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Abstract

In this paper, two framelet based deconvolution algorithms are proposed. The basic

idea of framelet based approach is to convert the deconvolution problem to the problem

of inpainting in a frame domain by constructing a framelet system with one of the masks

being the given (discrete) convolution kernel via the unitary extension principle of [26],

as introduced in [6–9] . The first algorithm unifies our previous works in high resolution

image reconstruction and infra-red chopped and nodded image restoration, and the second

one is a combination of our previous frame-based deconvolution algorithm and the iter-

ative thresholding algorithm given by [14, 16]. The strong convergence of the algorithms

in infinite dimensional settings is given by employing proximal forward-backward split-

ting (PFBS) method. Consequently, it unifies iterative algorithms of infinite and finite

dimensional setting and simplifies the proof of the convergence of the algorithms of [6].
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1. Introduction

The deconvolution is to solve v given by the following convolution equation:

c = h ∗ v + ε, (1.1)

where h, c and ε are all in `2(Z), and ∗ is the convolution operator. The sequence h is the
blurring kernel, and c is the observed signal. The sequence ε is the error term satisfying
‖ε‖`2(Z) ≤ ε. The basic idea of our framelet based approach is to convert the deconvolution
problem to the problem of inpainting in a frame domain by constructing a framelet system
with one of the masks being the given (discrete) convolution kernel h via the unitary extension
principle of [26].

This framelet based approach for deconvolution was originally proposed in [7–9] for high-
resolution image reconstruction, by using frames derived from bi-orthogonal wavelets or the
unitary extension principle of [26]. It was then extended to video still enhancement [11] and to
infrared image restoration [3]. Recently, this framelet based approach is further generalized to
inpainting in the image domain by [4,10]. The numerical simulation results in those papers show
clearly that this framelet based approach is numerically efficient and easy to implement. The
framelet deconvolution algorithm was first analyzed in [6]. This paper is to unify the framelet
based approaches in the literature and to give a complete analysis of the unified approach.
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There are several papers on solving inverse problems, in particular deconvolution problems,
by using wavelet methods. The wavelet-vaguelette decomposition methods by [18, 21], the
deconvolution in mirror wavelet bases by [24, 25], Galerkin-type methods to inverse problems
using an appropriate basis by [1, 12], and the orthonormal wavelet method by [14, 18] are
examples of wavelet approaches. The connections and differences of the above approaches and
the framelet approaches of [3,7–9,11] are detailed in [6], and interested readers should consult [6]
for the details. Finally, we also refer the reader to the recent work of [5] that gives a different
approach on framelet based deconvolution by using linearized Bregman iteration.

In this paper, we propose and analyze two algorithms. The first one unifies the previous
works in high resolution image reconstruction [7–9] and infra-red chopped and nodded image
restoration [3], and the second one is a combination of the frame-based deconvolution algo-
rithm [6] and the iterative thresholding algorithm of [14, 16]. The strong convergence of the
algorithms is given in infinite dimensional setting by employing proximal forward-backward
splitting (PFBS) method [13]. Consequently, it unifies iterative algorithms of infinite and finite
dimensional setting, simplifies the proof of the convergence of the algorithms, and improves the
minimization results that the limits are satisfied, of [6].

Since the focus of this paper is to give a theoretical analysis of algorithms, the numerical
simulation is not the focus of this paper. The interested readers should refer to [3, 7–9, 11] for
the numerical simulations for various applications.

The paper is organized as follows. In Section 2, we give a review of framelets. In Section 3,
we give algorithms for the framelet deconvolution approach. In Sections 4.1 and 4.2, we analyze
the strong convergence of the algorithms by the theory of proximal forward-backward splitting.
The corresponding results in finite dimensional setting are illustrated in Section 5.

2. Framelets

In this section, we review some of basics of framelet that are needed for the current paper.
For those who are familiar with the notion of framelet may skip this section.

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

‖f‖2L2(R) =
∑

g∈X

| 〈f, g〉 |2,

or equivalently
f =

∑

g∈X

〈f, g〉 g,

holds for all f ∈ L2(R), where 〈·, ·〉 and ‖ · ‖L2(R) are the inner product and the norm in L2(R)
respectively. For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), the affine system is defined by

X(Ψ) :=
{

ψ`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z
}

with ψ`,j,k := 2
j/2

ψ`(2j · −k).

When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame, and ψ`, ` = 1, . . . , r,
are called the tight framelets.

The quasi-affine system from level J is defined as

Xq
J(Ψ) =

{
ψq

`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z
}

with ψq
`,j,k :=

{
2

j/2
ψ`(2j · −k), j ≥ J ;

2j− J
2 ψ`(2j · −2j−Jk), j < J.
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It is clear that Xq
J (Ψ) is a 2−J -shift invariant system, and it is obtained by over sampling

the affine system starting from level J − 1 and downward to a 2−J -shift invariant system. It
was shown in [26, Theorem 5.5] that Xq

J(Ψ) is a tight frame of L2(R) if and only if its affine
counterpart X(Ψ) is a tight frame of L2(R).

To construct a set of tight framelets, one can start from a refinable function φ ∈ L2(R)
satisfying a refinement equation

φ(x) = 2
∑

k∈Z
h0[k]φ(2x− k), (2.1)

where h0 ∈ `2(Z) is called the refinement mask. Under mild assumptions on h0, hence on φ, a
multiresolution analysis (MRA) {Vj}j∈Z can be formed (see [17,23] for details). Let h1, . . . ,hr

be framelet masks that are in `2(Z), and define

ψ`(x) = 2
∑

k∈Z
h`[k]φ(2x− k), ` = 1, . . . , r. (2.2)

The unitary extension principle (UEP) in [26] says that X(Ψ) generated by Ψ := {ψ1, . . . , ψr}
is a tight frame of L2(R) provided that for all p ∈ Z

r∑

`=0

∑

k∈Z
h`[k]h`[k − p] = δ0,p, and

r∑

`=0

∑

k∈Z
(−1)k−ph`[k]h`[k − p] = 0, (2.3)

where δ0,p is 1 when p = 0, and 0 otherwise. Define the infinite dimensional Toeplitz matrix

H` = (H`[j, k]) = (h`[j − k]), 0 ≤ ` ≤ r,

then the first condition in UEP (2.3) in this matrix form is equivalent to

H∗0H0 + H∗1H1 + . . . + H∗r Hr = I . (2.4)

The UEP condition (2.3) can be written in the Fourier domain as
r∑

`=0

|ĥ`(ω)|2 = 1 and
r∑

`=0

ĥ`(ω)ĥ`(ω + π) = 0, a.e. ω ∈ [−π, π], (2.5)

where
ĥ`(ω) :=

∑

k∈Z
h`[k]e−ikω.

It is well known that the refinement mask always satisfies ĥ0(0) = 1, i.e., h0 is a low pass filter.
The first condition of (2.5) says that all the framelet masks satisfy ĥ`(0) = 0, ` = 1, . . . , r. In
other words, for the tight framelet system, the framelet masks are high pass filters.

In the following, we introduce the framelet decomposition in the quasi-affine system Xq
0 (Ψ),

i.e., the normal framelet decomposition introduced in [15] without down sampling step. For
simplicity, we define ψ0 := φ. For a given function f ∈ L2(R), we start from {〈f, ψq

0,0,k〉}, the
coefficient of f with respect to φ at level 0. Then, it was shown in [6] by applying (2.2), one
has the decomposition algorithm (without downsampling)

{〈f, ψq
s,−1,k〉} =

{
〈f,

∑

l∈Z
hs[k − l]ψq

0,0,l〉
}

=

{∑

l∈Z
hs[k − l]〈f, ψq

0,0,l〉
}

= Hs{〈f, ψq
0,0,k〉}. (2.6)
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Therefore,
A0→−1 := [H0; H1; . . . ;Hr]t

is a framelet decomposition operator from level 0 to level −1. Let A∗0→−1 be the adjoint of
A0→−1. It is the framelet reconstruction operator from level −1 to level 0. By the UEP (2.4),
we have A∗0→−1A0→−1 = I . It implies that the decomposition and reconstruction is perfect,
see [6] for details.

For the multilevel framelet decomposition in the quasi-affine system Xq
0 (Ψ), we define the

filter h`,j for the filter h` in level j < 0 by

h`,j [k] =

{
h`[2j+1k], k ∈ 2−j−1Z
0, k ∈ Z \ 2−j−1Z.

(2.7)

Let H`,j := (H`,j [k, l]) = (h`,j [k − l]). Then

{〈f, ψq
`,j,k〉} = H`,j{〈f, ψq

0,j+1,k〉}, and H` = H`,−1.

Therefore, one can define the decomposition operator from level j + 1 to level j by

Aj+1→j := [H0,j ;H1,j ; . . . ;Hr,j ]
t
.

Again, by (2.4), one can verify that A∗j+1→jAj+1→j = I . One can define the multilevel framelet
decompsition operator from level J0 to J , J < J0 ≤ 0, by

AJ0→J :=
[ 


J0−1∏

j=J

H0,j


 ;


H1,J

J0−1∏

j=J+1

H0,j


 ; . . . ;

(
Hr,J

J0−1∏
j=J+1

H0,j

)
; . . . ; H1,J0−1; . . . ;Hr,J0−1

]t

. (2.8)

It can be easily proved that A∗J0→JAJ0→J = I . For simplicity, we denote

AJ := A0→J , and A := lim
J→−∞

AJ .

Then A is a linear operator from `2(Z) to H , where

H :=
r,∞⊗

`=1,j=1

``,−j
2 (Z). (2.9)

It was proven in [6] that A∗A = I , i.e., the decomposition and reconstruction is perfect. For
an arbitrary given sequence v, there are infinitely many ṽ such that v = A∗ṽ, since the tight
frame system is a redundant system. The sequence Av is one of them that has the minimal `2
norm among all frame coefficient sequence ṽ satisfying v = A∗ṽ. The sequence Av is called
the canonical frame coefficients of v.

Now we can define the thresholding operator T p from H to H , which has been extensively
used for denoising in the wavelet literature. For any given real numbers λ and p, 1 ≤ p < 2, let
the thresholding operator be

tpλ(x) := arg min
y∈R

{
(x− y)2 + λ|y|p

}
. (2.10)
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When p = 1, tλ(x) := t1λ(x) = sgn(x)max(|x|− λ
2 , 0) is the soft-thresholding function [20]; when

1 < p < 2, the thresholding function is defined by the inverse of the function

Fp
λ(x) := x +

pλ

2
sgn(x)|x|p−1.

For a given sequence
w := {w`,j,k}r

`=1,j<0,k∈Z ∈ H ,

the denoising operator T p which applies the thresholding operator tpλ`,j,k
to w`,j,k with the

thresholding parameters λ`,j,k is defined as:

T pw =
{

tpλ`,j,k
(w`,j,k)

}r

`=1,j<0,k∈Z
. (2.11)

From the definitions (2.10) and (2.11), it can be easily proved that

T pw = arg min
u∈H



‖w − u‖2H +

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|u`,j,k|p



 .

To transfer the deconvolution problem into an inpainting problem in the framelet domain
H , the basic idea is to construct a set of framelets such that one of the masks (or filters) is
the convolution kernel h. For a given filter (high pass or low pass) there are many ways to
construct a system of tight framelets, so that one of the masks is the given convolution kernel
by applying the unitary extension principle of [26]. Here we provide one of them derived from
the corresponding construction of [19].

Assume that h is finitely supported, and satisfies

|ĥ(ω)|2 + |ĥ(ω + π)|2 ≤ 1.

When h is a low pass filter, i.e., ĥ(0) = 1, we set h0 = h. Then, it is well known that the
associated refinement function φ exists in the sense of distribution, and the Fourier transform
of φ is given by φ̂(ω) =

∏∞
j=1 ĥ0( ω

2j ). Furthermore, by Proposition A.1 in [6], φ is in L2(R) and
satisfies the refinement equation φ(x) = 2

∑
k∈Z h0[k]φ(2x− k).

Let

ξ(ω) := 1− |h0(ω)|2 − |h0(ω + π)|2, and ς(ω) :=
√

ξ

2
,

where
√

ξ is obtained via the Fejér-Riesz lemma. Define

ĥ1(ω) := e−iωĥ0(ω + π), ĥ2(ω) := ς(ω) + e−iως(−ω), ĥ3(ω) := e−iωĥ2(ω + π). (2.12)

It was proven in [19] that h` for ` = 0, 1, 2, 3 satisfies the UEP condition (2.3). Therefore, we
have constructed a set of tight framelets by h`, with h = h0, and φ via (2.2). Furthermore,
if h0 is symmetric, the filters h`, ` = 1, 2, 3, are either symmetric or anti-symmetric; see [19,
Construction 4.4].

For the case that h is a high pass filter, i.e., ĥ(0) = 0, we assume that ĥ(π) = 1. Then,

define ĥ0(ω) := e−iωĥ(ω + π), and define h`, ` = 1, 2, 3, by (2.12). Hence, this set of filters
satisfies UEP. By direct calculation, we see that ĥ1 = −ĥ. Therefore, we have constructed a set
of framelets such that one of the filters is h. Again, if h0 is symmetric, the filters h`, ` = 1, 2, 3,
are either symmetric or anti-symmetric.
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3. Problem Formulation and Algorithms

The framelet deconvolution approach works in the quasi-affine tight frame system Xq
J(Ψ).

As we mentioned in [6], without loss of generality, we may assume that the data set is given on
Z (i.e., J = 0). In fact, when the data set is given on 2−JZ, we consider the function f(2−J ·)
instead of f . The approximation power of a function f in the space VJ is the same as that
of the function f(2−J ·) in space V0. Therefore, we only consider the framelet deconvolution
approach in the quasi-affine tight frame system Xq

0 (Ψ).
Suppose that for the given convolution kernel h, we have constructed via UEP a set of tight

framelets Ψ = {ψ1, . . . , ψr} with refinement function φ such that h ∈ {h0,h1, . . . ,hr}. Then
the model (1.1) can be rewritten as

c = hs ∗ v + ε, (3.1)

where s is the index such that hs = h. Here we have generalized the convolution model in [6],
where the convolution kernel is assumed to be a low pass filter, i.e., s = 0. Our generalization
is motivated by the recent work of [3], where a tight framelet approach for deconvolution with
convolution kernel being a high pass filter was proposed for applications arising from infrared
imaging in astronomy. To simplify our notations, we use ‖ · ‖ := ‖ · ‖`2(Z) or ‖ · ‖ := ‖ · ‖H .

3.1. Modeling and Algorithms

As it was done in [6], we start with the simplest case that the data set contains no error,
i.e., c = hs ∗v, and c = {〈f, ψs,−1,k〉} for some f ∈ L2(R). Then, v = {〈f, ψq

0,0,k〉} is a solution.
Indeed, by the decomposition algorithm (2.6), we have

c = hs ∗ v = Hsv = {〈f, ψs,−1,k〉}. (3.2)

In this case, the deconvolution problem hs ∗ v = c becomes exactly the inpainting problem in
the framelet domain. Let Θ := {(`, j, k)

∣∣ ` = 1, . . . , r; j ∈ Z, j < 0; k ∈ Z} be the set of indices
of H . To mark the given data part in the framelet domain, we consider the cases s 6= 0 and
s = 0 respectively.

• Let s 6= 0, i.e., hs is a high pass filter. By (3.2), c is just the tight framelet coefficients
Av on the set of indices

Γs :=
{

(`, j, k)
∣∣ ` = s; j = −1; k ∈ Z

}
⊂ Θ. (3.3)

Define ks by

ks[`, j, k] =

{
ck, if (`, j, k) ∈ Γs,

0, otherwise.

• For the case that hs is a low pass filter, i.e., s = 0, c is the coarse level coefficients on level
−1. If one further decomposes it from level −1 to get the framelet coefficients A−1→−∞c,
by applying the definition of A, we have that A−1→−∞c is the coefficients Av on the set
of indices

Γ0 :=
{

(`, j, k)
∣∣ ` = 1, . . . , r; j ∈ Z, j ≤ −2; k ∈ Z

}
⊂ Θ. (3.4)
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Define k0 by
k0 = [A−1→−∞c;0; . . . ;0︸ ︷︷ ︸

r 0′s.

]t.

Let PΓs
be the projection operator from H to H defined as

w := PΓsu, with w`,j,k :=

{
u`,j,k, if (`, j, k) ∈ Γs,

0, otherwise.

Then from (3.1) and the definition of ks, we obtain

PΓs
Av = ks. (3.5)

We solve (3.1) in the framelet domain, i.e., in the space H . Note that for this special case
ks is the known part of the coefficient Av on Γs. We recover v from c by approximating the
missing part of the framelet coefficients. This formulation transfers deconvolution to inpainting
in the framelet domain. The iteration is motivated by the identity

v = A∗[PΓs
Av + (I − PΓs

)Av]. (3.6)

The key of the algorithm is approximating the missing framlet coefficients by those of previous
iteration, which leads to the following algorithm

vn+1 = A∗[ks + (I − PΓs)Avn]. (3.7)

This is essentially a Landweber iteration for (3.1)

vn+1 = vn + H∗s (c− Hsvn),

which is equivalent to
vn+1 = H∗s c +

∑

6̀=s

H∗` H`vn. (3.8)

The iteration (3.8) is Algorithm 2.1 in [6]. When s = 0, it was proven in [6] that {vn} converges
to v that satisfies h0 ∗ v = c. The proof can be straightforwardly extended to the case when
s 6= 0, so we will omit the details here.

However, the observed data c = h ∗ v (i.e., we still assume there is no noise in the data)
may not be in the form of {〈f, ψq

s,−1,k〉}. To solve the deconvolution problem in the framelet
domain H , we should find a sequence ṽ ∈ H such that it coincides with the known data c,
i.e., ks on Γs. Then, let the solution be v := A∗ṽ. To make v a meaningful approximation
solution of the deconvolution equation (3.1), we need ‖hs ∗ v − c‖2 = ‖PΓsAv − ks‖2 to be
small. Since PΓs ṽ = ks, this implies that ‖PΓs(Av − ṽ)‖2 should be small. This leads to that
‖(I − AA∗)ṽ‖2 should be small. Furthermore, we need ṽ to be sparse to keep the edge of v
sharp. Altogether, we need ṽ to minimize the functional

‖(I −AA∗)ṽ‖2 +
r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p (3.9)

with the constraint PΓs ṽ = ks. The term ‖(I − AA∗)ṽ‖2 also penalizes the distance between
ṽ and the range of A, i.e., the distance to the canonical frame coefficients of v. Since the
canonical coefficients of a framelet system links to the regularity of the underlying function (see,
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e.g., [2,22]), and since some weighted norm of canonical framelet coefficients can be equivalent
to some norm of underlying function, the cost functional of (3.9) penalizes the regularity of the
underlying function. Altogether, the cost functional of (3.9) balances the fidelity, regularity
and sparsity of the solution which are desired.

Finally, we consider the case that the given data set is bounded to have errors, i.e., ε 6= 0
in (1.1). For this case, we clean the data first by using the same framelet system, i.e., we
apply a noise removing scheme to ks. Then we solve the same minimization problem with the
constraint on the clean data set. That is to find ṽ that satisfies

min
ṽ∈C

{‖(I −AA∗)ṽ‖2 +
r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p

}
, (3.10)

where C = {ṽ|ṽ ∈ H ; PΓs
ṽ = T pks}. Here the thresholding parameters λ`,j,k for (`, j, k) ∈ Γs

are set according to the noise level of given data. In particular, λ`,j,k = 0 for (`, j, k) ∈ Γs,
when there is no noise which coincides with the discussions of the case c = h ∗ v. Hence, the
minimization problem of (3.10) unifies the all cases discussed above and the key is to find the
minimizer of (3.10) .

As we will show in this paper, the minimizer of (3.10) can be obtained by the following
simple algorithm

Algorithm 3.1

1. Choose an initial approximation v0 (e.g., v0 = c);

2. Iterate on n until convergence

vn+1 = A∗T p[ks + (I − PΓs)Avn]. (3.11)

It is noted that this algorithm is obtained by modifying (3.7) via applying the thresholding
operator T p to (3.7) before it is synthesized.

3.2. Algorithms in [6] and [16]

The idea of [6] for deconvolution is to apply the thresholding operator T p to each iteration
of (3.8). There are several different schemes suggested, the main one is essentially

vn+1 = A∗T pA(H∗s c +
∑

6̀=s

H∗` H`vn). (3.12)

This can be written as
vn+1 = A∗T pA(vn + H∗s (c− Hsvn)). (3.13)

Let

ṽn := T pA

H∗s c +

∑

6̀=s

H∗` H`vn


 .

Then, iterations (3.12) and (3.13) can be rewritten into

ṽn+1 = T p

(
AA∗ṽn +AH∗s (c− HsA∗ṽn)

)
. (3.14)
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Furthermore, the pair of limit (v, ṽ) satisfies v = A∗ṽ. The convergence of this algorithm for
the finite dimensional case (see Section 5 for the detailed description of the finite dimensional
case) was proven by [6].

The convergence of the general case was proven in [6] by introducing an accelerate factor β

that modifies the iteration (3.12) to

vn+1 = A∗T pA

H∗s βc +

∑

6̀=s

H∗` H`βvn


 , 0 < β ≤ 1, (3.15)

and the final solution is sβ = vβ/β with vβ = limn→∞ vn. The convergence of (3.15) was
established for 0 < β < 1 by [6]. Furthermore, it was proven in [6] that the limit satisfies
some minimization properties in the following sense. Let (v, ṽ) satisfies v = A∗ṽ, and v be the
limit of (3.15). Define sβ = vβ/β and s̃β = ṽβ/β. Then, for an arbitrary pair (η, η̃) satisfying
η̃ = Aη ∈ `p, the following inequality holds:

‖Hs(sβ + η)− c‖2 +
r∑

`=1

∑

j<0,k∈Z
λj |s̃β

`,j,k + η̃`,j,k|p

≥‖Hssβ − c‖2 +
r∑

`=1

∑

j<0,k∈Z
λ`,j,k|s̃β

`,j,k|p − δ, (3.16)

where δ can be arbitrary close to 0 when β is arbitrary close to 1. Furthermore, it was shown
in [6] that the above minimization property holds with β = 1 and δ = 0 for the limit of (3.12)
in the finite dimensional case.

Next, we make a short review of the approach in [16], which discusses a more general
inverse problem. When it is restricted to the deconvolution problem, the corresponding iterative
algorithm is to improve the framelet coefficients ṽ by

ṽn+1 = T p(ṽn +AH∗s (c− HsA∗ṽn)). (3.17)

The iteration is performed entirely in the frame domain. At each step, it corrects ṽn by
AH∗s (c− HsA∗ṽn). On the other hand, the iteration (3.12) is performed in the image domain
and it corrects vn by H∗s (c−Hsvn) at each step. These two algorithms are “mirror symmetric”
performed in the two different domains.

The frame system A in (3.17) can be chosen to be independent of the convolution kernel
Hs. Hence, this approach does not model the deconvolution by an inpainting problem in a
transform domain. As it is proven in [16], the sequence ṽn converges. Let ṽ be its limit, then
the solution v is defined to be A∗ṽ. The limit is a minimizer of the following cost functional

min
ṽ∈H



‖c− HsA∗ṽ‖2 +

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p



 . (3.18)

The framelet deconvolution algorithm given below, in some sense, is a combination and
unification of the above two mentioned algorithms of (3.14) and (3.17).
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Algorithm 3.2

1. Choose an initial approximation v0 (e.g., v0 = c);

2. Iterate on n until convergence

ṽn+1 = T p
(
ṽn − µδ(I −AA∗)ṽn + δAH∗s (c− HsA∗ṽn)

)
. (3.19)

When µ = 0 and δ = 1, it is (3.17), and when µ = 1 and δ = 1, it is identical to (3.14). We
will show the convergence of Algorithm 3.2 in infinite dimensional setting, and the limit is a
solution of

min
ṽ∈H



‖HsA∗ṽ − c‖2 + µ‖(I −AA∗)ṽ‖2 +

1
δ

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p



 . (3.20)

Here the first term penalizes the fidelity, and the last term penalizes the sparsity of ṽ,
especially, when p is close to 1. The second term µ‖(I−AA∗)ṽ‖2 penalizes the distance between
ṽ and the range of A, i.e., the distance to the canonical frame coefficients of v. The larger µ

makes the frame coefficients of v closer to the range of A, i.e. the frame coefficients of v is
closer to the canonical frame coefficients. Since the canonical coefficients of a framelet system
link to the regularity of the underlying function (see, e.g., [2, 22]), and since some weighted
norm of the canonical framelet coefficients can be equivalent to some norm of the underlying
function, the second term together with the third term penalize the regularity of the underlying
function. Here, we also notice that, since ṽ does not interpolate the data, unlike the same term
in (3.10), the term ‖(I −AA∗)ṽ‖2 does not penalize the fidelity. However, the first term does.
Altogether, we conclude that the cost functional of (3.20) balances the fidelity, regularity and
sparsity of the solution which is exactly what we want.

In infinite dimensional setting, we are able to prove the convergence of (3.15) with β = 1
as a special case. This improves the results in [6]. Moreover, since, for an arbitrary pair (η, η̃)
satisfying η̃ = Aη ∈ `p, ‖(I −AA∗)η̃‖2 = 0, it is clear that (3.20) implies (3.16). Hence, we give
here a more compact minimization form than those in [6] even for the finite dimensional case.

Comparing (3.18) with (3.20), the cost functional (3.20) has the additional term µ‖(I −
AA∗)ṽ‖2 to balance the distance of ṽ to the range of A. Hence, Algorithm 3.2 balances the
regularity and sparsity requirements of the solution, while iteration (3.17), which can be viewed
as a special case of Algorithm 3.2, pursues the full sparsity of the redundance.

Finally, we point out that our analysis can be extended to the other algorithm given in [6].
For example, Algorithm 2.3 in [6] can be written as

vn+1 = H∗s βc +
∑

6̀=s

H∗` (A∗T pA)(βH`vn), 0 < β ≤ 1, (3.21)

and the final solution is sβ = vβ/β with vβ = limn→∞ vn. This algorithm applies a different
denoising scheme from that of (3.15). The convergence of this iteration is proven for 0 < β < 1
and the corresponding minimization property is discussed in [6]. The analysis here can be
extended to prove the convergence of (3.21) with β = 1, and the minimization property can
also be discussed similarly. In particular, when β = 1, the sequence

ṽn :=
(
T pAH0vn, T pAH1vn, . . . , T pAHs−1vn, c, T pAHs+1vn, . . . , . . . , T pAHrvn

)
(3.22)
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in the r + 1-tuple converges to a minimizer of the following cost functional

min
ṽ∈C0

{
‖(I − BB∗)ṽ‖2 +

∑

` 6=s

r∑

`′=1

∑

j<0,k∈Z
λj |ṽ`

`′,j,k|p
}

, (3.23)

where C0 = {ṽ|ṽs = c} with ṽs being the s-th component in tuple (3.22), and

B = [AH0;AH1; . . . ;AHs−1;Hs;AHr+1; . . . ;AHr]t.

We omit the detailed discussion here, since the extension is routine.

4. Analysis of Algorithms

In this section, we give a convergence analysis of Algorithms 3.1 and 3.2. In particular,
we prove that Algorithm 3.1 converges to a minimizer of (3.10), and Algorithm 3.2 converges
to a minimizer of (3.20). The main tool used in our analysis is the convergence theory for
the proximal forward-backward splitting (PFBS) iteration proposed in [13]. The aim of the
proximal forward-backward splitting is to solve the minimization problem

min
x∈X

{F1(x) + F2(x)} , (4.1)

where X is a Hilbert space, and F1 : X 7→ (−∞,∞] and F2 : X 7→ (−∞,∞) are two proper
lower semi-continuous convex functionals such that F2 is differentiable on X . Moreover, the
gradient of F2 satisfies

‖∇F2(x)−∇F2(y)‖X ≤ 1
α
‖x− y‖X , ∀x, y ∈ X . (4.2)

The proposed (simplified) iteration is

xn+1 = proxγF1
(xn − γ∇F2(xn)), (4.3)

where proxγF1
is the proximity operator defined by

proxγF1
(y) = arg min

x∈X

{
1
2
‖y − x‖2X + γF1(x)

}
. (4.4)

The following convergence theorem is a special case of Theorem 3.4 of [13] for the sequence
generated by (4.3).

Theorem 4.1. Suppose that the set of minimizers for (4.1), denoted by G , is not empty. Fixing
x0 ∈ X , let the sequence {xn}∞n=1 be defined by (4.3). Then, for 0 < γ < 2α, where α is defined
by (4.2), we have:

(a) xn converges weakly to a point x ∈ G ;

(b)
∑∞

n=1 ‖∇F2(xn)−∇F2(x)‖2X < ∞;

(c)
∑∞

n=1 ‖xn+1 − xn‖2X < ∞.



300 J.F. CAI AND Z.W SHEN

4.1. Convergence Analysis for Algorithm 3.1

In this subsection, we study the convergence of Algorithm 3.1. Let C := {ṽ|ṽ ∈ H ; PΓs
ṽ =

T pks} be a subset in H . It is obviously a closed nonempty convex set. The indicator function
of C is defined by

ιC (ṽ) =

{
0, ṽ ∈ C ,

∞, ṽ 6∈ C .

We will prove that Algorithm 3.1 converges to a minimizer of

min
ṽ∈C



‖(I −AA

∗)ṽ‖2 +
r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p



 (4.5)

by splitting the cost functional as

F1(ṽ) = ιC (ṽ) +
r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p, and F2(ṽ) = ‖(I −AA∗)ṽ‖2. (4.6)

Define a new sequence in the space H as

ṽn = T p[ks + (I −PΓs)Avn]. (4.7)

Then we have
vn+1 = A∗ṽn,

and the iteration (3.11) can be rewritten as

ṽn+1 = T p[ks + (I − PΓs)AA∗ṽn]. (4.8)

Lemma 4.1. The sequence {ṽn}∞n=1 defined by (4.8) converges if and only if the sequence
{vn}∞n=1 defined by (3.11) does.

Proof. By Proposition 1.2 in [6], the operator A satisfies A∗A = I . Therefore, A∗ is a
continuous linear operator, hence {vn}∞n=1 converges if {ṽn}∞n=1 does.

On the other hand, by Proposition 3.2 in [6] the operator T p is continuous. By the definition,
the operator PΓs is a continuous linear operator too. Therefore, the map from vn to ṽn in (4.7)
is also continuous. Hence, {ṽn}∞n=1 converges if {vn}∞n=1 does. ¤

Therefore, to show that {vn}∞n=1 converges, we only need to show that {ṽn}∞n=1 converges,
which will be done in the following. We first transform the iteration (3.11) into a proximal
forward-backward splitting iteration for (4.5) by the splitting (4.6). Then, by applying Theorem
4.1, we obtain the weak convergence for the sequence {ṽn}∞n=1. Finally, we prove the strong
convergence by a lemma in [14].

Lemma 4.2. The iteration (4.8) (generated by (3.11) in Algorithm 3.1 is the same as the
proximal forward-backward splitting iteration (4.3) with F1 and F2 being defined in (4.6) and
γ = 1

2 .

Proof. It is clear that
1
2
∇F2(ṽ) = ṽ −AA∗ṽ. (4.9)
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Comparing (4.8) with (4.9) and (4.3) where γ = 1
2 , we see that if we can prove that

prox 1
2 F1

(u) = T p[ks + (I − PΓs)u], (4.10)

then we have done. We verify (4.10) by considering the definition of the proximity operator in
the following

prox 1
2 F1

(u) = arg min
w∈H

{1
2
‖w − u‖2 +

1
2
ιC (w) +

1
2

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|w`,j,k|p

}
. (4.11)

Note that

ιC (w) =
r∑

`=1

∑

j<0,k∈Z
ι`,j,k(w`,j,k),

where

ι`,j,k(w`,j,k) =





0, if (`, j, k) 6∈ Γs,

0, if (`, j, k) ∈ Γs and w`,j,k = tpλ`,j,k
(ks[`, j, k]),

∞, if (`, j, k) ∈ Γs and w`,j,k 6= tpλ`,j,k
(ks[`, j, k]),

with tpλ`,j,k
being defined in (2.10). By the definition (2.10), we have

∀(`, j, k) ∈ Γs, tpλ`,j,k
(ks[`, j, k]) = arg min

w`,j,k∈R

{
1
2
(w`,j,k−u`,j,k)2+

1
2
ι`,j,k(w`,j,k) +

1
2
|w`,j,k|p

}

(4.12)
and

∀(`, j, k) 6∈ Γs, tpλ`,j,k
(u`,j,k) = arg min

w`,j,k∈R

{
1
2
(w`,j,k − u`,j,k)2 +

1
2
|w`,j,k|p

}
. (4.13)

Denote x by

x`,j,k :=

{
tpλ`,j,k

(ks[`, j, k]), for (`, j, k) ∈ Γs,

tpλ`,j,k
(u`,j,k), for (`, j, k) 6∈ Γs.

Note that ks ∈ H and u ∈ H imply x ∈ H . This, together with (4.12) and (4.13), leads to
x = prox 1

2 F1
(u). On the other hand, by the definition of T p in (2.11), we have

x = T p[ks + (I − PΓs)u].

Therefore, we have proved (4.10). ¤

By applying Theorem 4.1, we conclude that the sequence {ṽn}∞n=1 weakly converges to a
minimizer of (4.5) if it not empty. Next lemma says that the minimizer of (4.5) is not empty.

Lemma 4.3. Let ṽn be the sequence defined by the iteration (4.8). Then, there exists a point
ṽ which is a minimizer of (4.5) such that

(a) ṽn ⇀ ṽ, where ⇀ denotes weak convergence;

(b)
∑∞

n=1 ‖∇F2(ṽn)−∇F2(ṽ)‖2 < +∞;

(c)
∑∞

n=1 ‖ṽn+1 − ṽn‖2 < +∞.
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Proof. It is obvious that both functionals F1 and F2 are proper, semi-continuous and convex
functionals, and F2 is differentiable. By (4.9), for any vectors f ,g ∈ H , we have

1
2
‖∇F2(f)−∇F2(g)‖ =‖(I −AA∗)(f − g)‖

≤‖I −AA∗‖‖f − g‖.
Since ‖I −AA∗‖ = 1, ∇F2 is Lipschitz continuous with Lipshitz constant 1/α = 2. Therefore,
α = 1

2 . We conclude from Theorem 4.1 that the lemma follows if there exists a minimizer for
(4.5).

The existence of the minimizers for (4.5) follows from the coercivity of F1 hence F1 + F2.
Since `p norm is always greater than `2 norm for p ∈ [1, 2) and λ = inf(`,j,k) λ`,j,k > 0, we have

F1(ṽ) ≥ λ

r∑

`=1

∑

j<0,k∈Z
|ṽ`,j,k|p ≥ λ(

r∑

`=1

∑

j<0,k∈Z
|ṽ`,j,k|2)p/2 = λ‖ṽ‖p.

Therefore, as ‖ṽ‖ → ∞, F1(ṽ) →∞. It means that F1 is coercive. ¤
Next, we show that the convergence is in the strong topology, i.e., in the norm. For this, we

need the following lemma, which follows immediately from Lemma 3.18 in [14].

Lemma 4.4. Let a ∈ H be a given vector and {un}∞n=1 be a sequence in H . Assume that
un ⇀ 0 (⇀ denoted for the weak convergence), and ‖T p(a + un) − T p(a) − un‖ → 0, (→
denoted for the strong convergence). Then ‖un‖ → 0, i.e., un converges to 0 strongly.

With this lemma, we have the following desired result:

Theorem 4.2. Iterations (3.11) and (4.8) converge in norm. Further, the limit pair (v, ṽ)
satisfies v = A∗ṽ and ṽ is a minimizer of the cost functional (3.10).

Proof. It only remains to show the strong convergence of {ṽn}∞n=1. Let un = ṽn − ṽ, then
un ⇀ 0 and ṽ is a minimizer of (4.5) by Lemma 4.3. Set a = ks + (I −PΓs)AA∗ṽ. By Lemma
4.4, it is only left to show that

‖T p(a + un)− T p(a)− un‖ → 0. (4.14)

Since ṽ is a minimizer of (3.10), T p(a) = T p[ks+(I−PΓs)AA∗ṽ] = ṽ. Note that by Proposition
3.2 in [6] T p is non-expansive. We get

‖T p(a + un)− T p(a)− un‖
=‖T p[ks + (I − PΓs)AA∗ṽ + ṽn − ṽ]− ṽn‖
=‖T p[ks + (I − PΓs)AA∗ṽ + ṽn − ṽ]− T p[ks + (I − PΓs)AA∗ṽn−1]‖
≤‖[ks + (I − PΓs)AA∗ṽ + ṽn − ṽ]− [ks + (I − PΓs)AA∗ṽn−1]‖
=‖(I − PΓs)(I −AA∗)(ṽn−1 − ṽ) + (I −PΓs)(ṽn − ṽn−1) + PΓs(ṽn − ṽ)‖
≤‖(I −AA∗)(ṽn−1 − ṽ)‖+ ‖ṽn − ṽn−1‖+ ‖PΓs(ṽn − ṽ)‖
=

1
2
‖∇F2(ṽn−1)−∇F2(ṽ)‖+ ‖ṽn − ṽn−1‖+ ‖PΓs(ṽn − ṽ)‖. (4.15)

By (b) and (c) in Lemma 4.3, we get ‖∇F2(ṽ)−∇F2(ṽn−1)‖ → 0 and ‖ṽn− ṽn−1‖ → 0. Since
ṽ and ṽn are all in C , we have PΓs(ṽn − ṽ) = 0, hence ‖PΓs(ṽn − ṽ)‖ = 0. Combining all
together, (4.15) implies (4.14). ¤
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4.2. Convergence Analysis for the Algorithm 3.2

In this subsection, we prove that the iteration (3.19) in Algorithm 3.2 converges to a mini-
mizer of

min
ṽ∈H



‖c− HsA∗ṽ‖2 + µ‖(I −AA∗)ṽ‖2 +

1
δ

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p



 . (4.16)

Again, we first transform the iteration (3.12) into a proximal forward-backward splitting
iteration for the cost functional (4.16). Then by applying Theorem 4.1, we obtain the weak
convergence for the sequence {ṽn}∞n=1. Finally, we prove the strong convergence by applying
Lemma 4.4. For this, we split the cost functional of (4.16) into

F1(ṽ) =
1
δ

r∑

`=1

∑

j<0,k∈Z
λ`,j,k|ṽ`,j,k|p, F2(ṽ) = ‖c− HsA∗ṽ‖2 + µ‖(I −AA∗)ṽ‖2, (4.17)

and prove the following:

Lemma 4.5. Iteration (3.19) is exactly the same as the proximal forward-backward splitting
iteration (4.3) with F1 and F2 being given in (4.17) and γ = δ

2 .

Proof. By the definitions of T p and F1, we have T p = prox δ
2 F1

. Comparing (3.19) with
(4.3), we only need to show that

1
2
∇F2(ṽ) = µ(I −AA∗)ṽn −AH∗s (c− HsA∗ṽn). (4.18)

This follows directly by a straightforward computation. ¤

With this, we conclude that the sequence {ṽn}∞n=1 weakly converges to a minimizer of (4.16)
by applying Theorem 4.1 as stated in the next lemma:

Lemma 4.6. Let ṽn be a sequence defined by (3.19). Assume that 0 < δ < 2
max{1,µ} . Then,

there exists a point ṽ which is a minimizer of (4.16) such that

(a) ṽn ⇀ ṽ, where ⇀ denotes weak convergence;

(b)
∑∞

n=1 ‖∇F2(ṽn)−∇F2(ṽ)‖2 < +∞;

(c)
∑∞

n=1 ‖ṽn+1 − ṽn‖2 < +∞.

Proof. It is obvious that both functionals F1 and F2 are proper, semi-continuous and convex
functionals, and F2 is differentiable. By (4.18), for any vectors f ,g ∈ H , we have

1
2
‖∇F2(f)−∇F2(g)‖ =‖(µ(I −AA∗) +AH∗s HsA∗

)
(f − g)‖

≤‖µ(I −AA∗) +AH∗s HsA∗‖‖f − g‖.

Hence, ∇F2 is Lipschitz continuous with Lipshitz constant 1/α = 2‖µ(I −AA∗) +AH∗s HsA∗‖,
which will be estimated in the following. For any vector f ,

‖(µ(I −AA∗) +AH∗s HsA∗)f‖2
=‖µ(I −AA∗)f +AH∗s HsA∗f‖2 = ‖µ(I −AA∗)f‖2 + ‖AH∗s HsA∗f‖2.
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The last equality follows from that the range of I −AA∗ is orthogonal to that of A. This leads
to

‖µ(I −AA∗)f‖2 + ‖AH∗s HsA∗f‖2
≤‖µ(I −AA∗)f‖2 + ‖A‖2‖H∗s Hs‖2‖A∗f‖2 ≤ ‖µ(I −AA∗)f‖2 + ‖AA∗f‖2.

The last inequality follows from the facts that ‖A‖2‖H∗s Hs‖2 ≤ 1 and ‖Ax‖2 = ‖x‖2 for any x.
Hence,

‖(µ(I −AA∗) +AH∗s HsA∗)f‖2 ≤ ‖µ(I −AA∗)f +AA∗f‖2,
because the range of I −AA∗ is orthogonal to that of A again. Furthermore, when 0 ≤ µ ≤ 1

‖µ(I −AA∗)f +AA∗f‖ =‖µf + (1− µ)AA∗f‖
≤µ‖f‖+ (1− µ)‖AA∗f‖ ≤ ‖f‖,

and when µ > 1,

‖µ(I −AA∗)f +AA∗f‖ = ‖f + (µ− 1)(I −AA∗)f‖
≤ ‖f‖+ (µ− 1)‖(I −AA∗)f‖ ≤ µ‖f‖.

Therefore,
‖(µ(I −AA∗) +AH∗s HsA∗)f‖2 ≤ (max{µ, 1})2‖f‖2,

Consequently,
‖µ(I −AA∗) +AH∗s HsA∗‖ ≤ max{µ, 1}.

This implies that α = 1
2 max{µ,1} . The conclusion follows once the existence of the minimizer

for (4.16) is established which is achieved by showing the coercivity of F1 hence F1 + F2. Since
`p norm is always greater than `2 norm for p ∈ [1, 2) and λ = inf(`,j,k) λ`,j,k > 0, we have

F1(f) ≥ λ

r∑

`=1

∑

j<0,k∈Z
|f`,j,k|p ≥ λ(

r∑

`=1

∑

j<0,k∈Z
|f`,j,k|2)p/2 = λ‖f‖p.

Therefore, as ‖f‖ → ∞, F1(ṽ) →∞. It means that F1 is coercive. ¤

Finally, by a similar proof of Theorem 4.2, which we omit, we get the strong convergence of
the sequence {ṽn}∞n=1.

Theorem 4.3. Assume that 0 < δ < 2
max{1,µ} . Then iteration (3.19) in Algorithm 3.2 con-

verges in norm. Further, the limit ṽ is a minimizer of (4.16).

5. Algorithms for Finite Dimensional Data

In applications, data sets are always given as finite dimensional vectors. In this section,
we modify Algorithms 3.1 and 3.2 to suit this need. The key issue is to impose a proper
boundary condition to convert the finite dimensional convolution h ~ f with kernel h to a
matrix-vector multiplication Hf . There are several ways to generate convolution matrices
from given convolution kernels. For example, when periodic boundary conditions are used as
discussed in [6], the matrix H becomes a circulant matrix

H[l, k] = h[(l − k) mod N0], 0 ≤ l, k < N0.
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Another example of boundary condition is the half-point symmetric extension condition. In
this case, the matrix H is a Toeplitz-plus-Hankel matrix, and is given by

H[l, k] = h`(l − k) + h(l + k − 1) + h(−1− (2N0 − l − k)), 0 ≤ l, k < N0, (5.1)

provided that the length of h is smaller than 2N0. Other possible boundary extensions include,
for example, the whole-point symmetric extension discussed in [8].

Let the matrix H` be the finite convolution matrix with kernel h`, and H`,j be the finite
convolution matrix with kernel h`,j defined in (2.7). We do not specify any boundary condi-
tion here. We only assume that proper boundary conditions are incorporated such that the
convolution matrices satisfy

r∑

`=0

H∗
`,jH`,j = I, ∀j < 0. (5.2)

One can easily verify (5.2) for given boundary conditions with proper filter conditions, e.g.,
filters should be either symmetric or anti-symmetric for symmetric boundary conditions (see,
e.g., [8]).

With the convolution matrices, we can define the tight framelet decomposition operator in
RN0 . The decomposition operator (without down sampling) from level j +1 to level j is defined
by

Aj+1→j := [H0,j ; H1,j ; . . . ; Hr,j ]t. (5.3)

By the assumption (5.2), we have A∗j+1→jAj+1→j = I. Similarly, the multilevel framelet
decomposition operator from level J0 to J , J < J0 ≤ 0 is defined by

AJ0→J :=
[ 


J0−1∏

j=J

H0,j


 ;


H1,J

J0−1∏

j=J+1

H0,j


 ; . . . ;

(
Hr,J

J0−1∏
j=J+1

H0,j

)
;

. . . ; H1,J0−1; . . . ; Hr,J0−1

]t

. (5.4)

By (5.2), we obtain A∗J0→JAJ0→J = I. Again, for simplicity, we denote AJ := A0→J . Therefore,
A∗JAJ = I, i.e., the decomposition and reconstruction is perfect. Hence, the rows of the matrix
AJ form a tight frame in RN0 . For a given vector w ∈ R(1+r|J|)N0 , we organize it according to
the blocks of AJ and denote it as

w :=
[
{w0,J,k}N0−1

k=0 ; {w`,j,k}r, −1, N0−1
`=1,j=J,k=0

]t

,

and the tresholding operator T p applying to w is defined as:

T pw =
[
{tpλ0,J,k

(w0,J,k)}N0−1
k=0 ; {tpλ`,j,k

(w`,j,k)}r, −1, N0−1
`=1,j=J,k=0

]t

, (5.5)

where tpλ(x) is defined in (2.10). With this setting, (1.1) becomes

Hsv = b + ε := c. (5.6)

As before, we consider the case s = 0 and s 6= 0 respectively.

• Let s 6= 0, i.e., hs is a high pass filter. Define the set of indices on which AJv is known
by

Γs :=
{

(`, j, k)
∣∣ ` = s; j = −1; k = 0, 1, . . . , N0 − 1

}
. (5.7)
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Define the sequence ks by

ks[`, j, k] =

{
ck, if (`, j, k) ∈ Γs,

0, otherwise.

• For the case that hs is a low pass filter, i.e., s = 0, the set of indices of known coefficients
AJv is

Γ0 :=
{

(`, j, k)
∣∣ ` = 1, . . . , r; j = −2,−3, . . . , J ; k = 0, 1, . . . , N0 − 1

}

∪
{

(`, j, k)
∣∣ ` = 0; j = J ; k = 0, 1, . . . , N0 − 1

}
(5.8)

Define the sequence k0 by
k0 = [A−1→Jc;0; . . . ;0︸ ︷︷ ︸

r 0′s.

]t.

Let the matrix PΓs
be the diagonal matrix with diagonal entries 1 if the indices belong to Γs,

and 0 otherwise. Then (3.11) in Algorithm 3.1 becomes

vn+1 = A∗JT p[ks + (I − PΓs)AJvn], (5.9)

and the iteration (4.8) becomes

ṽn+1 = T p[ks + (I − PΓs)AJA∗J ṽn]. (5.10)

The following theorem can be shown similarly to what we have done in proving Theorem 4.2
by establishing lemmas similar to Lemmas 4.5 and 4.6. In fact, it is even simpler, since the
weak convergence implies norm convergence in finite dimensional spaces. We omit repeating
the same proof here.

Theorem 5.1. Iterations (5.9) and (5.10) converge in norm. Further, the limit pair (v, ṽ)
satisfies v = A∗J ṽ and ṽ is a minimizer of

min
ṽ∈C



‖(I −AJA∗J )ṽ‖2 +

r∑

`=1

−1∑

j=J

N0−1∑

k=0

λ`,j,k|ṽ`,j,k|p +
N0−1∑

k=0

λ0,J,k|ṽ0,J,k|p


 , (5.11)

where C = {ṽ|ṽ ∈ R(1+r|J|)N0 ; PΓs ṽ = T pks}.
Analogously, (3.19) in Algorithm 3.2 becomes

ṽn+1 = T p
(
ṽn − µδ(I −AJA∗J)ṽn + δAJH∗

s (c−HsA
∗
J ṽn)

)
. (5.12)

For this iteration, we have the following:

Theorem 5.2. Assume that 0 < δ < 2
max{1,µ} . Then iteration (5.12) converge in norm. Fur-

ther, the limit ṽ is a minimizer of

min
ṽ

{
‖c−HsA

∗
J ṽ‖2 + µ‖(I −AJA∗J)ṽ‖2

+
1
δ

r∑

`=1

−1∑

j=J

N0−1∑

k=0

λ`,j,k|ṽ`,j,k|p +
1
δ

N0∑

k=0

λ0,J,k|ṽ0,J,k|p
}

. (5.13)
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We remark that when s = 0, i.e the convolution kernel is a low pass filter, the convergence
of iterations (5.12) with µ = 1 and δ = 1 for periodic boundary condition was proved in [6]
with a rate. Moreover, the limit pair (v, ṽ) satisfies a minimization condition in the following
sense: for any pair (η, η̃) with η̃ = AJη,

‖Hs(v + η)− c‖2 +
r∑

`=1

−1∑

j=J

N0−1∑

k=0

λ`,j,k|ṽ`,j,k + η̃`,j,k|p +
N0−1∑

k=0

λ0,J,k|ṽ0,J,k + η̃0,J,k|p

≥‖Hsv − c‖2 +
r∑

`=1

−1∑

j=J

N0−1∑

k=0

λ`,j,k|ṽ`,j,k|p +
N0−1∑

k=0

λ0,J,k|ṽ0,J,k|p. (5.14)

The convergence rate depends on the smallest eigenvalue of the matrix H0. It is clear that the
solution of the minimization problem (5.13) implies (5.14), since (I −AJA∗J)η̃ = 0. Hence, our
approach here not only generalize the results in [6] to more general setting (e.g., deconvolution
with high pass filter kernel), and unifies the analysis of finite dimensional case and more general
case discussed in Section 3, but also improves the results of this special case, which is the case
of deconvolution with low pass filter kernel in [6].
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