log M), where Υ measures the amount of anisotropy
present in the problem.

The idea of alternating the directions of Gauss-Seidel sweeps to “guess” the correct mesh
point ordering was employed by Boue and Dupuis to speed up the convergence in [7]. For
Eulerian discretizations of HJB PDEs, the same technique was later used as a basis of Fast
Sweeping Methods by Tsai, Cheng, Osher, and Zhao [39, 43]. Even though a finite number of
Gauss-Seidel sweeps is required in the Eikonal case, resulting in a computational cost of O(M),
the actual number of sweeps is proportional to the maximum number of times an optimal
trajectory may be changing direction from quadrant to quadrant. A computational comparison
of fast marching and fast sweeping approaches to Eikonal PDEs can be found in [19,20].

3. Multi-criterion Optimal Control

Unlike the classical case considered in section 2, in realistic applications there is often more
than one criterion for optimality. For a system controlled in Ω ⊂ Rn, there may be a number
of different running costs K0, . . . , Kr and a number of different terminal costs q0, . . . , qr (all
of them satisfying assumptions (A0-A3)) resulting in (r + 1) different definitions J0, . . . ,Jr of
the total cost for a particular control. A common practical problem is to find a control a∗(·)
minimizing J0(x,a∗(·)) but subject to constraints Ji(x, a∗(·)) ≤ Bi for all i = 1, . . . , r.

We will refer to a control minimizing J0 without any regard to constraints as primary-
optimal. A control minimizing some Jj (for j > 0) without any regard to other constraints will
be called j-optimal (or simply secondary-optimal, when j is clear from the context). A control
minimizing J0 subject to all of the above constraints on Ji’s will be called constrained-optimal.

For a fixed x ∈ Ω, we will say that a control a1(·) is j-dominated by a control a2(·) if
Ji(x, a2(·)) ≤ Ji(x,a1(·)) for all i = 0, . . . , r and Jj(x, a2(·)) < Jj(x, a1(·)). We will also
say that a1(·) is dominated by a2(·) if it is j-dominated for some j ∈ {0, . . . , r}. E.g., the
constrained-optimal control a∗(·) described above might be dominated, but will not be 0-
dominated by any control. Any control a∗∗(·) dominating a∗(·) will have the same primary
cost J0 and will also satisfy the same constraints; moreover, it will even spend less in at least
one of the secondary costs J1, . . . ,Jr.

We will say that a(·) is Pareto-optimal for x, if it is not dominated by any other control.
In that case, its vector of costs corresponds to a point on a Pareto-front P(x) in a J0, . . . ,Jr

space; see Figure 3.2A.
Our goal is to find an efficient numerical method for approximating the costs associated

with Pareto-optimal controls. The efficiency requires solving this problem for all x ∈ Ω simul-
taneously.
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We begin by showing how to compute the total cost Ji incurred by using a control optimal
with respect to a different running cost (section 3.1). We then describe a recent method due
to Mitchell and Sastry for recovering a convex portion of the Pareto front by scalarization
(section 3.2). Finally, in section 3.3 we describe a new method for solving fully this problem by
augmenting the system state to include the “budget remaining” in each secondary cost.

3.1. Total cost along “otherwise optimal” trajectories

We will use ui(x) to denote the value function with respect to Ji if all other costs are
ignored. As explained in section 2.1, ui(x) can be recovered as a viscosity solution of the
PDE (2.5), if we set K = Ki and q = qi.

Given a different value function u derived for some other cost J , we will define a restricted
set of J -optimal controls

Au,x =
{

a(·) ∈ A | J (x,a(·)) = u(x)
}

.

As explained in section 2.1, if J satisfies the assumptions (A0-A3), then Au,x will be non-empty
for every x ∈ Ω and will contain a single element for every x ∈ Ω\Γ.

We will use vi(x) to denote a J -optimality-restricted value function with respect to Ji:

vi(x) = inf
a(·)∈Au,x

Ji(x,a(·)). (3.1)

This notation relies on a fixed choice of J and u, and we will specify J explicitly in each case
to avoid ambiguity. For the cases when J = Jj and u = uj , we will use vij instead of vi.
According to this definition, we also have vii = ui.

The following properties of Pareto fronts follow from the above definitions. The proofs are
simple and we omit them for the sake of brevity.

Property 3.1. vi(x) ≥ ui(x) for ∀x ∈ Ω̄ and for any choice of J satisfying assumptions
(A0−A3).

Property 3.2. Suppose u(x) is the value function corresponding to some J that satisfies as-
sumptions (A0−A3). If Ki and qi also satisfy (A0−A2), then vi(x) is lower semi-continuous
on Ω and continuous wherever u(x) is differentiable.

Property 3.3. Let U(x) =
{
(J0, . . . , Jr) ∈ Rr+1 | Ji ≥ uj(x), j = 0, . . . , r

}
. Then for any

x ∈ Ω̄, we have
1. P(x) ⊂ U(x) and
2. (vi0(x), . . . , vir(x)) ∈ P(x) for all i = 0, . . . , r.

Property 3.4. If r = 1, then P(x) ⊂ [v00(x), v01(x)]× [v11(x), v10(x)].

Suppose u is a smooth solution to the PDE (2.5). Then Γ = ∅ and for every x ∈ Ω there
exists a unique optimal/minimizing control value a∗ = a∗(x,∇u(x)) ∈ A. The local rate of
increase of Ji along the corresponding trajectory is Ki(x, a∗). This yields a system of (r + 1)
linear PDEs

∇vi(x) · f(x, a∗) = −Ki(x, a∗), ∀x ∈ Ω;

vi(x) = qi(x), ∀x ∈ ∂Ω; i = 0, . . . , r. (3.2)
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Fig. 3.1. Cost along “otherwise optimal” trajectories. A simple one-dimensional example: Ω̄ = [0, 1],

f = K0 = K1 = 1, and q0(0) = q1(0) = q1(1) = 0, but q0(1) = 0.4. Similar discontinuities may occur

even if q0 = q1 (when K0 6= K1).

This system is coupled to a nonlinear equation (2.5), since a∗ is generally not available a
priori unless ∇u is already known.

In the Eikonal case (when A = Sn−1, f(x, a) = f(x)a and K(x,a) = K(x)), the optimal
direction of motion is

a∗ = − ∇u(x)
|∇u(x)| = −∇u(x)

f(x)
K(x)

,

and the system (3.2) can be rewritten as

∇vi(x) · ∇u(x) = Ki(x, a∗)K(x)/f2(x), ∀x ∈ Ω;

vi(x) = qi(x), ∀x ∈ ∂Ω; i = 0, . . . , r. (3.3)

If u is not smooth, the functions vi may become discontinuous (see Figure 3.1) and a
generalized solution is needed to define vi(x) at any points x ∈ Γ. Luckily, Bellman’s optimality
principle provides an alternative definition to resolve this ambiguity:

vi(x) = lim
τ→0+

min
a∗∈Au,x

{τK(x,a∗) + vi (x + τf(x, a∗)) } ,

where Au,x ⊂ A is the set of minimizing control values in (2.5). If x 6∈ Γ, then the Au,x consists
of a single element and this formulation is equivalent to (3.2). Whether or not a∗ is unique,
the above formula yields the lower semi-continuity of vi. It can also be used (with a fixed small
τ > 0) to derive a first-order semi-Lagrangian discretization of (3.2).

We note that the key technical idea employed above (solving a linear equation along the
characteristics of another PDE) is well-known and useful in many applications. A common
version of it arises whenever there is a need to “propagate a constant” from the boundary along
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Fig.3.2.ParetoFront(left)anditsreconstructionusingthe“weightedsums”method(right).An

optimumfoundforeachλ∈ΛyieldsapointonaconvexpartofParetofrontandthevectorλwillbe

orthogonaltoasupporthyperplanetothefrontatthatpoint(shownbyadashedline).Inweighted

sumsmethod,anenvelopeofallsupporthyperlplanesisusedtoapproximatetheParetofront,but

missesallnon-convexpartsofthefront[13].

thecharacteristicsofsomePDE.Forexample,thisistheessentialideabehindthe“velocity
extensionequation”in[31]andthe“escapeequations”in[32].Aslightlylessgeneralversionof
ourequation(3.3)(forisotropiccosts/dynamicswithf=1andqi=0)hasalsobeenpreviously
usedin[25].

3.2.WeightedsumsmethodandParetofronts

ScalarizationisapopularapproachwhereapointonPareto-frontisrecoveredbyminimizing
an“aggregateobjectivefunction”.Themethodofweightedsumsdefinesthataggregatefunction
asaconvexlinearcombinationoftheoriginalobjectives[24].

ArecentmethodbasedonthisapproachwasintroducedbyMitchell&Sastryformultiob-
jectiveoptimalcontrolinthecasewhenf=1andallcostsareisotropic[25].Herewedescribe
aslightlygeneralizedversionoftheirmethod.

Let

Λ=
{

λ=(λ0,...,λr)|
r ∑

j=0

λj=1andλi≥0foralli

}

andsupposeΛ̃issomemeshdiscretizingΛ.Givenλ∈Λ,define

Kλ(x,a)=
r ∑

i=0

λiKi(x,a);qλ(x,a)=
r ∑

i=0

λiqi(x,a).

SolveEq.(2.5)forK=Kλandq=qλ.Havingfoundu,solvethesystem(3.2)toobtainvi’s.
Theresultingpoint(v0(x),...,vr(x))willbelongtotheParetofrontP(x).

Theaboveprocedureisappliedrepeatedlyforallmeshpointsλ∈Λ̃toobtainamesh
approximatingP(x).SincefindingeachpointontheParetofrontinvolvessolvingonenon-linear
and(r+1)linearPDEs,anyrestrictionofthecomputationaldomainΩ⊂R

n
isworthwhile.

Thiscanbeoftenaccomplishedbyfindingu1,...,urfirstandexcludingallxforwhichui(x)>

Biforsomei∈{1,...,r}.
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Aside from the computational cost of the above procedure, this approach suffers from two
usual problems associated with the method of weighted sums. First, a uniform mesh on Λ
often results in a highly non-uniform mesh on P(x). Secondly, the weighted sum method can
approximate only a convex part of the Pareto front [13]; see Figure 3.2B. This may result in
selecting suboptimal trajectories. Mitchell & Sastry acknowledge that, for non-convex fronts,
“this method may fail to detect a feasible path even if one exists”, but they report that “non-
convexity has not been a problem” in their numerical experiments. They further suggest that
“neighboring values of λ can be used to bound the error in the convex approximation” of non-
convex portions of the front. We believe that the latter procedure can be very inaccurate,
especially since the Pareto front is frequently discontinuous for multiobjective optimal control
problems. See Figure 4.5 for an example of non-convexities actually present in the test-problem
introduced in [25].

In addition, we note that recovering the entire Pareto front for each x ∈ Ω is excessive and
unnecessary when the real goal is to solve the problem for a fixed list of constraints B1, . . . , Br.
If instead of using a mesh Λ̃, we attempt changing λ adaptively, it is not generally clear in what
direction should λ be perturbed in order to satisfy the constraints.

Despite the above limitations, this technique can be useful in many applications, whenever
there is a need to produce at least some of the Pareto-optimal trajectories efficiently. E.g.,
a similar scalarization approach has been independently used by Kim and Hespanha in path
planning (to minimize the risk of detection/interception) for groups of UAVs [22].

3.3. An augmented PDE on an expanded state space

We propose an alternative approach based on augmenting the system-state space to reflect
the budget remaining in each of the secondary costs. This is a generalization of the idea
classically used to recast a Bolza problem as a problem with zero running cost by adding an
extra dimension to the state space [8].

Suppose bi ∈ [0, Bi] is the “budget” remaining in the secondary cost Ji. We define an
extended state variable x̂ = (x, b1, . . . , br) and the extended state space Ωe = Ω × (0, B1) ×
. . .× (0, Br). The outflow boundary and the inflow boundary of this domain are

Bout =
{

x̂ ∈ ∂Ω̄e | x ∈ Ω, and bi ∈ (0, Bi] for i = 1, . . . , r

}
and Bin = ∂Ωe\Bout.

We note that Bout is the part of the boundary where at least one of the budgets is at the
maximal level (∃j such that bj = Bj). For the case r = 1, Bin coincides with the so called
parabolic boundary [15]; see Figure 3.3. We will also refer to a feasible subset of Bin:

Bf =
{

x̂ ∈ Bin | x ∈ ∂Ω, and bi ≥ qi(x) for i = 1, . . . , r

}
.

The extended state at the time t will be denoted as ŷ(t) = (y(t), β1(t), . . . , βr(t)) ∈ Ω̄e, and
the extended dynamics is now defined by

y′(t) = f(y(t),a(t)); (3.4a)

β′i(t) = −Ki(y(t), a(t)), i = 1, . . . , r; (3.4b)
ŷ(0) = x̂ = (x, b1, . . . , br) ∈ Ωe. (3.5)

As before, the exit time corresponding to a particular control is defined by (2.2), but we will
use T = Tx̂,a to simplify the notation.
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The total cost of this control is defined as

Ĵ (x̂, a(·)) =

{∫ T

0
K0(y(t),a(t)) dt + q0(y(T )) if ŷ(T ) ∈ Bf,

+∞ otherwise.
(3.6)

The (possibly infinite) value function of the new control problem is defined, as usual: w(x̂) =
w(x, b1, . . . , br) = inf Ĵ (x̂, a(·)).

If the value function is smooth, the standard argument (based on Taylor-expanding w (ŷ(τ))
in the optimality principle), shows that w satisfies the PDE

min
a∈A

{
K0(x, a) +∇xw · f(x,a) −

r∑

i=1

Ki(x, a)
∂w

∂bi

}
= 0. (3.7)

with the boundary conditions

w(x̂) =

{
q0(x) on Bf;

+∞ on Bin\Bf.
(3.8)

However, w can be not only non-smooth, but also discontinuous inside Ωe since the boundary
data is discontinuous and no local controllability (in the directions b1, . . . , br) is present; see
Remark 2.1. Nevertheless, w can still be interpreted as a unique discontinuous viscosity solution
[37] of equation (3.7), despite the fact that Soner’s “inward pointing” condition is clearly violated
on Bout [26].

As in the single-objective case, if the minimization in a can be performed analytically, the
augmented PDE can be rewritten in a simpler form. For example, in the fully isotropic case,

K0(x) − |∇xw|f(x) −
r∑

i=1

Ki(x)
∂w

∂bi
= 0, (3.9)

b 1

B
1

Ω

b 1
<

u
1
(x

)

b 1
>

v
1
,0

(x
)

w(x, b1 ) =
u
0 (x)

w(x,b1)=v0,1(x)

Fig.3.3.AsketchofthedomainΩ̄eforthecaser=1.ThethicklineshowstheinflowboundaryBin.
Thedashedlineisthegraphofu1(x)(theminimumb1neededtoleaveΩstartingfromx).Bfisthe
portionofBinabovethedashedline.Thedottedlineshowsthepointswhereb1=v1,0(x).Atthat
levelandhigher,theprimary-optimalcontrolsarefeasibleandw(x,b1)=u0(x).Abovethedotted
line,theconstraintisslack.ThePDE(3.7)hastobesolvednumericallyintheshadedregion.
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which in the case r = 0 reduces to the usual Eikonal equation (2.7).
The following properties of w follow from the above definitions. The proofs are simple or

standard and we omit most of them (except for the last three) for the sake of brevity.

Property 3.5. The value function w : Ω̄e 7→ (R ∪ {+∞}) is lower-semicontinuous; see [37]
and references therein.

Property 3.6. The value function w is monotone non-increasing in each bi. As a result, if
b ≥ c componentwise, then w(x, b) ≤ w(x, c).

Property 3.7. If for some i, bi < ui(x), then w(x, b) = +∞.

Property 3.8. w(x, b) ≥ u0(x) = w (x, v10(x), . . . , vr0(x)) .

Property 3.9. w is Lipschitz continuous along every characteristic.

Property 3.10. The characteristics of PDE (3.7) have the following properties:
1. All characteristics are monotone-increasing in all bi’s.
2. Projections of characteristics on Ω yield constrained-optimal trajectories.
3. Any characteristic starting on Bf leads into Ω̄e.
4. Any characteristic starting on Bout leads out of Ω̄e.

We will say that a control a(·) is feasible for x̂ = (x, b) if Ji(x, a(·)) ≤ bi for all i = 1, . . . , r.
We will say that x̂ ∈ Ω̄e is a feasible point if it has at least one feasible control (i.e., if w(x̂) < ∞).
We will say that a point x̂ is i-tightly-constrained if for every constrained-optimal control a∗(·)
we have Ji(x, a∗(·)) = bi. Otherwise, we will call x̂ i-slack. We will also say that x̂ is totally
slack if there exists a constrained-optimal control a∗(·) such that Ji(x, a∗(·)) < bi for all
i = 1, . . . , r.

Property 3.11. The point (w(x, b), b) lies on the Pareto front P(x) in Rr+1 if and only if
(x, b) is i-tightly-constrained for all i = 1, . . . , r. Moreover, if (b0, . . . , br) ∈ P(x) and bi ≤ Bi

for all i = 1, . . . , r, then w(x, b1, . . . , br) = b0.

Proof. Suppose a∗(·) is the constrained-optimal control for x̂ = (x, b). If x̂ is i-slack, then
Ji(x, a∗(·)) < bi and this does not contribute a point on Pareto front.

If x̂ is i-tightly-constrained for all i = 1, . . . , r, then a∗(·) cannot be dominated by any
control. (If it were 0-dominated, that would contradict its constrained-optimality. If it were
i-dominated for i > 0, that would contradict the fact that x̂ is i-tightly-constrained.)

Finally, suppose a(·) is a control that realizes the cost vector (b0, . . . , br) ∈ P(x) with
bi ≤ Bi for all i = 1, . . . , r. By the definition of w, we have

w(x, b1, . . . , br) ≤ J0(x,a(·)) = b0.

If we had w(x, b1, . . . , br) < b0 this would imply the existence of a control 0-dominating a(·),
which would contradict its Pareto-optimality. So, w(x, b1, . . . , br) = b0. ¤

Property 3.12. If the point (x1, b) is totally slack, then w is locally Lipschitz-continuous in
its first argument.
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Proof. First, we note that there exists some open neighborhood of x1 such that (x2, b) is
totally slack for every x2 from that neighborhood. Otherwise there would exist a sequence of
i-tightly-constrained xj ’s converging to x1, which can be used to show that (x1, b) is i-tightly-
constrained as well.

If (x1, b) is totally slack, then, starting from any point x2 close to x1, the i-th cost of
reaching x1 is bounded above by |x1 − x2|max(Ki/|f |), where the maximum is taken over all
x and all a such that f(x,a)/Ki(x, a) ∈ ∂Vi(x). By the assumption (A3), Vi contains the
origin in its interior; so, there exists a constant L such that the i-th cost of reaching x1 from
x2 is bounded by L|x1 − x2| for all i. Suppose we travel from (x2, b) to (x1, b̃), where b̃ ≤ b.
If x2 is sufficiently close to x1, then (x1, b̃) is still totally slack, and any constrained-optimal
control for (x1, b) will be still feasible for (x1, b̃). Thus,

w(x2, b) ≤ L|x1 − x2|+ w(x1, b).

To complete the proof, we repeat the argument switching the roles of x1 and x2. ¤

Property 3.13. If x̂ = (x, b) is totally slack, a∗(·) is a constrained-optimal control for x̂ and
y∗(t) is the corresponding trajectory in Ω̄, then y∗(t) is also a characteristic of problem (2.5)
with K = K0 and q = q0.

Proof. Briefly, if (x, b) is totally slack, then any sufficiently small perturbation of a∗(·) will
also be feasible. Since a∗(·) is constrained-optimal, the function y∗(t) is a local minimizer of J0

and will be a solution of the Euler-Lagrange equation in Rn (see, e.g., [15]). By Pontryagin’s
maximum principle, it will also be a characteristic of the corresponding HJ PDE on Ω̄. This is an
interesting fact, since the characteristics of (2.5) yield locally primary-optimal (unconstrained)
trajectories. ¤

Property 3.10.1 is the basis for explicitly causal discretizations of the augmented PDE, which
enables an efficient numerical treatment (by “marching” in any direction bi). Properties 3.7
and 3.8 can be used to reduce the computational domain, as shown in Figure 3.3 and further
explained in section 3.5. Property 3.11 can be used to extract the relevant part of the Pareto
front from the values of w.

3.4. Numerical method for the augmented PDE

We consider a Cartesian grid X̂ on Ω̄e. For simplicity, we will assume the same grid spacing
h in all spatial dimensions and grid spacing ∆b1, . . . , ∆br in each of the constraint/secondary
cost directions. Let ĥ = max{h, maxi ∆bi}. Our goal is to construct an approximate solution
W converging to the lower semi-continuous value function w as ĥ → 0.

If the minimization in a can be performed analytically (e.g., in the fully isotropic case of
equation (3.9)), a natural Eulerian framework scheme may be obtained by using upwind finite
differences to approximate the partial derivatives of w. However, this approach, even when
feasible, would be subject to CFL-type stability conditions, which would potentially have a
significant impact on the computational cost of the scheme. (A simple example to illustrate
this: suppose the f and K0 are isotropic, r = 1, q1 = 0 on ∂Ω, and K1 = 1, making J1 be
the total time to ∂Ω along a given trajectory. If upwind finite differences are used in a given
b1-slice to approximate ∇xw and the forward-difference is used to approximate ∂w

∂b1
, this results

in a scheme suitable for explicit forward “time”-marching in b1-direction, but not surprisingly
requires a standard CFL condition maxx f(x) ≤ h/∆b1 for stability.)
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Instead, we chose to implement a semi-Lagrangian discretization of the augmented PDE (3.7).
In addition to improved stability properties, the resulting scheme is also easy to extend to un-
structured meshes in Ω̄e and is applicable when the minimization in a cannot be handled
analytically (which is often the case for control-theoretic problems). Our discretization is a
variant of (2.9). Given a point x̂ = (x, b) = (x1, . . . , xn, b1, . . . , br), we define a new system
state (x̃, b̃) as follows:

x̃ = x + τaf(x, a); b̃i = bi − τaKi(x, a), for i = 1, . . . , r. (3.10)

Here the obvious dependence of the new state on the choice of control a is omitted for the sake
of notational simplicity.

W (x, b1, . . . , br) = min
a∈A

{
τaK0(x,a) + W (x̃, b̃)

}
, ∀(x, b1, . . . , br) 6∈ Bin. (3.11)

To ensure that the discretized equations allow efficient marching in the direction b1, it is
sufficient to take

τa = ∆b1/K1(x, a), (3.12)

which guarantees that b̃1 = b1 − ∆b1 for any choice of a. This means that the new position
(x̃, b̃) will be in the previous “b1-slice”, in which the values of W were already computed.

Of course, (x̃, b̃) will usually not be a gridpoint and W (x̃, b̃) has to be approximated using
the values of W at nearby gridpoints. Our implementation uses a standard tensor product of
linear interpolations in all x and b variables; see, e.g., [9].

For example, if n = 2 and r = 1, this yields a bilinear interpolation. Suppose x̃ lies in a
cell with vertices x1, . . . , x4 (enumerated clockwise, starting from the lower left corner). Let
(γ1, γ2) = (x̃− x1) /h. Then

W (x̃, b̃1) =γ1

(
γ2W (x3, b̃1) + (1− γ2)W (x2, b̃1)

)

+ (1− γ1)
(
γ2W (x4, b̃1) + (1− γ2)W (x1, b̃1)

)
. (3.13)

Remark 3.1. If the value function is smooth on the cell, the resulting interpolation error
is O(h̃2), where h̃ is the size of that cell (i.e., h̃ = max{h, maxi>1 ∆bi}). However, in the
worst case, w may be discontinuous, resulting in a O(1) interpolation error. (We note that
the property 3.9 ensures the Lipschitz continuity of w on the characteristic itself, but the
interpolation cell containing x̃ might still include a discontinuity.)

The convergence of semi-Lagrangian schemes to discontinuous viscosity solutions is more
subtle. In [4, 5] Bardi, Falcone and Soravia have proven that, on any compact subset where w

is continuous, the semi-Lagrangian approximation converges to w uniformly, provided h̃/τ → 0
as τ → 0. The resulting schemes were successfully used to approximate discontinuous viscosity
solutions both in the context of infinite-horizon optimal control and in differential games. For
viscosity solutions continuous on the entire domain, a different proof [5] yields the convergence
(and the convergence rate estimates) under a milder assumption that h̃/τ remains bounded as
τ → 0.

Since we are setting τ for each x and a separately, the above condition for convergence to
discontinuous solutions becomes: h̃/(min τa) → 0 as (max τa) → 0. If τa is selected according
to (3.12), this condition requires that the grid refinement should be performed in such a way
that h̃ = o(∆b1). (An alternative approach would be to keep h̃ = O(∆b1), but pick τa so that
τaK1(x, a) = b1 − b̃1 = m∆b1, where the integer m →∞ and m∆b1 → 0 as ĥ → 0.) However,
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for the examples considered in this paper, the numerical evidence suggests convergence even
with m = 1 (i.e., as prescribed by formula (3.12)) and with h̃ = O(∆b1). The discontinuities
are smeared in a narrow band with the width of that smearing proportional to ∆b1; e.g., see the
convergence study for a simple example in section 4.1. We note that any higher order accurate
semi-Lagrangian scheme would need to use a larger stencil to interpolate W (x̃, b̃), and an ENO
or WENO reconstruction would be needed to handle the discontinuities.

Even though it is not necessary in principle, our current implementation assumes the geo-
metric dynamics (defined in section 2.1). The minimization in formula (3.11) is performed nu-
merically using the standard “golden section search” algorithm. Once W is computed, optimal
controls and trajectories are recovered by following the characteristics of PDE (3.7) numerically.

3.5. Reducing the computational domain & initialization

Given the high dimensionality of Ω̄e, any reduction of the domain is likely to result in
substantial savings in the computational cost. Two such reductions are obviously worthwhile;
see Figure 3.3. In both cases we recover a surface consisting of special characteristics of (3.7) by
efficiently solving other PDEs on lower-dimensional domains. We note that a similar approach
was previously proposed in [42] for time-optimal control in the case of time-dependent dynamics.

First, by property 3.8, if w(x, b) = u0(x), a primary-optimal control is already feasible and
further increase in secondary budgets will not yield any reduction of w. The n-dimensional
surface on which this happens can be found a priori (by numerically approximating functions
vi0 for i = 1, . . . r).

Secondly, only a subset of Ω̄e is feasible: if the initial budget-vector b is insufficient to reach
∂Ω starting from x, then w(x, b) = +∞. We formally define the Minimal Feasible Level (MFL)
as a graph of the function

w1(x, b2, . . . , br) = min {b1 | w(x, b1, b2, . . . , br) < +∞} .

As described below, the MFL can be efficiently recovered for any r by solving a sequence of
PDEs on lower-dimensional domains. However, for r = 1, this task is particularly simple, since
in that case the MFL coincides with the graph of u1(x), and the latter can be approximated by
solving the PDE (2.5) numerically on Ω. As explained in [37], the augmented PDE (3.7) then
has to be solved on the epigraph of u1. Thus, using the results in section 3.1, the value1) of w

on the MFL is provided by v01(x).

Remark 3.2. To represent MFL on the grid X̂, our current implementation uses the smallest
integer i such that u1(x) ≤ i∆b1 and then initializes W (x, i∆b1) = v01(x). This procedure
is conservative (in the sense that it overestimates the minimal necessary budget), but it also
introduces additional errors of order O(∆b1); see the convergence study in section 4.1. A better
implementation can be built by locally altering the interpolation procedure near the MFL.

For r > 1 the approximation of the MFL is more subtle. In [37], Soravia suggested solving
an augmented PDE on the set {(x, b) ∈ Ω̄e | bi ≥ ui(x), i = 1, . . . r}. However, we note that w

1) We emphasize that the MFL does not really provide any additional boundary conditions for the equa-

tion (3.7) (since this surface consists of characteristics of that PDE). But for a semi-Lagrangian discretization,

the numerical values on the MFL are needed – for an x̂ just above that surface, the optimal x̃ might well lie in

a cell one of whose corners is on the MFL. We note that any x̃ falling below the MFL is obviously non-optimal;

when such situation arises during the minimization in equation (3.11), we use W (x̃) = +∞.
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epigraph of wi+1. Focusing only on the costs Ji, . . .Jr, the argument of section 3.3 shows that
wi is the (unique lower semi-continuous) viscosity solution of

min
a∈A



Ki(x, a) +∇xwi · f(x, a) −

r∑

j=i+1

Kj(x,a)
∂wi

∂bj



 = 0 (3.15)

on Ω̄× [0, Bi+1]× . . .× [0, Br]. In this (n + r − i)-dimensional domain, the MFL for wi (i.e.,
the MFLi) is provided by a graph of wi+1, and the values of wi on MFLi can be computed
by integrating Ki along the optimal trajectories of wi+1. Finally, the graph of w1 is the MFL
for w = w0, and the latter solves the PDE (3.7).

Remark 3.3. Both techniques presented in this section allow a significant reduction of the
computational domain. The net effect of the first technique (based on considering only those
gridpoints where w(x, b) ≥ u0(x)) depends on how large the budget bounds Bis are compared
to the values of vi0(x). If r = 1, the percent of excluded gridpoints can be found by averaging
the ratio [max {B1 − v10(x), 0} /B1] over Ω.

The net effect of the second technique (based on finding the MFL) depends on the degree
of “primary-non-optimality” of “secondary optimal” trajectories. If r = 1, the percent of
gridpoints additionally excluded (after the MFL is computed) can be found by averaging the
ratio [min {B1, u1(x)} / min {B1, v10(x)}] over Ω. Based on the experimental evidence, the
resulting efficiency gains are quite substantial. E.g., in the examples of sections 4.1 and 4.2.1,
the MFL allowed additional exclusion of 50% and 93% of the remaining gridpoints respectively.
In the example of section 4.8, where r = 2, the corresponding reduction was 76%, confirming
that the recursive procedure to compute the MFL when r > 1 is worthwhile.

3.6. Selecting τ & optimal ordering

Formula (3.10) for the new state after using control a for τa seconds is based on the as-
sumption that, for every fixed a, f and all Ki’s are approximately constant near x. There are
two advantages to this formula. First, it allows to compute (x̃, b̃) very quickly. Second, taking
τa = ∆b1/K1(x,a) ensures that the new state is in the previous b1-slice; i.e., b̃1 = b1 − ∆b1.
This allows for the explicit causality and marching in the b1 direction. In section 4.9, we will
refer to this implementation as Algorithm 1 (see Figure 3.5A).

There are also two obvious drawbacks to this discretization. First, this linear approximation
is poor wherever f and Ki’s vary significantly near x. Second, the local error in formula (3.11) is
generally O(τ2

a) even for a smooth w and perfectly known W (x̃, b̃); thus, it would be preferable
to select the smallest τa that still allows explicit marching in the direction b1.

To address the first of these drawbacks, we have implemented Algorithm 2. Given the
current state x̂ = (x, b) and a particular control value a, we start with the ray from x̂ in
the direction [f(x, a),−K1(x, a), . . . ,−Kr(x, a)]. We find the first intersection of that ray
with an (n + r − 1)-dimensional cell of the grid. If that cell is fully in the previous b1-slice,
we can interpolate, as in Algorithm 1. Otherwise, we re-evaluate f , and Ki’s at the new
point and follow the new ray, repeating the process until we reach the previous b1-slice (see
Figure 3.5B). This procedure is computationally more expensive than Algorithm 1, since we
might need to traverse through several (n + r)-dimensional cells before finding x̃, especially
when ∆b1 min(K1) > h min |f |. However, it is much more suitable for problems with rapidly
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b 1
−

∆
b 1

=
b′ 1

b 1
x

1
x

2
x

3
x

4
x̃

b1−∆b1=b′
1

b1
x1

x2
x3

x4
x̃

(A)(B)
Fig.3.5.Choicesofτillustratedforr=1andn=1.Letx̂=(x4,b1).Atrajectorycorrespondingto

aparticularaisshownbyadottedline.Algorithm1isillustratedontheleft:setτa=∆b1/K1(x,a)

andassumethatfandKi’sdon’tchange.Thisensuresb̃1=b′
1andgivesadirectformulafor

x̃∈[x1,x2].Algorithm2isillustratedontheright:fandKi’sarere-evaluatedateachintersection

with1-dimensionalcells.Algorithm3isbasedonthefactthat,ifW(x3,b1)hasbeenalreadycomputed,

thenthereisnoneedtocontinuebeyondthefirstintersection.Inthatcase,amuchsmallerτaalready

guaranteesthecausality,x̃=x3,andb̃1∈[b′
1,b1].

varyingfandKi’s.(Indeed,insection4.9weconsiderseveralnumericalexamples,wherethese
functionsareactuallydiscontinuousinx.)

Toalleviatethesecondproblem,wehaveimplementedAlgorithm3.Theideaistoselect
thesmallestτaneededforthecausality.Ourimplementationusesthesmallestτasufficientto
guaranteethat(x̃,b̃)liesinan(n+r−1)-dimensionalcell,allverticesofwhichhavealready
hadvaluesofWpreviouslycomputed(makinginterpolationpossible).Thiswillcertainlybe
thecaseifthatcellliesfullyinthepreviousb1-slice(asinAlgorithm2),butitmayalsohappen
earlier;seeFigure3.5Bforanexample.Wenotethatallrelevantintersectionpointsarealready
computedinAlgorithm2.Ifoneofthemissuitableintheabovesense,wedon’tneedtocontinue
beyondit(thusreducingboththecomputationalcostandthelocaltruncationerror).Inthe
worstcase,westillneedtotracethispiecewise-lineartrajectoryuptoitsintersectionwiththe
previousb1-slice(asinAlgorithm2).Asaresult,thecomputationalcostofthisAlgorithmis
alwayssomewhatlessthanthatofAlgorithm2thoughobviouslyhigherthanthatofAlgorithm
1;seesection4.9.

Remark3.4.WenotethatboththeaccuracyandtheefficiencyofAlgorithm3clearlydepend
ontheorderofcomputingW’swithinthesameb1-slice.(Thelocationofx̃inFigure3.5Bwill
bedifferentdependingonwhetherwehavealreadycomputedW(x3,b1)priortoW(x4,b1).)
Ourcurrentimplementationusesasimplelexicographicorderinginsecondarycostsandthenin
spatialdirections:assumingthatx̂=(x,b)=(x1,...,xn,b1,...,br),wecomputewithineach
b1-sliceinthedirectionb2,withineach(b1,b2)-sliceinthedirectionb3,...,withineach(b)-slice
inthedirectionx1,withineach(b,x1)-sliceinthedirectionx2,etc.Whilethepreferenceforthe
secondary-cost(overspatial)directionsisclearlymotivatedbytheexplicitcausality(i.e.,Ki’s
arepositive),ourfixedorderingofthespatialdirectionsisarbitraryandhardlyoptimal.Inthe
future,wewouldliketoinvestigatetheeffectofusingdifferentorderingsinspatialdirections
(e.g.,inther=1case,sortingx̂’sbyWvaluesfoundinthepreviousb1-slice).

Weemphasizethatthegoaloffindingagoodorderingwithinab1-sliceissimplytoreduce
thelocaltruncationerrorandtospeedupeachb1-step.
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4. Numerical Experiments

We illustrate our numerical method with several examples. Our approach requires to choose
a primary objective function and treat other objectives as secondary. All feasible controls will
satisfy the constraints Ji ≤ Bi for i = 1, . . . , r. We then minimize J0 along these feasible paths.

All of the examples in this section are computed for a two-dimensional system state and we
assume that Ω̄ = [0, 1]× [0, 1]. In all of our examples (except the convergence study in section
4.1), the goal is to reach a single target point. We will thus assume that qi = 0 at the target
and qi = +∞ on the rest of ∂Ω for i = 0, . . . , r. Wherever not explicitly specified, the target is
at the point (1, 1).

Most of the examples (except for section 4.2.2) are fully isotropic in cost & dynamics, and
the results are obtained by solving a variant of equation (3.9). For the isotropic case, the
dynamics of the system simplifies as

y′(t) = f(y(t))
[
cos (α(t))
sin(α(t))

]
,

where y(0) = x ∈ Ω ⊂ R2 and f : Ω̄ 7→ R is the speed, and α ∈ [0, 2π] is the control parameter.
In each test problem, we plot constrained-optimal paths for different resource vectors b. We

also show secondary-optimal trajectories (recovered from ui’s, for i = 1, . . . , r) even in cases
when these trajectories do not satisfy other integral constraints.

We note that the observability examples in subsections 4.5 - 4.8 use piecewise continu-
ous running costs and/or speed functions. Even though this violates assumption (A1), the
value function is also well-defined in this case and the semi-Lagrangian discretization (based on
discretizing Bellman’s optimality principle) appear to converge to it correctly. A detailed dis-
cussion of viscosity solutions to HJB PDEs with discontinuous Lagrangian can be found in [38].
A different class of observability-influenced path planning problems is considered in [10].

All figures presented in this section were computed using Algorithm 1 (in subsections 4.1 -
4.3, where the running costs and speeds are continuous) and Algorithm 3 (in subsections 4.5 -
4.8).

4.1. A simple example: convergence study

We use a two-dimensional generalization of example in Figure 3.1 to test the convergence
of our method. We assume that f = 1, and K0 = K1 = 1. Unlike in all other examples of this
section, here we assume that there are two possible exit points on the boundary A1 = (0, 0.5)
and A2 = (1, 0.5) and define

q0(x) =





1.5, if x = A1;

0, if x = A2;

∞, otherwise.

q1(x) =





0, if x = A1;

0, if x = A2;

∞, otherwise.

As a result, J1 is simply the pathlength of the chosen trajectory, all (constrained optimal)
trajectories are straight lines leading to A1 or A2, and the analytical expression for the discon-
tinuous solution w is readily available:

w(x, b1) =





|x−A2|, if |x−A2| ≤ b1;

|x−A1|+ 1.5, if |x−A1| ≤ b1 < |x−A2|;
∞, otherwise.
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Contour plot of Constrained Value function at slice no: 30 (401*401*41)
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1.4

1.6

1.8

2

L1 error computed on Ωf

HHHHHh

∆b1
1/10 1/20 1/40

1/40 0.0161431 0.0132897 0.0217214

1/80 0.0117587 0.0078472 0.0081641

1/160 0.0088235 0.0051967 0.0044650

1/320 0.0075405 0.0034618 0.0024226

1/640 0.0069347 0.0026052 0.0014743

L∞ error computed on Ω′(∆b1)
HHHHHh

∆b1
1/10 1/20 1/40

1/40 0.0039922 0.0114681 0.3558851

1/80 0.0016614 0.0024012 0.0533905

1/160 0.0007978 0.0008307 0.0038505

1/320 0.0004434 0.0003989 0.0004491

1/640 0.0002202 0.0002217 0.0001994

Fig. 4.1. Convergence to a discontinuous solution (section 4.1). Left: the level sets of w(x, 0.75). Right:

the L1 and L∞ errors computed for various (h, ∆b1) combinations.

We use this example to test the convergence of our method numerically. (See Figure 4.1.)

We recall that there are typically four different sources of error in semi-Lagrangian schemes:
(1) due to approximating the boundary conditions (in our case – also the approximation of the
MFL) on the grid; (2) due to interpolation at the foot of the characteristic (e.g., as in formula
(3.13)); (3) due to approximating the characteristic and (4) due to approximate integration of
the solution along that characteristic.

Since in this example the characteristics are straight lines and K0 is constant, the last two
of these four sources of error are absent. Of the remaining two, the first should clearly be
decreasing with ∆b1 (since errors of order O(∆b1) are introduced when representing the MFL
on the grid; see Remark 3.2). Assuming that the solution is smooth, each interpolation error is
O(h2) (due to our use of bilinear interpolation (3.13)). However, the number of interpolations is
inversely proportional to ∆b1 and the cumulative effect of interpolation errors is larger when the
total number of b1-slices increases. Thus, if h is held constant, decreasing ∆b1 will eventually
result in an increase in the overall error; this can be seen in the top two rows of the corresponding
L1-errors table. Of course, in more general problems, where characteristics are not straight lines
and Ki’s are not constant, the third and fourth sources of errors would normally prevent this
phenomenon.

To verify the convergence, we include two tables of error measurements for various (h,∆b1)
combinations. The first table shows errors measured in L1 norm on Ωf (the subset of Ωe on
which w is finite though not necessarily continuous). For discontinuous solutions, convergence
in L∞ norm is generally possible only for numerical methods that explicitly track the location
of discontinuities. Since no such explicit tracking is performed here, we can only demonstrate
L∞-convergence away from discontinuities. The theoretical results in [3–5] guarantee that, if
h = o(τ) as τ = ∆b1 → 0, then the semi-Lagrangian schemes uniformly converge to the viscosity
solution w on any compact subset on which w is continuous. For each value of b1, we define
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the discontinuity set of w in the corresponding b1-slice:

Db1 =
{

(x, b1) ∈ Ωe | w is discontinuous at (x, b1)
}

,

and for each ∆b1 we define a subset of Ωe to study the convergence:

Ω′(∆b1) =
{

x̂ = (x, b1) ∈ Ωf | distance(x,Db1) ≥
3
2
∆b1

}
.

The second table shows L∞ errors measured on Ω′(∆b1). Since the width of the “excluded
band” is defined for each column of the second table separately, the initial errors in the second
and third columns are significantly larger, but quickly decrease as h → 0. In this example, our
numerical results suggest the convergence even for h = O(τ).

4.2. Fastest paths (with restriction on pathlength)

Here we consider two different examples (one isotropic with obstacles, the other anisotropic
without obstacles, both inhomogeneous), in which the goal is to minimize the time-to-target
subject to constraints on the maximal allowable pathlength. In the absence of obstacles, we use
K0(x) = 1 and K1(x, a) = |f(x, a)| to ensure that J0 and J1 are respectively the time and
the pathlength along the corresponding trajectory. If obstacles are present, we set K0 = +∞
inside them, to ensure that all trajectories passing through them have infinite cost J0.

4.2.1. Isotropic dynamics/cost in the presence of obstacles

Here we suppose that the dynamics is isotropic; i.e., f(x,a) = f(x)a, where a ∈ S1 = A. For
every x = (x, y) ∈ Ω outside of obstacles, we will assume that

f(x, y) = 1 + 0.8 sin(4πx) sin(6πy) and K1(x, y) = f(x, y).

0  .25 .50 .75 1.00

0  

.25

.50

.75

1.00

primary: Navigation time,   secondary: Path length

sec. optimal
b1=1.30
b1=1.40
start

Fig. 4.2. Fastest paths, isotropic dynamics (constrained by pathlength) and obstacles. Optimal trajec-

tories and the level curves of u0.
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Consider a goal of finding the fastest path to the top right corner (1, 1) subject to restriction
on a maximum allowable pathlength and in the presence of three rectangular obstacles. The
computations are performed on a 301 × 301 × 301 grid and several trajectories are shown in
Figure 4.2 superimposed on top of the level curves of u0. Secondary-optimal trajectory (dotted
line) is the shortest path. Bold solid line shows a trajectory computed for a large maximum
pathlength. The constraint is slack in this case and the resulting trajectory is in fact primary-
optimal; hence its orthogonality to the level curves of u0 (since for unconstrained isotropic
problems the characteristics coincide with the gradient lines of u0). The dashed line shows a
constrained-optimal trajectory for a smaller budget (binding constraint).

0  .25 .50 .75 1.0 0  .25

0  

.25

.50

.75

1.0

primary: Shotest time,   secondary: Path Length

sec. optimal

unconstrained

b1=0.6

start

target

0  .25 .50 .75 1.0

0  

.25

.50

.75

1.0

Boundary of "Constrained Domain"
(shown as a thick line)         

A B
Fig. 4.3. Anisotropic dynamics, fastest paths (constrained by pathlength). Left: level sets of w(x, 1.5)

(corresponding to level sets of u0 in Figure 6A of [34]) and optimal trajectories from (0.1, 0.1) to

(0.5, 0.5). Right: level sets of w(x, 0.6).

4.2.2. Anisotropic inhomogeneous dynamics

The following example of anisotropic dynamics was previously used in [34, 35], where it was
motivated by problems in anisotropic seismic imaging. This belongs to a class of anisotropic
geometric dynamics problems, i.e., f(x, a) = f(x, a)a, where a ∈ S1 = A. Suppose C : [0, 1] 7→
R is a smooth function. We are interested in defining f so that, for every x = (x, y) ∈ Ω, the
“velocity profile” V (x) = {f(x,a)a | a ∈ S1} is an ellipse whose major/minor semi-axis have
lengths F2 and F1 respectively and the major semi-axis is aligned with the graph of C (i.e.,
parallel to its tangent at the point x). This is attained by setting

f(x,a) = F2

(
1 +

([
p

q

]
· a

)2
)−1/2

, where
[

p

q

]
=

√(
F2
F1

)2

− 1
√

1 +
(

dC
dx (x)

)2

[
dC
dx (x)
−1

]
.

The derivation can be found in [35] and [41]. We use C(x) = 0.1225 sin(4πx), F2 = 0.8, F1 = 0.2
and compute the optimal (fastest) trajectories to the center of Ω. The unconstrained problem
leads to an anisotropic static Hamilton-Jacobi PDE for u0, which can be efficiently solved
using Ordered Upwind Methods; the level sets of u0 for the above parameters can be found in
Figure 6A of [34]). Here we compute pathlength-constrained min-time trajectories for the same
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2.68
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Fig. 4.4. Path planning for an airplane striving to be away from the region having high weather threat

probability. The optimal paths are shown for the same constraint values used in Figure 3 of [25].

Table 4.1: Numerical parameters for the optimal flight-path example (Figure 4.4).

Grid points in system-domain : 201 × 201

Grid points along secondary budget : 401

Speed of the vehicle : 1

Primary cost (Weather threat) : explained in 4.1

Secondary cost(Fuel rate) : 1

Starting point for optimal path : (0.1, 0.1)

Target point for optimal path : (0.9, 0.9)

example on a 201×201×301 grid. Figure 4.3A shows optimal trajectories to the center starting
from the point (0.1, 0.1) superimposed on the level sets of w(x, 1.5) . This is a large “budget”:
since b1 = 1.5 > v10(x) for ∀x ∈ Ω, we have w(x, 1.5) = u0(x) and all unconstrained-optimal
trajectories are feasible. (We note that these optimal trajectories do not follow the gradient
lines of u0 since the speed f(x, a) is anisotropic.) On the other hand, for b1 = 0.6, parts of the
domain are not reachable (note that w = +∞ in the corners of the domain in Figure 4.3B). The
thick line separates the part of Ω where w(x, 0.6) = u0(x); since the starting point (0.1, 0.1) is
outside that set, its constrained-optimal trajectory is different from the unconstrained-optimal.

4.3. Optimal flight-path: minimizing weather threat

Here, we consider a test example introduced by Mitchell and Sastry [25]: finding an optimal
path for an airplane flying from one city to another. In one of their examples, weather threat is
the primary objective to be minimized while the fuel minimization is the secondary objective.
The running fuel cost K1 and the speed of the airplane f are both taken to be unity in this
example. Hence, the secondary objective, fuel cost is same as the path length.

As mentioned in [25], weather threat at a location, intuitively, is the probability of en-
countering a storm. Assuming the probability at all locations to be independent, the total
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probability of encountering a storm during the flight is one minus the product of the probabili-
ties of not encountering the storm at all locations along the path. As we require running costs
of integral type, the logarithm of these probabilities are used to make weather-threat cost addi-
tive in nature. The numerical parameters for this simulation are listed in Table 4.1. Figure 4.4
shows optimal paths corresponding to different bounds on fuel budget, as well as the contours
of weather threat cost. The latter is taken to be unity everywhere in Ω̄ except within the two
rectangular bars where it jumps to a relatively higher value discontinuously. The magnitude of
weather threat is 12 in the darker part of each of the rectangular bars and 4 in the other part of
the bar. Weather threat function is further smoothened to remove the discontinuity and make
it Lipschitz continuous.

As expected, the secondary-optimal path (the shortest path) follows a straight line between
the two cities. Bounds on fuel budget associated with other constrained-optimal paths are
shown in the legend. The Figure shows that, as the fuel budget increases, the airplane chooses
a path through the region less susceptible to weather threat. These optimal paths match closely
those in [25].

Figure 4.5 shows the Pareto front for this example. Pareto front is generated using two
different approaches. In the first approach, fuel budget is taken as secondary objective while
in the other approach weather threat is the secondary objective. As h and ∆b1 decrease, these
two versions of Pareto front look more and more similar. The non-convex parts of this front
have not been found in [25]; this illustrates the advantage of our approach as compared to the
“weighted-sum scalarization” based techniques.
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Fig. 4.5. Pareto front for a particular destination for the airplane problem. A convexification of this

front can be found in Figure 4 in [25].

4.4. Computation of non-visible region

The remaining examples deal with robotic navigation in domains with obstacles in the
presence of friendly and adversarial observers. The observer’s position is assumed to be known
and static and Ω is split into parts directly visible (Ωv) or invisible (Ωi) to each observer due
to obstacles. The observability running cost is then set to be high on Ωv and low on Ωi for an
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enemy observer (and the opposite of this for a friendly observer).
To enable the computation of constrained-optimal paths, we need to first determine Ωv and

Ωi. While this can be accomplished by many methods, we use the efficient technique based on
a Fast Marching Method and described in [30].

We first solve the Eikonal equation |∇ψ1(x)|f(x) = 1 with f = 1 on Ω̄ and the boundary
condition ψ1 = 0 at the observer’s location. We then solve the Eikonal PDE for ψ2 with the
same boundary condition but with f = 0 inside the obstacles. The region with ψ2 > ψ1 defines
the non-visible region. In practice, we use a (heuristically adjusted) threshold on the difference
of ψ2 and ψ1. Thick grey lines are used in the following figures to show the boundaries of Ωi.
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start
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Fig. 4.6. Optimal path for a robot navigating to minimize the exposure to a static enemy observer.

Table 4.2: Numerical parameters for the exposure-minimization example (Figure 4.6).

Grid points in system-domain : 251 × 251

Grid points along secondary budget : 301

Speed of the vehicle : 1

Primary cost (Observability cost) : 10 in the visible region

: 0.1 in the non-visible region

Secondary cost(Fuel rate) : 1

Starting point for optimal path : (0.1, 0.1)

Target point for optimal path : (1.0, 1.0)

Observer location : (0.15, 0)

4.5. Avoiding the observer

Here, we find optimal paths for a robot navigating in a region containing stationary obstacles
and a stationary enemy observer. The robot strives to be minimally exposed to the enemy at
the same time making sure to avoid the obstacles and stay within the specified fuel budget.
Observability by the enemy becomes the primary cost (J0) to be minimized. As long as the
secondary running cost K1 remains positive, our numerical method can solve the PDE (3.7)
efficiently even with with K0 = 0 observability cost in Ωi. However, this leads to infinitely many
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Fig. 4.7. Optimal path for a robot minimizing its fuel budget/path length under the maximum enemy

exposure constraint. The enemy exposure budget of 4.62 is large enough to allow following the primary-

optimal trajectory (thick line).

Table 4.3: Numerical parameters for path length minimization constrained by exposure (Figure 4.7).

Grid points in system-domain : 301 × 301

Grid points along secondary budget : 501

Speed of the vehicle : 1

Primary cost (Fuel rate/Path length) : 1

Secondary cost(Observability) : 1 in the non-visible region

: 5 in the visible region

Starting point for optimal path : (0.1, 0.1)

Target point for optimal path : (1.0, 1.0)

Observer location : (0.85, 0)

possible optimal paths since any portion of the path inside Ωi would not contribute anything to
J0. To remove this arbitrariness and non-uniqueness, we assigned a small non-zero observability
cost K0 = 0.1 on Ωi. Table 4.2 shows the other numerical parameters used in this experiment.

Figure 4.6 shows the non-visible region with its boundary as thick solid lines. The small
rectangles represent obstacles. Optimal paths corresponding to different bounds B1 on fuel
budget are also plotted. Since the speed of motion is constant, the running costs are piecewise
constant, and the obstacles are polygonal, it is easy to prove that all constraint-optimal paths
are piecewise linear. As expected, the primary-optimal paths creep along the boundary of non-
visible region. In this example, the target lies in Ωi; the robot therefore follows the straight
line path after it enters that component of Ωi.

4.6. Minimizing fuel consumption/path length, constrained by enemy observability

Here, we find the optimal path for a robot with the same two objectives as in the previous
section. But now the path length (or fuel consumption) is the primary cost and the enemy
observability is secondary. The numerical parameters are shown in Table 4.3. Figure 4.7 shows
the optimal paths for this example. The secondary-optimal path shown as a dashed line is the
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least exposed to the enemy. As expected, the primary-optimal paths become shorter as we relax
the constraint (or, alternatively, increase the “budget”) for the maximum observability.

4.7. Striving to be observed

Given a stationary friendly observer, the goal in many applications is to minimize the total
time outside of direct visibility while moving to the target. This is more or less the opposite of
the problem considered in section 4.5. The total fuel available (or the maximum path length)
is still treated as a constraint. The numerical parameters are shown in Table 4.4.

Figure 4.8 plots the optimal paths corresponding to different bounds on path length. When
the bound on path length is tight, the robot has no option but to navigate through Ωi. As we
relax this bound, the robot finds a path which is always exposed to the observer.
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Fig. 4.8. Optimal path for a robot in the presence of a friendly observer.

Table 4.4: Numerical parameters for minimizing the non-exposure constrained by path length (Figure

4.8).

Grid points in system-domain : 201 × 201

Grid points along secondary budget : 301

Speed of the vehicle : 1

Primary cost(Non-observability) : 5 in non-visible region

: 1 in visible region

Secondary cost (Fuel rate) : 1

Starting point for optimal path : (0.1, 0.1)

Target point for optimal path : (1.0, 1.0)

Observer location : (0.85, 0)

4.8. Path length minimization subject to two integral constraints

In this last example, we consider a problem of finding constrained-optimal paths in the
presence of obstacles and two observers. The goal is to minimize the path-length subject to
constraints on the amounts of time the robot can be visible to the enemy observer and invisible
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to the friendly observer. Given two secondary costs, the numerical domain is four-dimensional.
As explained in section 3.5, we first solve the PDE (3.14) on Ω̄× [0, B2] to find the feasibility
surface. We then march in the direction b1 to solve for the value function w. Two constrained-
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Fig. 4.9. A two-secondary costs example: fuel-optimality under constraints on visibility by enemy and

non-visibility by friend. Dotted lines show the boundaries of visibility for both observers. Primary and

secondary-optimal trajectories (top) and constrained-optimal trajectories (bottom).

Table 4.5: Numerical parameters for the two-secondary-costs example (Figure 4.9).

Grid points in system-domain : 101 × 101

Grid points along each secondary budget : 301

Speed of the vehicle : 1

Primary cost : path length

Secondary cost 1 : visibility to enemy

Secondary cost 2 : invisibility to friend

Visibility cost values: 1 and 10 for both enemy and observer.
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optimal trajectories are shown in Figure 4.9.

4.9. Discussion of computational complexity

Since our semi-Lagrangian discretization of the PDE (3.7) is explicitly causal, the compu-
tational complexity of the methods is O(M), where M is the number of gridpoint on Ω̄e.

A careful restriction of the problem to a feasible subdomain yields an efficient numerical
method. For the case r = 1, computations on a 3-dimensional grid are quite fast on an average
laptop. We have used Dell Inspiron 1505 laptop with 2 GHz Intel Centrino processor, and 1
GB RAM. On a grid with M = 2013 gridpoints our instrumented (and unoptimized) code took
21, 43, and 39 seconds for Algorithms 1, 2, and 3 of section 3 respectively. For r = 2 and
M = 1014, Algorithm 2 runs in less than 30 minutes on the same laptop.

In principle, only two b1-slices of the grid are needed in RAM to enable efficient marching.
However, our current implementation allocates the entire grid. As a result, the last example
(involving r = 2 and M = 1012 × 3012 gridpoints and B1 = 11, B2 = 9) was computed on
a machine with 64 GB RAM though the memory footprint of the program is ≈ 10 GB. The
initialization (by solving for w1 on a 1012 × 301 grid) took 17 seconds. The Algorithms 1, 2,
and 3 then took 27, 67, and 55 minutes respectively.

We note that the computational time is heavily dependent on the values of B1 and B2.
There are two reasons for this. First, the tighter constraints make a larger part of Ω̄e non-
feasible, resulting in a big reduction in computational cost for all three algorithms. Second, in
Algorithms 2 and 3, τa is usually dependent on ratios between h and ∆bi’s. This also influences
the number of (n + r)-dimensional cells traversed before reaching a suitable interpolation point
(x̃, b̃); see section 3.6. E.g., for r = 1, when ∆b1 ¿ h the interpolation is performed after
traversing a single cell. Decreasing Bi while holding constant the number of gridpoints in that
direction decreases ∆bi proportionally. To illustrate this point, the problem of section 4.8 on
the same grid (M = 1012 × 3012) , but with B1 = 4 and B2 = 9 is much less computationally
expensive: Algorithms 1,2, and 3 now take only 20, 27, and 26 minutes respectively on the
same computer.

In comparing these execution times to those reported in [25], it is important to keep in
mind that Mitchell and Sastry have used an upwind finite-difference discretization of the Eikonal
PDE (i.e., isotropic control problems only). In contrast, our semi-Lagrangian implementation is
also suitable for much more general (anisotropic and/or non-small-time-controllable) problems,
including those, where the minimization in (3.7) cannot be performed analytically.

We also note that our current implementation is simple but non-optimal since the grid is
stored as a multidimensional array and all the domain-reduction procedures described in section
3.5 are performed only after the memory for the grid has been allocated. The “excluded”
gridpoints are marked (to avoid computing W ), but still take some computational time (in
enumerations, input/output operations, etc.) A more efficient implementation could be clearly
built to allocate the memory for non-excluded gridpoints only, but this would require using
non-array data structures to represent the grid.

5. Conclusions

We have introduced a new numerical method for multiobjective optimal control and single-
objective optimal control in the presence of integral constraints. Our approach is based on
expanding the state space to include constraint-budgets and then solving an augmented PDE,
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whose explicit causality allows for a non-iterative (marching) numerical method. We have also
shown the connection between the integral-constrained single-objective problem and the task of
finding all Pareto-optimal controls. Our method was illustrated with a number of test-problems
for two-dimensional optimal control with one and two additional integral constraints. We have
used a flight-path bad weather avoidance example introduced in [25] as well as several examples
of optimal robotic navigation in the presence of friendly and adversarial observers.

It is a commonly accepted practical rule that lower-dimensional computations are much less
expensive than the higher-dimensional ones (simply because the number of gridpoints grows
exponentially with the dimension). However, this simple rule of thumb ignores more subtle
issues: How many PDEs need to be solved on each domain? How many times do we need to
solve each PDE? Does the lower-dimensional approach adequately capture the high-dimensional
picture? Which PDE can be solved with a more efficient numerical method?
These questions reflect the difference between our approach and the prior method by Mitchell
and Sastry [25]. Their method is based on solving a system of (r + 2) PDEs (all but one of
them linear, the remaining non-linear PDE with monotone causality, enabling a Dijkstra-like
numerical method) on Ω ⊂ Rn but with an r-dimensional parameter space, which requires
solving this system repeatedly O(2r) times. Our approach leads to a single PDE with explicit
causality (enabling time-like marching) but on a (n + r)-dimensional domain. Even more im-
portantly, our approach allows recovering the entire relevant part of Pareto front, including the
non-convex parts of it, which are inaccessible using the weighted sums method employed in [25].

The explicit causality of the augmented PDE and a careful restriction of the problem to a
feasible subdomain yield an efficient numerical method. However, the memory requirements of
our method are more extensive since at least two b1-slices of the grid have to be kept in memory
at all times for efficient marching. This is an (n + r − 1)-dimensional grid, in contrast with
an n-dimensional grid used by the method in [25]. Another disadvantage of our approach is
the fact that the local truncation errors are O(ĥ) rather than O(h). As a result, the quality of
reconstruction of optimal controls and trajectories also depends on ∆bi’s, whereas the method
in [25] can provide a good trajectory reconstruction for each λ regardless of coarseness of the
mesh imposed on Λ.

In the future we would like to build semi-Lagrangian and Eulerian higher-order accurate
methods based on our approach. We also intend to explore the use of adaptive grids and un-
structured meshes (since the constrained-optimal controls can be sensitive to small changes in
available budgets). It will also be relevant to experiment with the efficiency/accuracy implica-
tions of the choice of marching direction − any other bi can be chosen since all Ki’s are assumed
to be positive, but the time τa in the semi-Lagrangian discretization is currently based on K1.

Several other natural extensions should be possible without breaking the explicit causality
of the augmented PDE. We intend to extend our method to

1. problems, where Ki’s do not have to be positive for i > 1;
2. problems with running costs (and exit costs) dependent on the budgets still remaining;
3. optimal stochastic control subject to integral constraints;
4. differential games subject to integral constraints.

The theoretical framework for considering secondary costs of varying sign has been developed
in [37]. We believe that as long as Ki > 0 holds at least for one i ≥ 1, the computational
efficiency will not be adversely affected. If all secondary Ki’s (but not K0) are allowed to
change sign, this will require a method based on a more subtle monotone causality in w.
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[2] M. Bardi & M. Falcone, An approximation scheme for the minimum time function, SIAM J.

Control Optim., 28 (1990), 950-965.

[3] M. Bardi, S. Bottacin, and M. Falcone, Convergence of discrete schemes for discontinuous value

functions of pursuit-evasion games, in G.J.Olsder (ed.), “New Trends in Dynamic Games and

Applications”, Birkhauser, (1995), 273-304.

[4] M. Bardi, M. Falcone, and P. Soravia, Fully discrete schemes for the value function of pursuit-

evasion games, “Advances in Dynamic Games and Applications”, T. Basar and A. Haurie (eds.),

Birkhauser, (1994), 89-105.

[5] M. Bardi, M. Falcone, and P. Soravia, Numerical methods for pursuit-evasion games via viscosity

solutions in “Stochastic and Differential Games: Theory and Numerical Methods”, M. Bardi,

T.E.S. Raghavan, and T. Parthasarathy (eds.), Birkhauser, (1999), 105-175.

[6] Bellman, R., Dynamic Programming, Princeton University Press, New Jersey, 1957.
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