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Abstract

We extend the traditional kinetic scheme for ideal gases to the Euler equations with

the equation of state for a multi-component stiffened gas. Based on a careful analysis of

the oscillation mechanism of the traditional kinetic scheme across contact discontinuities,

we propose a new non-oscillatory kinetic (NOK) scheme for multi-component stiffened

gases. The basic idea in the construction is to use a flux splitting technique to construct

numerical fluxes which do not depend on the concrete form of the equilibrium state. The

new scheme can not only can avoid spurious oscillations of the pressure and velocity near

a material interface which are observed in the traditional kinetic schemes such as the

kinetic flux vector splitting (KFVS) and BGK schemes, but also can deal with the stiffened

gas equation of state. Moreover, we also carry out a careful analysis on the consistency

condition, truncation error and positivity of the NOK scheme. A number of 1D and 2D

numerical tests are presented which demonstrate the accuracy and robustness of the new

scheme in the simulation of problems with smooth, weak and strong shock wave regions.
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1. Introduction

In the past years, the development of numerical methods for compressible multi-component

flows with general equations of state has attracted much attention. When a compressible

inviscid flow includes several components, the flow can be modeled by the so-call extended Euler

equations. The extended Euler equations consist of the traditional compressible Euler equations

and the species equations which describe the conservation of the species. The extended Euler

equations are no longer strictly hyperbolic, but a weakly hyperbolic system. And traditional

conservative schemes, for example, the high order and high resolution schemes such as MUSCL

[35], TVD [12], ENO [13] which work well in the numerical simulation of single component flows,

may not give satisfactory numerical results for the extended Euler equations. In fact, it had

been demonstrated in both theory and numerical tests that traditional conservative schemes

could produce spurious pressure oscillations near material interfaces when they are used to solve

the extended Euler equations [20].

Great efforts have been made to circumvent this difficulty in the past two decades [1,11,15,

20,21,30]. One of the popular methods is quasi-conservative algorithm proposed by Abgrall [1]

and then generalized by Shyue [30–32]. Instead of the full conservative formulation, the quasi-

conservative algorithm uses a quasi-conservative formulation of the extended Euler equations to
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ensure a consistent approximation of the energy equation near a material interface. A Godunov-

type method with a generalized version of Roe’s approximate Riemann solver was utilized to

construct the quasi-conservative algorithm. The algorithm works well in the regions of smooth

flows and moderate-strength shock waves. However, it was suggested by Shyue that it would

be better to select the exact Riemann solver to deal with strong shock waves [30]. As is well-

known, it is complex and expensive to construct the exact Riemann solver for general equations

of state (EOS).

Instead, much efforts have been made in constructing Riemann-solver-free schemes of high-

order and high-resolution, and one of such schemes is the gas kinetic scheme (GKS). Different

from traditional Godunov-type methods, the GKS is based on the Boltzmann equation which

provides more information on the flow and can describe the flux function of the governing

equations by particle collision of the transport process. Once the particle distribution function

on a cell interface is obtained, the numerical flux can be calculated directly.

In the last decades, significant progress has been achieved in the study of the GKS, see

e.g., [6, 8, 9, 18, 19, 23, 34, 40], [24]– [28], [36]– [39]. The kinetic flux vector splitting scheme

(KFVS) and the BGK scheme are among the GKS. A KFVS scheme solves the collisionless

Boltzmann equation while a BGK scheme solves the Bhatnagar-Gross-Krook (BGK) model

which is the most famous one of the simplified models of the Boltzmann equation. Besides, the

so-called kinetically consistent difference scheme (KCDS) was proposed in 1980s by Russian

mathematicians which in fact coincides with the KFVS (cf. [3]). Nowadays, the KCDS has

been used in solving gas dynamical and quasi-gas dynamical problems, such as complex flows of

viscous heat-conducting gases [10] and binary non-reacting gas mixture [9]. Also, the adaption of

the KCDS to the architecture of multiprocessor systems with distributed memory was discussed

in [3, Chapter IV].

In the recent years, the GKS has been used to simulate multi-component flows. The early

attempt was made by Xu in 1997 [36], and then by Lian [22], Tang and Wu [33]. Further

development can be found in [16, 17]. All the constructed schemes in [16, 17, 22, 33, 36] are

based on the fully conservative formulation and work well when the difference of physical

characters between two species is not too large. Consequently, these schemes cannot be applied

to wider range of applications, in particular, to the simulation of flows with general EOS. In

fact, two difficulties have to be overcome before the GKS can be widely used to simulate multi-

components flow with general EOS. The first difficulty, as aforementioned, is that conservative

schemes will produce pressure oscillations near a material interface. Such oscillations are also

present in the conservative GKS. Furthermore, as pointed out by the authors [2], the traditional

GKS will produce the pressure and velocity oscillations near contact discontinuities even in case

of single material fluids. The second one is that the traditional GKS, which is based on the

theory of rarefied gas dynamics, may not be extended directly to more general materials such

as liquids and solids. In fact, it is difficult to construct a (universal) equilibrium state and

a single kinetic transport equation to exactly recover the compressible Euler equations with

general EOS of real materials.

The mechanism inducing the first difficulty was carefully analyzed by the authors of this

paper [2] in the case of ideal gases, and a so-called consistent condition for constructing numer-

ical fluxes was proposed to modify the traditional KFVS scheme, so that the oscillations across

a contact discontinuity can be diminished. Consequently, a new modified scheme – MKFVS

scheme was proposed to solve the quasi-conservative extended Euler equations. The new scheme

eliminates spurious oscillations near a contact discontinuity in the case of both single and multi
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materials. The second difficulty can be illuminated by the idea of flux splitting method used

by Xu in the solution of the MHD equations [37], where Xu obtained the relationship between

the particle distribution function and all the flux functions of the (macro) governing equations

and the relationship is in fact independent of the form of EOS. Although Xu still dealt with

ideal gases in [37], the idea may be adapted to treat more general materials.

In this article, adapting the ideas from [37] and [2], we will construct a robust gas kinetic

scheme to simulate multi-component flows with general EOS.

This article is organized as follows. In Section 2, adapting the idea in [37], we recall the

kinetic scheme by a flux splitting technique. In Section 3, we will analyze the mechanism

inducing oscillations of the traditional GKS. In Section 4, after having carefully analyzed the

behavior of the GKS, we will propose a new non-oscillatory kinetic scheme for multi-component

flows with general EOS, while in Section 5, a number of numerical tests are presented which

demonstrate the analysis in Section 4. Finally, conclusions are given in Section 6.

2. Kinetic Flux Splitting Method for the Euler Equations

In this section, based on a flux splitting technique, we follow the idea in [37] to recall the

kinetic scheme for ideal gases. Then, in the next section, we will extend the scheme to fluids

with more general equations of state. In the 1-D case, the Euler equations can be written as

∂ ~W

∂t
+

∂F ( ~W )

∂x
= 0, (2.1)

where

~W = (ρ, ρU, ρE)T ,

F ( ~W ) = (ρU, ρU2 + P, ρEU + PU)T ,

where ρ, U , P , E = 1
2U + e and e are the density, velocity, pressure, total energy and internal

energy, respectively. For a ideal gas, P has the form:

P = (γ − 1)ρe = (γ − 1)(ρE − 1

2
ρU2), (2.2)

where γ is the ratio of specific heats.

Suppose that the computational cells are uniform with the cell size ∆x, and the time step is

denoted by ∆t. Then, the standard finite volume method (FVM) for the Euler equations can

be written as
~Wn+1

j = ~Wn
j − σ(Fj+ 1

2
− Fj− 1

2
),

where σ = ∆t/∆x, Fj±1/2 are the numerical fluxes. A gas kinetic scheme is namely to construct

Fj±1/2 by using Boltzmann-type equations, such as the BGK-model.

From the statistical physics point of view, particles in each computational cell can be

supposed as in local equilibrium state. Thus, the particles can be mostly described by the

Maxwellian distribution function:

g = ρ

(

λ

π

)1/2

e−λ(u−U)2 ,

where U is the fluid velocity, u is the particle velocity, and λ = m
2kT , m is the molecular mass, k

is the Boltzmann constant, and T is the temperature. The particle velocity varies in (−∞,∞)
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and all the particles in a computational cell can be split into two parts: the particles with

positive velocity u > 0 and the particles with negative velocity u < 0. Therefore, the particles

with u > 0 on the left-hand side of a cell interface and the particles with u < 0 on the right-hand

side may run across the cell interface. Thus, the transport of the conservative quantities on

the cell interface will depend on the collision between the particles across the interface. Before

splitting the particles in cells, we denote for simplicity,

g̃ =

(

λ

π

)1/2

e−λ(u−U)2 , 〈· · · 〉 =
∫ +∞

−∞

(· · · )g̃du, (2.3a)

〈· · · 〉+ =

∫ +∞

0

(· · · )g̃du, 〈· · · 〉− =

∫ 0

−∞

(· · · )g̃du. (2.3b)

Then, we have

〈un〉 =
∫ +∞

−∞

ung̃du,

and it is easy to see that

〈un+2〉 = U〈un+1〉+ n+ 1

2λ
〈un〉, n = 0, 1, · · · (2.4a)

〈u0〉 = 1, 〈u1〉 = U. (2.4b)

Splitting the particles into two parts (the one with u > 0 and another with u < 0) gives

〈u0〉+ =
1

2
erfc(−

√
λU), 〈u0〉− =

1

2
erfc(

√
λU),

〈u1〉+ = U〈u0〉+ +
e−λU2

√
πλ

, 〈u1〉− = U〈u0〉− − e−λU2

√
πλ

,

where erfc is the complementary error function. First, let us split the density into

ρ+ =

∫ +∞

0

ρg̃du = ρ〈u0〉+, ρ− =

∫ 0

−∞

ρg̃du = ρ〈u0〉−.

Similar, any quantity Z, which is independent of the velocity U , can be split into

Z+ = Z

∫ +∞

0

g̃du = Z〈u0〉+, Z− = Z

∫ 0

−∞

g̃du = Z〈u0〉−;

for example,

P = P+ + P− = P 〈u0〉+ + P 〈u0〉−.

Then, we split the momentum into

ρU =

∫ ∞

−∞

ugdu =

∫ 0

−∞

ugdu+

∫ ∞

0

ugdu = ρ〈u1〉+ + ρ〈u1〉−,

which gives,

ρU = (ρU)+ + (ρU)−,

where

(ρU)+ = ρ〈u1〉+, (ρU)− = ρ〈u1〉−.
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Similarly, the kinetic energy is split into

(ρU2)+ = ρU〈u1〉+, (ρU2)− = ρU〈u1〉−.

Next, the total energy ρE can be split into (ρE)+ and (ρE)− with

(ρE)+ =

∫ +∞

0

1

2
u2gdu =

1

2
〈u2〉+ =

1

2
ρU〈u1〉+ +

ρ

4λ
〈u0〉+

=
1

2
ρU〈u1〉+ + ρe〈u0〉+,

(ρE)− =

∫ 0

−∞

1

2
u2gdu =

1

2
〈u2〉− =

1

2
ρU〈u1〉− +

ρ

4λ
〈u0〉−

=
1

2
ρU〈u1〉− + ρe〈u0〉−.

According to the analysis in [36], we have used ρe = ρ/(4λ). Thus, the kinetic energy and

internal energy can be split into

1

2
ρU2 = (

1

2
ρU2)+ + (

1

2
ρU2)− =

1

2
ρU〈u1〉+ +

1

2
ρU〈u1〉−,

ρe = (ρe)+ + (ρe)− = ρe〈u0〉+ + ρe〈u0〉−.

Finally, we consider the energy transport term. In view of
∫ +∞

0

1

2
u3du =

1

2
〈u3〉+ = (

1

2
ρU2 + ρe)〈u1〉+ +

1

2
UP 〈u0〉+ +

1

2
P 〈u1〉+

= ρE〈u1〉+ +
1

2
UP 〈u0〉+ +

1

2
P 〈u1〉+,

∫ +∞

0

1

2
u3du =

1

2
〈u3〉+ = (

1

2
ρU2 + ρe)〈u1〉− +

1

2
UP 〈u0〉− +

1

2
P 〈u1〉

= ρE〈u1〉− +
1

2
UP 〈u0〉− +

1

2
P 〈u1〉−,

we see that

(ρEU) = (ρEU)+ + (ρEU)− = ρE〈u1〉+ + ρE〈u1〉−,

PU =
1

2
UP 〈u0〉+ +

1

2
P 〈u1〉+ +

1

2
UP 〈u0〉− +

1

2
P 〈u1〉−.

Considering the above splitting and according to the particle velocity, we split the the flux

functions of the Euler equations into two parts:





ρU

ρU2 + P

ρEU + PU



 =





ρU

ρU2 + P

ρEU + PU





+

+





ρU

ρU2 + P

ρEU + PU





−

=: F+ + F−,

where

F+ =





ρ

ρU

ρE



 〈u1〉+ +





0

P 〈u0〉+
1
2P 〈u1〉+ + 1

2PU〈u0〉+



 ,

F− =





ρ

ρU

ρE



 〈u1〉− +





0

P 〈u0〉−
1
2P 〈u1〉− + 1

2PU〈u0〉−



 .
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For a KFVS scheme, the numerical flux can be simply expressed as

FK
j+ 1

2

= F+
j + F−

j+1, (2.5)

while for a BGK scheme, because the equilibrium state can be calculated by





ρ̄

ρ̄Ū

ρ̄Ē





j+ 1
2

=





ρ

ρU

ρE





+

j

+





ρ

ρU

ρE





−

j+1

,

the corresponding numerical flux can be expressed by the equilibrium terms as follows.

FE
j+ 1

2

=





ρ̄Ū

ρ̄Ū2 + P̄

ρ̄ĒŪ + P̄ Ū



 .

In fact, the numerical flux of the BGK scheme can be thought as some linear combination

between the non-equilibrium and equilibrium terms:

Fj+ 1
2
= ηFK

j+ 1
2

+ (1− η)FE
j+ 1

2

, (2.6)

where η ∈ [0, 1]. We point out here that in the above flux expression of both KFVS and BGK

schemes, λ = ρ/(2P ), which does not depend on the form of EOS directly. This inspires us to

extend the schemes to more general equations of state.

It seems that this kinetic scheme of splitting type can be directly extended to more general

EOS. In fact, such (quasi-conservative) splitting kinetic schemes including KFVS, BGK and

MKFVS work well for single fluids, but may fail for multi-component flows when the variation

of the parameters between EOS of each fluid is big. Fig. 2.1 shows the results calculated by

the quasi-conservative MKFVS scheme for a gas-liquid shock tube problem tested in Section 4

(Example 4.5) where the parameters in different EOS are very big. We observe that in a few time

step, the pressure become negative and the computation breaks down. The same phenomenon

is also observed for the KFVS and BGK schemes. One of the reasons for this failure is maybe

that the numerical diffusion is not properly designed. Thus, our idea to remedy the splitting

kinetic scheme is to properly enlarge the scheme diffusion. This will be done in the next section.

pr
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-0.6 -0.4 -0.2 0 0.2 0.4
0

2E+08
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0 0.01 0.02 0.03 0.04
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step 6

step 7

step 8

Fig. 2.1. A extreme multi-component fluid problem with stiffened gas EOS: Pressure evaluation in a

few steps using the quasi-conservative kinetic scheme
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3. A Non-oscillatory Kinetic Scheme for General EOS

In this section, we will discuss how to extend the KFVS scheme to the numerical solution

of problems with more general EOS.

3.1. A consistent condition for the KFVS scheme

Adapting the analysis in [20], we first use an interface only model to analyze the mechanism

inducing spurious oscillations near a contact discontinuity of the traditional GKS scheme (even)

for a single fluid. In fact, if the initial data are chosen as the interface only model, it is equivalent

to let U =const and P =const in the Euler equations. Thus,

Ux = 0, Px = 0.

Hence, the mass equation reduces to

0 = ρt + (ρU)x = ρt + U(ρ)x. (3.1)

Similarly, the momentum equation becomes

0 = (ρU)t + (ρU2 + P )x = ρUt + Uρt + U(ρU)x + ρUUx = ρUt,

hence, Ut = 0.

In the same way, the energy equation becomes

0 = (ρE)t + (ρEU + PU)x = (ρe)t + U(ρe)x.

In the case of the interface only model, the mass equation reduces to a linear equation with

constant coefficient U , and we assume U ≡ 1 without lose of generality. In this case, the KFVS

scheme for the mass equation can be written as

ρn+1
j − ρnj

∆t
+

(ρU)j+ 1
2
− (ρU)j− 1

2

∆x
= 0,

where

(ρU)j+ 1
2
= ρj〈u1〉j,+ + ρj+1〈u1〉j+1,−,

〈u1〉j,+ = Uj〈u0〉j,+ +
e−λj,+U2

j

2
√

πλj,+

, 〈u0〉j,+ =
1

2
erfc(−

√

λj,+Uj),

〈u1〉j+1,− = Uj+1〈u0〉j+1,− − e−λj+1,−U2
j+1

2
√

πλj+1,−

, 〈u0〉j+1,− =
1

2
erfc(

√

λj+1,−Uj).

After a simple calculation, the above equation becomes

ρn+1
j = ρj − σ[(ρj〈u1〉j,+ + ρj+1〈u1〉j+1,−)− (ρj−1〈u1〉j−1,+ + ρj〈u1〉j,−)]

= Aρj +Bρj+1 + Cρj−1, (3.2a)

A = 1− σ[〈u1〉j,+ − 〈u1〉j,−], B = −σ〈u1〉j+1,−, C = σ〈u1〉j−1,+. (3.2b)

According to the basic theory of conservative schemes, the sufficient and necessary condition

for the difference equations to be consistent with the corresponding differential equations reads

as

A+B + C = 1. (3.3)

However, for a traditional KFVS scheme, one has λj,+ = ρj/(2Pj) and λj+1,− = ρj+1/(2Pj+1),

consequently,

λj,+ 6= λj+1,−,
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which, by recalling (3.2a), shows that the consistent condition (3.3) is not satisfied. The same

conclusion also remains true for traditional BGK schemes. So, the traditional KFVS and

BGK do not satisfy the consistent condition (3.3). This is exactly the reason why a traditional

KFVS may produce spurious oscillations in the vicinity of contact discontinuities. And this also

explains why the MKFVS scheme constructed in [2] can avoid oscillations, since it is consistent

with the differential equations.

There are a number of ways to make the consistent condition (3.3) satisfied. One simple

remedy was given in [2]. In Subsection 3.4 we will provide a more general choice of λ to make

the consistent condition be satisfied. In fact, once the following relation

λj,+ = λj+1,− =: λj+ 1
2

(3.4)

holds, the consistent condition (3.3) automatically remains true. Therefore, we will use λ as an

independent variable to investigate kinetic schemes. Before doing this, we discuss the truncation

error of the kinetic schemes.

3.2. Truncation error of kinetic schemes

In this subsection, we discuss the truncation error of the KFVS-type scheme only. For

simplicity, let U ≡ 1 and denote

〈u0〉j,+ =
1

2
erfc(−

√

λj+ 1
2
Uj) =

1

2
erfc(−

√

λj+ 1
2
) =: αj+ 1

2
,

e
−λ

j+ 1
2

U2
j

2
√

πλj+ 1
2

=
e
−λ

j+ 1
2

2
√

πλj+ 1
2

=: βj+ 1
2
,

〈u1〉j,+ = Uj〈u0〉j,+ +
e
−λ

j+1
2

U2
j

2
√

πλj+ 1
2

= αj+ 1
2
+ βj+ 1

2
=: θ.

Then, it is easy to see that θ is monotone-decreasing in λj+ 1
2
∈ (0,+∞) with infinimum 1.

As Uj = 〈u1〉j,+ + 〈u1〉j,−, we have

〈u1〉j,− = Uj − 〈u1〉j,+ = 1− θ.

In order to satisfy the consistent condition (3.3), one should require

〈u1〉j,+ + 〈u1〉j+1,− = Uj+ 1
2
= 1,

whence,

〈u1〉j+1,− = 1− 〈u1〉j,+ = 1− θ.

Similarly, to make (3.3) hold, we should have

〈u1〉j−1,+ + 〈u1〉j,− = Uj− 1
2
= 1,

which implies

〈u1〉j−1,+ = 1− 〈u1〉j,− = 1− (1− θ) = θ.

Consequently,

(ρU)j+ 1
2
= ρj〈u1〉j,+ + ρj+1〈u1〉j+1,− = ρjθ + ρj+1(1− θ),

(ρU)j− 1
2
= ρj−1〈u1〉j−1,+ + ρj〈u1〉j,− = ρj−1θ + ρj(1− θ).
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Thus, the KFVS-type kinetic scheme for the mass equation becomes

ρn+1
j − ρnj

∆t
+

(ρU)j+ 1
2
− (ρU)j− 1

2

∆x

=
ρn+1
j − ρnj

∆t
+

(ρjθ + ρj+1(1− θ)) − (ρj−1θ + ρj(1 − θ))

∆x

=
ρn+1
j − ρnj

∆t
+

ρj(2θ − 1) + ρj+1(1− θ)− ρj−1θ

∆x
.

The above formulation can be also written as

ρn+1
j = ρj − σ(ρj(2θ − 1) + ρj+1(1− θ)− ρj−1θ)

= ρj(1− σ(2θ − 1))− ρj+1σ(1 − θ) + ρj−1σθ. (3.5)

Since θ > 1, if the following inequality

2θ − 1 6 max
j

{|Uj |+ cj} = 1 +max
j

{cj}

holds, then all the three coefficients: (1−σ(2θ−1)), −σ(1−θ) and σθ in (3.5) are nonnegative.

Therefore, the scheme (3.5) is monotone-preserving, and the truncation error will reach its

minimum when the scheme reduces to a up-wind scheme (Godunov’s theorem, 1959).

Using the Taylor expansion, we find that

ρn+1
j = ρnj +∆t

∂ρ

∂t
+

∆t2

2

∂2ρ

∂t2
+ · · · ,

ρj±1 = ρj ±∆x
∂ρ

∂x
+

∆x2

2

∂2ρ

∂x2
+ · · · .

Hence, the truncation error reads as

ρn+1
j − ρnj

∆t
+

(ρU)j+ 1
2
− (ρU)j− 1

2

∆x

=
ρn+1
j − ρnj

∆t
+

(ρjθ + ρj+1(1 − θ))− (ρj−1θ + ρj(1− θ))

∆x

=
ρn+1
j − ρnj

∆t
+

ρj(2θ − 1) + ρj+1(1− θ) − ρj−1θ

∆x

=
∂ρ

∂t
+

∂2ρ

∂t2
∆t

2
+

∂ρ

∂x
+

∂2ρ

∂x2

∆x

2
(1− 2θ) + · · ·

=
∂2ρ

∂t2
∆t

2
+

∂2ρ

∂x2

∆x

2
(1− 2θ) + · · · = ∆x

2

∂2ρ

∂x2
(σ + 1− 2θ) + · · · .

So, the range of σ + 1− 2θ will effect the range of the truncation error. Since the coefficient in

the last line of the above identity is always negative, and θ is monotone-decreasing in λj+ 1
2
∈

(0,+∞) and the infinimum of θ in λ is 1. Obviously, θ = 1 when λ → ∞. In this case, the

scheme reduces to a up-wind scheme, the truncation error reach its minimum. In contrast,

when λ is getting small, the truncation error becomes large, the dissipation of the scheme thus

will be large.

3.3. Positivity analysis for the kinetic scheme

In this section we analyze the positivity of the KFVS-type scheme. As mentioned above,

the KFVS-type scheme can be written as

ρn+1
j = Aρj +Bρj+1 + Cρj−1,
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where

A = 1− σ(〈u1〉j,+ − 〈u1〉j,−),
B = −σ〈u1〉j+1,− ≥ 0,

C = σ〈u1〉j−1,+ ≥ 0.

Therefore, if A ≥ 0, then the density is positive. In order to guarantee A ≥ 0, we only need,

by virtue of the stability condition of the scheme, that

〈u1〉j,+ − 〈u1〉j,− ≤ max{|Uj |+ cj},

where c is the speed of sound. Since

〈u1〉j,+ − 〈u1〉j,− = Uj(〈u0〉j,+ − 〈u0〉j,−) +
e−λj,+U2

j

2
√

πλj,+

+
e−λj,−U2

j

2
√

πλj,−

≤ |Uj|+
1

2
√

πλj,+

+
1

2
√

πλj,−

,

we have
1

√

πλj,±

≤ max{cj , cj+1}.

Let λj,+ = λj+1,− =: λj+ 1
2
, then

λj+ 1
2
≥ min

{ 1

c2j
,

1

c2j+1

}

/π. (3.6)

Hence, if the condition (3.6) is satisfied, then the positivity of the density is preserved. Ac-

cording to the analysis in the previous section, the dissipation of the scheme will get large if λ

becomes small. This enhances the ability of the scheme to deal with strong shock waves.

3.4. A non-oscillatory kinetic scheme

In this section, based on the previous analysis, we will propose a new non-oscillatory kinetic

scheme by choosing λ appropriately. We have carried out a number of numerical tests and find

that it is suitable to choose

λj,+ = λj+1,− =: λj+ 1
2
= min

{ 1

c2j
,

1

c2j+1

}

.

Then, the new scheme reads as

~Wn+1
j = ~Wn

j − λ[Fj+ 1
2
− Fj− 1

2
],

where the numerical flux is composed of two parts

Fj+ 1
2
= ηFK

j+ 1
2

+ (1− η)FE
j+ 1

2

.

The non-equilibrium part is

FK
j+ 1

2

= F+
j + F−

j+1,

where

F±

j = 〈u1〉new
j,±





ρ

ρU

ρE





j

+







0

Pj〈u0〉new
j,±

1
2Pj〈u1〉new

j,±
+ 1

2PjUj〈u0〉new
j,±






,
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and

〈un〉new
j,±

= 〈un〉∗
j,±

,

〈u0〉∗
j,±

=
1

2
erfc(∓

√

λ∗

j ,±Uj),

〈u1〉j,± = Uj〈u0〉j,± ± 1

2

e
−λ∗

j,±
U2

j

√
πλ∗

j,±

,

〈u0〉∗
j,±

=
1

2
erfc(∓

√

λ∗

j ,±Uj),

〈u1〉∗
j,±

= Uj〈u0〉∗
j,±

± 1

2

e
−λ∗

j,±
U2

j

√
πλ∗

j,±

,

λ∗

j,+ = λ∗

j+1,− =: λj+ 1
2
= min

{ 1

c2j
,

1

c2j+1

}

.

In order to avoid oscillations of the pressure and velocity near a contact discontinuity, the

equilibrium part should also satisfy the consistent condition. Slightly different from Xu’s BGK

scheme [36], we first calculate the following terms





ρ̄

Ū

P̄





j+ 1
2

=







ρj〈u0〉∗j,+ + ρj+1〈u0〉∗j+1,−

〈u1〉∗j,+ + 〈u1〉∗j+1,−

Pj〈u0〉∗j,+ + Pj+1〈u0〉∗j+1,−






.

Consequently, we take

FE
j+ 1

2

=





ρ̄

ρ̄Ū

ρ̄Ē





j+ 1
2

,

where Ē is determined by EOS.

Thus, we have constructed a new kinetic scheme and we call it the non-oscillation kinetic

(NOK) scheme. For this NOK scheme, once the speed of sound is known, the numerical flux can

be obtained; and the particle distribution function in equilibrium state is actually not needed

in the construction of the numerical flux. Therefore, it can be used in the numerical simulation

of fluid problems with general EOS.

3.5. A quasi-conservative NOK scheme for the extended Euler equations with EOS

for a stiffened gas

In this section we will give a quasi-conservative NOK scheme for the multi-component

extended Euler equations with EOS for a stiffened gas by utilizing the idea from [30].

The Mie-Grüneisen EOS is used to describe a wide range of real materials including gases,

liquids and solids. The uniform Mie-Grüneisen EOS can be written as

P (ρ, e) = Pref(ρ) + Γ(ρ)ρ[e− eref(ρ)],

where Γ(ρ) is the Mie-Grüneisen coefficient, Pref(ρ) and eref(ρ) are the reference pressure and

internal energy.

When the material density is not far away from the reference density, one usually uses the

following simplified EOS, called the equation of state for a stiffened gas, to replace the more

complex Mie-Grüneisen EOS,

P = (γ − 1)ρe− γP∞, (3.7)
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where when P∞ = 0, the EOS (3.7) reduces to that for an ideal gas. This EOS is a suitable

approximation for gases, liquid and solid under high pressure. The parameter in (3.7) can

be adjusted to agree with experiment data, see [29] for some examples. And since it is easy

to construct the exact Riemann solver, the EOS for a stiffened gas is often used to validate

the efficiency and correctness of a numerical scheme. In this section, we will extend the NOK

scheme to the multi-component extended Euler equations with EOS for a stiffened gas.

Following the process in [30], the model of the multi-component extended Euler equations

with EOS for a stiffened gas consists of two parts: the original Euler equations and the species

equations. There are two models for the species equations, i.e.,


















∂

∂t

(

1

γ − 1

)

+ U
∂

∂x

(

1

γ − 1

)

= 0,

∂

∂t

(

γP∞

γ − 1

)

+ U
∂

∂x

(

γP∞

γ − 1

)

= 0,

or
∂Y

∂t
+ U

∂Y

∂x
= 0,

where Y is the volume-fraction or mass fraction of some component of the fluid. The above

two models are equivalent, and here we choose the mass fraction model.

The basic idea to construct a quasi-conservative scheme is similar to that in [2]. We first

discretize the original Euler equations using the NOK scheme proposed in the previous section.

Then, the species equation is rewritten as

0 =
∂Y

∂t
+ U

∂Y

∂x
=

∂Y

∂t
+

∂(UY )

∂x
− Y

∂U

∂x
,

and discretized as follows.

Y n+1
j = Y n

j − σ
{

[

(Yj〈u1〉j,+ + Yj+1〈u1〉j+1,−)− (Yj−1〈u1〉j−1,+ + Yj〈u1〉j,−)
]

+ Yj

[

(〈u1〉j,+ + 〈u1〉j+1,−)− (〈u1〉j−1,+ + 〈u1〉j,−)
]

}

,

and γ and P∞ are determined by

1

γ − 1
=

Y

γ(1) − 1
+

1− Y

γ(2) − 1
,

γP∞

γ − 1
=

γ(1)P
(1)
∞

γ(1) − 1
Y +

γ(2)P
(2)
∞

γ(2) − 1
(1 − Y ),

where (i) denotes the i-th component.

4. Numerical Tests

In this section, we will present a number of numerical tests of multi-component problems

to demonstrate the accuracy and robustness of our quasi-conservative NOK scheme. We begin

with one-dimensional problems.

4.1. 1D tests

Example 4.1. Interface only problem. For this problem, the initial data are given by

(ρ, U, P, γ, P∞) =

{

(1, 1, 1, 1.4, 1), x < 0.5,

(0.125, 1, 1, 1.9, 0), x > 0.5.
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We take η = 1.0 and η = 0.5 in the NOK scheme, respectively. When η = 1.0, the

equilibrium term vanishes, and in this case we denote the scheme by NOK-I; while when η = 0.5,

the equilibrium term goes into effect, and in this case we denote the scheme by NOK-II. The

computation is carried out on a uniform mesh with 100 cells. The CFL number is chosen to be

0.9 for the first-order scheme and 0.7 for the second-order scheme, respective. In Fig. 4.1 and 4.2

the numerical results at time t = 0.1 are shown. Obviously, there is no spurious oscillation across

the material interface in the velocity and pressure, and the second-order scheme resolves better

than the first-order scheme. To compare the accuracy of the NOK-I and NOK-II schemes, we

give the close-up of the density near the material interface in Fig. 4.3, from which we observe

that although the difference in accuracy between two schemes is small, the NOK-II scheme,

which takes into account the equilibrium state, shows less dissipative than the NOK-I scheme

which does not take into account the equilibrium state. Furthermore, if η is chosen properly,

the NOK-II scheme may behave better in the regions of smooth solution or moderate shock

waves than the NOK-I scheme. However, it reduces to NOK-I in the regions of strong shock

waves in order to avoid unphysical oscillations behind a shock wave.
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Fig. 4.1. Example 4.1. Left resp. Right: Computed density, velocity and pressure by the NOK-I resp.
NOK-II schemes. Thick solid line: Exact solution. Thin solid line: Results obtained by using the
NOK-I scheme. Points: Results computed by using the NOK-II scheme.
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Fig. 4.2. Example 4.1. (continue) Left: Computed γ and P∞ by the NOK-I scheme. Right: Computed
γ and P∞ by the NOK-II scheme. Thick solid line: Exact solution. Thin solid line: Results computed
by using the NOK-I scheme. Points: Results obtained by using the NOK-II scheme.
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Fig. 4.3. Example 4.1. Close-up of the density near the material interface. Left: Computed results by
using the first-order scheme. Right: Results obtained by the second-order scheme.

Example 4.2. Gas-liquid shock tube test I: moderate shock waves

This is a difficult test example due to the large difference of the physical characters be-

tween gases and liquids, and had been considered as a underwater explosive problem with

two-dimensional spherically symmetric geometry [4]. For this problem, the initial data are

(ρ, U, P, γ, P∞) =

{

(1.241, 0, 2.753, 1.4, 0), x < 0.5,

(0.991, 0, 3.059e− 4, 5.5, 1.505), x > 0.5.
(4.1)

We set η = 1.0 and η = 0.7 in the NOK scheme, and denote the NOK scheme with η = 1.0 by

NOK-I and with η = 0.7 by NOK-II. We should point out here that η should not be set too
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Fig. 4.4. Example 4.2. Numerical results of the density, velocity and pressure at t = 0.1. Left: 1st-order
scheme; Right: 2nd-order scheme. Thick solid line: Exact solution; Thin solid line: NOK-I scheme;
Triangles: NOK-II scheme.

small. Otherwise, oscillations behind the shock wave could appear. A more detailed analysis

on the choice of η is a topic for the future study.

We carry out the computation with 600 cells for the first-order scheme and 300 cells for the

second-order one, and take the CFL number to be 0.7 for the first-order scheme and 0.5 for

the second-order one. The numerical results are presented in Fig. 4.4. It is clear to see that

the numerical solution approaches the exact one. Fig. 4.5 shows the close-up of the density

in the vicinity of the material interface in order to give a comparison between the NOK-I and

NOK-II schemes in detail. Although the difference in accuracy between two schemes is small,

the NOK-II is obviously less dissipative than the NOK-I.
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Fig. 4.5. Example 4.2. Close-up of the computed density, velocity and pressure near the contact
discontinuity. Left: 1st-order scheme; Right: 2nd-order scheme. Thick solid line: Exact solution; Thin
solid line: NOK-I scheme; Triangles: NOK-II scheme.

Example 4.3. Gas-liquid shock tube test II: strong shock waves.

We continue to test our scheme for a gas-liquid shock tube problem with a strong shock

wave, where the density ratio is very large. The numerical simulation of such problems is

challenging, and the usual quasi-conservative kinetic schemes such as the KFVS, BGK and

MKFVS schemes can result in negative pressure, cf. Fig. 1.

For this example, the initial setting is a water–air shock tube given by

(ρ, U, P, γ, P∞) =

{

(1000, 0, 1.0e+ 9, 4.4, 6.0e+ 8), x < 0.5,

(1, 0, 1.0e+ 5, 1.4, 0.0), x > 0.5.

The initial conditions will soon generate a nearly centered wave system which consists of a

rarefaction wave, a contact discontinuity and a strong shock wave. Since the equilibrium state

will vanish in the regions of the strong shock wave, we carry out simulations only for η = 1.0

to enhance dissipation. In Fig. 4.6, the numerical results of the first- and second-order NOK

schemes using 10000 cells are given. From Fig. 4.6, we see that the numerical results approach
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Fig. 4.6. Example 4.3. Numerical results of the density, velocity and pressure at t = 2.0e-4. Left:
1st-order NOK scheme; Right: 2nd-order NOK scheme. Solid line: Exact solution; Circles: Computed
solution.

the exact solution very well, and the second-order scheme is more accurate than the first-order

one in the region of the shock wave. Fig. 8 shows close-up of the material interface, and the

second-order scheme also provides higher resolution than the first-order one, and both of them

produce no spurious oscillations across the material interface.

Example 4.4. 2D interface only problem.

In this example, we test a 2D extension problem of Example 4.1 with initial data

(ρ, U, V, P, γ, P∞) =

{

(1, 1, 1, 1, 1.4, 0),
√

(x− 0.25)2 + (y − 0.25)2 < 0.162,

(0.125, 1, 1, 1, 4, 1),
√

(x− 0.25)2 + (y − 0.25)2 < 0.162.

In the simulation we take η = 1.0 and η = 0.5 in the NOK scheme, and as before, denote the

corresponding NOK scheme by NOK-I and NOK-II, respectively. The numerical results of the

density and P∞ obtained by using 100× 100 cells are given in Figs. 4.8 and 4.9, from which we
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Fig. 4.7. Example 4.3. Close-up of the density, velocity and pressure near the contact discontinuity.
Left: 1st-order NOK scheme; Right: 2nd-order NOK scheme. Solid line: Exact solution; Circles:
Computed solution.
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Fig. 4.8. Example 4.4.
Density plotted in 3D.
Top left: Exact solution;
middle: 1st-order scheme
with NOC-I; right: 1st-
order scheme with NOC-
II. Bottom left: 2nd-
order scheme with NOC-
I; right: 2nd-order scheme
with NOK-II.

reach the same conclusion as that for the 1D case, i.e., Example 4.1, namely, the NOK scheme

will not produce any spurious oscillations across material interfaces. Our computational results

for the pressure and P∞ provide similar observations.

Example 4.5. Richtmyer-Meshkov instability.

For this problem we take the same computational conditions as in [30] and implement
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Fig. 4.9. Example 4.4.
P∞ plotted in 3D. Top
left: Exact solution; mid-
dle: 1st-order scheme
with NOC-I; right: 1st-
order scheme with NOC-
II. Bottom left: 2nd-
order scheme with NOC-
I; right: 2nd-order scheme
with NOK-II.

t=0.1 t=0.1

t=0.3 t=0.3

t=0.5 t=0.5

t=1.0 t=1.0

t=2.0 t=2.0

Fig. 4.10. Example 4.5. Results computed by the 2nd-order NOK scheme. Left: Density contours;
Right: Pressure contours. From the top down are the numerical results at time t = 0.1, 0.3, 0.5, 1.0, 2.0.
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Fig. 4.11. Example 4.5. Cross-sectional plots of the numerical results in Fig. 4.10 along line y = 0.5;
Left: Density; Right: Pressure.

computation for a single mode perturbation of an air-liquid interface. Initially, the interface is

located at

x = x0 + 0.1 cos(2πy) =: f(y),

and there is a planar Mach 1.95 shock wave in the air propagating from left toward the interface

to trigger the instability. The initial distribution is

(ρ, U, V, P, γ, P∞) =







(1.0, 0, 0, 1.0, 1.4, 0), x < f(y),

(5.0, 0, 0, 1.0, 4.0, 1), x < 1.325,

(7.093,−0.7288, 0, 10.0, 4.0, 1), else.

The boundary conditions of the top and bottom are periodic, while the left and right are non-

reflecting. The wave structure will become very complex when time increases, in particular,

after the interface is shifted over 180 degree by a shock wave propagating from the liquid to the

air. We use 320×80 cells in the computation. Fig. 4.10 shows the computed density and pressure

contours by using the second-order NOK scheme with η = 1.0 at time t = 0.1, 0.3, 0.5, 1.0, 2.0,
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while Fig. 4.11 gives the cross-sectional plots of the numerical results in Fig. 4.10 along line

y = 0.5. Clearly, the results obtained by the second-order NOK scheme here are in good

agreement with those in [30], while the interface computed by our scheme is obviously closer

to that computed by the tracking method in [30]. This demonstrates the good performance of

our NOK scheme.

5. Conclusions

In this article, based a careful analysis of the mechanism inducing oscillations across a

contact discontinuity of the traditional kinetic schemes such as the KFVS and BGK schemes

(see, e.g., [2]), we have utilized a flux splitting technique to propose a new non-oscillatory

kinetic (NOK) scheme for the Euler equations with the equation of state for multi-component

stiffened gases. Using the flux splitting, we have constructed the numerical fluxes which do

not depend on the concrete form of the equilibrium state. Consequently, our new scheme can

deal with stiffened gases, extending the traditional gas kinetic scheme to the stiffened gas case.

Furthermore, we have carried out a careful analysis on the consistency condition, truncation

error and positivity of the NOK scheme to show that it not only can be used to simulate multi-

component flows with the equation of state for a stiffened gas, but also is oscillation-free across

a material interface in the pressure and velocity. We have carried out a number of 1D and

2D numerical tests which demonstrate that the new scheme works well in the regions of both

smooth solutions and weak/strong shock waves, and is robust and could be suitable for a more

general EOS. This is a topic for our future study.
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