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Abstract

In this paper, we present a discontinuous Galerkin (DG) method based on the Nédélec

finite element space for solving a fourth-order curl equation arising from a magnetohy-

drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the

method has an optimal error estimate for a model problem involving a fourth-order curl

operator. Furthermore, some numerical results in 2 dimensions are presented to verify the

theoretical results.
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1. Introduction

Magnetohydrodynamics (MHD) equations describe the macroscopic dynamics of electrical

fluid that moves in a magnetic field. The MHD model is governed by Navier-Stokes equations

coupled with Maxwell equations through Ohm’s law and the Lorentz force. As an example, a

resistive MHD system is described by the following equations:



























ρ(ut + u · ∇u) +∇p = 1
µ0
(∇×B)×B + µ△u,

∇ · u = 0,

Bt −∇× (u×B)

= − η
µ0
∇× (∇×B)− di

µ0
∇× ((∇×B)×B)− η2

µ0
(∇×)4B,

∇ ·B = 0,

(1.1)

where ρ is the mass density, u is the velocity, p is the pressure, B is the magnetic induction

field, η is the resistivity, η2 is the hyper-resistivity, µ0 is the magnetic permeability of free space,
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and µ is the viscosity. The primary variables in MHD equations are the fluid velocity u and

the magnetic field B.

MHD models have wide applications in thermonuclear fusion, plasma physics, geophysics,

and astrophysics. The mathematical modeling and numerical simulation of MHD have been

the subject of considerable research effort in the past few decades, such that various numerical

algorithms have been proposed in MHD simulations. In order to solve MHD equations that

contain a fourth-order term, we will focus on using a DG method.

DG methods are effective methods in solving partial differential equations. As far back as

1973, Reed and Hill [33] proposed a DG method for the hyperbolic equation. Since then, DG

methods have been used widely to solve hyperbolic problems (see, e.g., [14–17]) and elliptic

problems (see, e.g., [1, 2, 10–12, 19, 35]). At the same time, they have important applications

to other problems such as Navier-Stokes equations (see,e.g., [8, 18]), Euler equation [38], and

fractional diffusion problem [34]. The use of DG methods for elliptic problems can be traced

back to the penalty method [28] and the interior penalty (IP) method [6]. A lot of work (see,

e.g., [2, 4–7, 28, 35]) has been done on DG methods for second-order elliptic equations. For

fourth-order elliptic problems, Baker [7] used an IP method to solve the biharmonic problem

on 2-dimensional smooth domains. Engel et al. [20] combined concepts from the continuous

Galerkin method, the DG method and stabilization techniques to approximate fourth-order

elliptic problems in structural and continuum mechanics with applications to thin beams and

plates, and strain gradient elasticity. In addition, Brenner and Sung [9] used an IP method to

solve the biharmonic problem on 2-dimensional bounded polygonal domains. Xu and Shu [37]

reviewed the works on local DG methods for high-order time-dependent problems.

Recently, DG methods have also been applied in the numerical simulation of Maxwell equa-

tions. In 2002, Perugia et al. [32] used an IP method for the time harmonic Maxwell equation.

In 2004, Cockburn et al. [13] used a local divergence-free DG method for the Maxwell equa-

tion. In their study, the approximate solution is preserved divergence-free on each element,

and computational costs are much lower than for standard DG methods. Moreover, Houston

et al. [22] used a mixed DG method to approximate the Maxwell operator; Lu et al. [29] gave a

DG method for the Maxwell equation with Debye-type dissipative material and artificial PML

(perfectly matched layer) boundary. In 2005, Houston et al. applied an IP method [23] and a

mixed DG method [24] for the indefinite time harmonic Maxwell equation. Recently, Li [26,27]

considered an interior penalty DG method for the time-dependent Maxwell equations in cold

plasma.

In the numerical simulation of the MHD equations (1.1), it is necessary to design an efficient

numerical discretization for a fourth-order curl problem. As is well-known, constructing a

curl-curl-conforming element for the fourth-order curl problem is very difficult. Zheng, Hu,

and Xu [39] used a nonconforming finite element method to solve fourth-order curl equations.

Motivated by the IP method for the fourth-order elliptic problem [9], in this paper, we design a

DG method for solving the fourth-order curl problem. The main feature of this scheme is that

we can use the standard higher-order Nédélec finite element space.

In this paper, we begin by introducing the fourth-order curl model equation. According to

the model problem, we establish the corresponding variational problem by introducing suitable

function spaces. By showing that the trial function space is a Hilbert space, we give the

well-posedness of the variational problem and a regularity result of the weak solution. Second,

based on the standard higher-order Nédélec finite element space, we design a DG method for the

fourth-order curl problem and prove the boundedness and coercivity of the discrete variational
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problem. Finally, we prove the optimal error estimate and present some numerical results to

verify the theoretical results.

The remainder of this paper is organized as follows: In Section 2, we introduce the model

equation, establish the corresponding variational problem and give the well-posedness of the

variational problem as well as the regularity of the weak solution. In Section 3, we propose

a DG method for the fourth-order curl problem, prove the boundedness and coercivity of the

discrete variational problem and obtain the optimal error estimate. In Section 4, we present

some numerical results, and in Section 5 we offer some concluding remarks.

For convenience, we introduce the following notations [36].

Here Ci, 1 ≤ i ≤ 4, are positive constants and do not depend on x or y, we denote x 6 C1y

by x . y; x > C2y by x & y; and C3y ≤ x 6 C4y by x ∼= y. (∇ × ∇ × ∇ × ∇×) =

(∇×)4, (∇×∇×∇×) = (∇×)3.

2. A Fourth-order Curl Problem

In this section, we introduce a model problem for the fourth-order magnetic induction

equations above. By introducing appropriate test and trial function spaces, we propose the cor-

responding variational problem and show its well-posedness. Furthermore, we give a regularity

result for the weak solution.

Through time discretization of the MHD equations given above and by ignoring the nonlinear

terms, we obtain a partial differential equation containing a fourth-order curl operator. In order

to derive a method for the numerical simulation of the equation, we consider a simplified model

as follows:
{

(∇×)4u+ u = f x ∈ Ω,

u× n|∂Ω = (∇× u)× n|∂Ω = 0.
(2.1)

Here Ω ⊂ R
3 is a bounded Lipschitz polygonal domain, f ∈ (L2(Ω))3 and divf = 0. We refer

to this simplified model as the fourth-order curl problem. The choice of boundary conditions

in (2.1) arises naturally in the variational formulation given in (2.5).

To study the fourth-order curl problem (2.1), we define the space of 3-dimensional vector

functions with curl curl in L2 by

V =
{

u ∈ (L2(Ω))3 | ∇ ×∇× u ∈ (L2(Ω))3
}

.

We define the following bilinear form of space V ,

(u,v)V = (∇×∇× u,∇×∇× v) + (u,v), (2.2)

where (·, ·) denotes the inner product of (L2(Ω))3. We can easily prove that the bilinear form

defined by (2.2) is an inner product of space V .

The inner product defined by (2.2) defines a norm ‖ · ‖V on space V as follows:

‖u‖V =
√

(u,u)V . (2.3)

Lemma 2.1. Let u be in (C∞
0 (Ω))3, then the following estimate holds:

‖∇× u‖(L2(Ω))3 ≤
1

2

(

‖∇ ×∇× u‖(L2(Ω))3 + ‖u‖(L2(Ω))3

)

. (2.4)
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Proof. Integrating by parts and noting that u vanishes on the boundary, we have
∫

Ω

∇× u · ∇ × udx =

∫

Ω

u · ∇ ×∇× udx+

∫

∂Ω

n× u · ∇ × uds

=

∫

Ω

u · ∇ ×∇× udx.

Using the Cauchy-Schwarz inequality in the above equation, we have

‖∇× u‖2(L2(Ω))3 ≤ ‖∇ ×∇× u‖(L2(Ω))3‖u‖(L2(Ω))3 ,

which implies that

‖∇× u‖(L2(Ω))3 ≤
1

2

(

‖∇ ×∇× u‖(L2(Ω))3 + ‖u‖(L2(Ω))3

)

.

This completes the proof. 2

Let V0 denote the closure of (C∞
0 (Ω))3 in V . Define the space of 3-dimensional vector

functions with curl in L2 by

H0(curl,Ω) =
{

u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3, u× n = 0
}

.

Corresponding to the definition of higher-order scalar Sobolev spaces, it is also convenient

to define, for k ≥ 0,

Hk(curl,Ω) = {u ∈ (Hk(Ω))3|∇ × u ∈ (Hk(Ω))3}.

By Lemma 2.1, we obtain that V0 is a subspace of H0(curl,Ω) and that V0 can be characterized

as

V0 =
{

u ∈ H0(curl,Ω) | ∇ ×∇× u ∈ (L2(Ω))3, (∇× u)× n|∂Ω = 0
}

.

Based on the Hilbert space V0, we can easily obtain the equivalent variational problem of

the fourth-order curl problem (2.1): Given f ∈ (L2(Ω))3 with divf = 0, find u ∈ V0 such that

a(u,v) = 〈f ,v〉, ∀v ∈ V0, (2.5)

where

a(u,v) =

∫

Ω

∇×∇× u · ∇ ×∇× v + u · vdx. (2.6)

By the Riesz representation theorem, we have the following theorem on the well-posedness

of the variational problem (2.5).

Theorem 2.1. There exists a unique solution u ∈ V0 of the variational problem (2.5) that

satisfies

‖u‖V ≤ ‖f‖(L2(Ω))3 . (2.7)

Next, we give a result on the regularity of the weak solution.

Theorem 2.2. Let u be the weak solution of the fourth-order problem (2.1), f ∈ (L2(Ω))3,

divf = 0. Then there exists a δ ∈ (0, 1
2 ] such that

u, ∇× u ∈ (H
1
2
+δ(Ω))3,

and such that the following estimates hold

‖u‖(H1/2+δ(Ω))3 . ‖f‖(L2(Ω))3 , ‖∇× u‖(H1/2+δ(Ω))3 . ‖f‖(L2(Ω))3 . (2.8)

As it is well-known [21] that H0(curl,Ω)∩H(div,Ω) →֒ (H1/2+δ(Ω))3, the proof is obvious.
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3. A DG Method for the Fourth-order Curl Problem

In this section, motivated by the IP method [9] for the fourth-order elliptic problem, we

design a DG method for the fourth-order curl problem and prove an optimal error estimate.

3.1. Finite Element Space

Let Th = {K} be a shape-regular tetrahedron partition of Ω. We introduce the foll-

wing Nédélec div-conforming and curl-conforming finite element spaces [31]:

Vh = {uh ∈ H(div; Ω) | uh|K ∈ (Pk)
3, ∀ K ∈ Th}, (3.1)

Xh = {uh ∈ H0(curl; Ω) | uh|K ∈ (Pk)
3, ∀ K ∈ Th, k ≥ 2}. (3.2)

Theorem 3.1. Let Πdiv
h be the canonical interpolation operator associated with the finite ele-

ment space Vh, and let h be the diameter of a tetrahedron K. For every p in (Hk+1(K))3, we

have [31]

‖p−Πdiv
h p‖(L2(K))3 . hk+1|p|(Hk+1(K))3 ,

|p−Πdiv
h p|(Hs(K))3 . hk+1−s|p|(Hk+1(K))3 , 1 ≤ s ≤ k + 1.

Theorem 3.2. Let Πcurl
h be the canonical interpolation operator associated with the finite ele-

ment space Xh, and let h be the diameter of a tetrahedron K. For every p in (Hk+1(K))3, k ≥ 1,

we have [31]

‖p−Πcurl
h p‖(L2(K))3 . hk+1|p|(Hk+1(K))3 ,

Πdiv
h (∇× p) = ∇× (Πcurl

h p).

3.2. Discrete Variational Problem

In this subsection we derive the discrete variational problem of the fourth-order curl prob-

lem (2.1).

Let u be the weak solution of the fourth-order curl problem (2.1), and assume that u ∈

H2(curl,Ω). For any K ∈ Th, by multiplying vh ∈ Xh on the both sides of equation (2.1) and

by using Green’s formula, we find

∫

K

f · vh dx =

∫

∂K

(∇×)3u · vh × nds+

∫

K

∇×∇× u · ∇ ×∇× vh dx

+

∫

K

u · vh dx+

∫

∂K

∇×∇× u · (∇× vh)× nds. (3.3)

Let E0
h be the set of internal faces of partition Th , f ∈ E0

h be the interface of two adjacent

elements K±, and n± be the unit outward normal vector of the face f associated with K±

(Fig. 3.1). We denote by v± = (v|K±)|f and introduce two notations as follows:[∇× v℄ = (∇× v+)× n+ + (∇× v−)× n−, (3.4)

{∇×∇× v} =
∇×∇× v+ +∇×∇× v−

2
. (3.5)
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K
+

n
+

f

n-

K
-

Fig. 3.1. f is the interface of two adjacent elements K±.

Remark 3.1. If f ∈ E∂
h , the set of boundary faces, we define [∇× v℄ and {∇×∇× v} on f ,

respectively, as follows:[∇× v℄ = (∇× v)× n, {∇ ×∇× v} = ∇×∇× v.

Take summation over all elements of Th on both sides of (3.3), and notice that vh × n is

continuous over f . By notation (3.4), we have

ah(u,vh) =

∫

Ω

f · vh dx, (3.6)

where

ah(u,vh) =

∫

Ω

∇×∇× u · ∇h ×∇h × vh dx

+
∑

f∈Eh

∫

f

∇×∇× u · [∇× vh℄ ds+ ∫
Ω

u · vh dx,

where ∇h× denotes the elementwise curl.

As [∇ × u℄ = 0, noting that ah(u,vh) is not symmetric, using notation (3.5), we add the

following zero term to ah(u,vh):

∑

f∈Eh

∫

f

{∇×∇× vh} · [∇× u℄ds.
Then ah(u,vh) becomes a bilinear form satisfying symmetry. Furthermore, in order for ah(u,vh)

to also satisfy coercivity with respect to the norm defined in (3.10), we add another zero term

to ah(u,vh) as follows:
∑

f∈Eh

η

|e|

∫

f

[∇× u℄ · [∇× vh℄ds,
where |e| denotes the diameter of the circumcircle of the face f , and where η denotes the penalty

parameter. The above term is called a penalty term. Therefore, we have

ah(u,vh) =

∫

Ω

∇h ×∇h × u · ∇h ×∇h × vhdx

+
∑

f∈Eh

∫

f

({∇×∇× u} · [∇× vh℄ + {∇×∇× vh} · [∇× u℄) ds
+

∫

Ω

u · vhdx +
∑

f∈Eh

η

|e|

∫

f

[∇× u℄ · [∇× vh℄ds. (3.7)
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Thus, (3.6) is equivalent to

ah(u,vh) = (f ,vh), (3.8)

where (f ,vh) =
∫

Ω
f · vhdx.

Hence, we obtain the discrete variational problem of the fourth-order curl problem (2.1):

Given f ∈ (L2(Ω))3 with divf = 0, find uh ∈ Xh such that

ah(uh,vh) = (f ,vh), ∀ vh ∈ Xh, (3.9)

where ah(·, ·) is defined by (3.7).

3.3. Well-posedness of the Discrete Variational Problem

Suppose W = {u | ∇×∇×u|K ∈ (H1/2+s(K))3, ∀ K ∈ Th}, where s is a positive constant.

Let X = Xh + V0 ∩W . We introduce a norm on X associated with the grid Th as follows: For

any w ∈ X , we define

‖w‖h =
(

∑

K∈Th

‖∇ ×∇×w‖2(L2(K))3 +
∑

K∈Th

‖w‖2(L2(K))3

+
∑

f∈Eh

|e| ‖{∇×∇×w}‖2(L2(f))3 +
∑

f∈Eh

|e|−1 ‖ [∇×w℄‖2(L2(f))3

)
1
2

, (3.10)

where |e| denotes the diameter of the circumcircle of the face f , Eh = E0
h ∪ E∂

h . We can easily

prove that (3.10) is a norm on X .

Theorem 3.3. The bilinear form ah(·, ·) is bounded with respect to the norm ‖ · ‖h, i.e.,

|ah(w,v)| ≤ (η + 1) ‖w‖h‖v‖h ∀ w, v ∈ X. (3.11)

Theorem 3.4. For sufficiently large η, we have

ah(vh,vh) ≥ Cs ‖vh‖
2
h ∀ vh ∈ Xh, (3.12)

where Cs is a positive constant depending only on the shape-regularity of the partition Th, the

degree of the polynomial k, and the penalty parameter η.

Proof. By the Cauchy–Schwarz inequality, we find

∣

∣

∣

∑

f∈Eh

∫

f

{∇×∇× vh} · [∇× vh℄ds∣∣∣
≤

1

2
ρ−1

∑

f∈Eh

|e|

∫

f

|{∇ ×∇× vh}|
2ds+

1

2
ρ
∑

f∈Eh

|e|−1

∫

f

|[∇× vh℄|2ds, (3.13)

where ρ is an arbitrary positive parameter.

Suppose f ⊂ K+ ∩K−. Noting that vh ∈ Xh, by (3.5) and the trace theorem, we have

|e|

∫

f

|{∇ ×∇× vh}|
2ds

≤

(

|e|

∫

f |K+

|∇ ×∇× vh|
2ds+ |e|

∫

f |K−

|∇ ×∇× vh|
2ds

)

≤ C1

∫

K+∪K−

|∇ ×∇× vh|
2dx, (3.14)
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where C1 is a positive constant depending on the shape-regularity of the partition Th.

Therefore, if vh ∈ Xh, by (3.10) and (3.14), we have

1

2C1 + 1
‖vh‖

2
h ≤

∑

K∈Th

(

‖∇×∇× vh‖
2
(L2(K))3 + ‖vh‖

2
(L2(K))3

)

+
∑

f∈Eh

|e|−1‖[∇× vh℄‖2(L2(f))3 . (3.15)

Using (3.7) and (3.13), we find

ah(vh,vh) ≥
∑

K∈Th

(

‖∇×∇× vh‖
2
(L2(K))3 + ‖vh‖

2
(L2(K))3

)

+
∑

f∈Eh

η|e|−1‖ [∇× vh℄‖2(L2(f))3

− ρ−1
∑

f∈Eh

|e|

∫

f

|{∇ ×∇× vh}|
2ds− ρ

∑

f∈Eh

|e|−1

∫

f

|[∇× vh℄|2ds.
By (3.14), we have

ah(vh,vh) ≥
∑

K∈Th

(

‖∇×∇× vh‖
2
(L2(K))3 + ‖vh‖

2
(L2(K))3

)

+
∑

f∈Eh

η|e|−1‖ [∇× vh℄‖2(L2(f))3

− 2ρ−1C1

∑

K∈Th

‖∇×∇× vh‖
2
(L2(K))3 − ρ

∑

f∈Eh

|e|−1‖[∇× vh℄‖2(L2(f))3 .

Hence, we obtain

ah(vh,vh) ≥(1− 2ρ−1C1)
∑

K∈Th

(

‖∇×∇× vh‖
2
(L2(K))3 + ‖vh‖

2
(L2(K))3

)

+ (η − ρ)
∑

f∈Eh

|e|−1‖ [∇× vh℄‖2(L2(f))3 .

If we choose ρ such that 1 − 2ρ−1C1 > 0 and η such that η − ρ > 0, then by using (3.15), we

obtain

ah(vh,vh) ≥ Cs ‖vh‖
2
h,

where Cs is a positive constant depending on the shape-regularity of the partition Th, the degree

of the polynomial k, and the penalty parameter η. 2

Remark 3.2. Usually, we can choose ρ = 4C1, η = ρ+ 1
2 and thus Cs =

1
4C1+2 .

3.4. Convergence Analysis

Theorem 3.5. Let u be the weak solution of the fourth-order curl problem (2.1) and u ∈

H2(curl,Ω). Suppose uh is the solution of the discrete variational problem (3.9), then the

following estimate holds:

‖u− uh‖h . inf
vh∈Xh

‖u− vh‖h.
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Proof. We first note, by (3.6) and (3.9), that

ah(u− uh,vh) = 0 ∀ vh ∈ Xh.

For any vh ∈ Xh, by the coercivity (3.12), we have

‖vh − uh‖
2
h . ah(vh − uh,vh − uh)

= ah(vh − uh + u− u,vh − uh)

= ah(vh − u,vh − uh) + ah(u− uh,vh − uh).

Therefore, we get

‖vh − uh‖
2
h . ah(vh − u,vh − uh).

By the boundedness (3.11), we obtain

‖vh − uh‖
2
h . ah(vh − u,vh − uh) . ‖u− vh‖h‖vh − uh‖h.

Canceling ‖vh − uh‖h from the two sides, we have

‖vh − uh‖h . ‖u− vh‖h.

Thus, by the triangle inequality we find

‖u− uh‖h 6 ‖u− vh‖h + ‖vh − uh‖h . ‖u− vh‖h.

By the arbitrariness of vh, we have

‖u− uh‖h . inf
vh∈Xh

‖u− vh‖h.

Hence, we complete the proof. 2

Theorem 3.6. Let u be the weak solution of the fourth-order curl problem (2.1), u ∈ Hk(curl,Ω), k ≥

2, and Th be quasi-uniform. Then there exists the following error estimate:

‖u−Πcurl
h u‖h . hk−1|∇ × u|(Hk(Ω))3 .

Proof. By (3.10), we find

‖u−Πcurl
h u‖h

=
(

∑

K∈Th

‖∇×∇× (u−Πcurl
h u)‖2(L2(K))3 +

∑

K∈Th

‖u−Πcurl
h u‖2(L2(K))3

+
∑

f∈Eh

|e| ‖{∇ ×∇× (u− Πcurl
h u)}‖2(L2(f))3 +

∑

f∈Eh

|e|−1 ‖ [∇× (u−Πcurl
h u)℄‖2(L2(f))3

)
1
2

=(I1 + I2 + I3 + I4)
1
2 .

We first estimate I1. Using Theorem 3.2 and Theorem 3.1, we get
∫

K

|∇ ×∇× (u−Πcurl
h u)|2dx

=

∫

K

|∇ × (∇× u−Πdiv
h (∇× u))|2dx

≤ |∇ × u−Πdiv
h (∇× u)|2(H1(K))3 . h2k−2|∇ × u|2(Hk(K))3 . (3.16)
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Using Theorem 3.2, the estimate of I2 is obvious. Next, we estimate I3. Let f = K1 ∩K2. By

the trace inequality, Theorems 3.2 and 3.1, we obtain

|e|

∫

f

|{∇ ×∇× (u−Πcurl
h u)}|2ds

. |e|
(

h−1‖∇×∇× (u −Πcurl
h u)‖2(L2(K1∪K2))3

+ h|∇ ×∇× (u −Πcurl
h u)|2(H1(K1∪K2))3

)

. |∇ × u−Πdiv
h (∇× u)|2(H1(K1∪K2))3

+ h2|∇ × (∇× u−Πdiv
h (∇× u))|2(H1(K1∪K2))3

. h2k−2|∇ × u|2(Hk(K1∪K2))3
+ h2|∇ × u−Πdiv

h (∇× u)|2(H2(K1∪K2))3

. h2k−2|∇ × u|2(Hk(K1∪K2))3
. (3.17)

Finally, we estimate I4. Also, let f = K1 ∩K2. By the trace inequality, Theorems 3.2 and 3.1,

we find

|e|−1

∫

f

|[∇× (u−Πcurl
h u)℄|2ds

. |e|−1
(

h−1‖∇× (u−Πcurl
h u

)

‖2(L2(K1∪K2))3
+ h|∇ × (u−Πcurl

h u)|2(H1(K1∪K2))3
)

. h−2‖∇× u−Πdiv
h (∇× u)‖2(L2(K1∪K2))3

+ |∇ × u−Πdiv
h (∇× u))|2(H1(K1∪K2))3

. h2k−2|∇ × u|2(Hk(K1∪K2))3
. (3.18)

From the estimates of I1, I2, I3, and I4, we complete the proof. 2

Based on Theorems 3.5 and 3.6, we obtain the following optimal error estimate.

Theorem 3.7. Let u be the weak solution of the fourth-order curl problem (2.1), and let u ∈

Hk(curl,Ω), k ≥ 2, and Th be quasi-uniform. Suppose uh is the solution of the discrete

variational problem (3.9), then the following estimate holds:

‖u− uh‖h . hk−1|∇ × u|(Hk(Ω))3 .

4. Numerical Results

In this section, we present some numerical results that verify Theorem 3.6 in 2 dimensions.

Then by Theorem 3.5, Theorem 3.7 is also verified.

Let Ω ⊂ R2 be a connected bounded domain, Th be a uniform partition of Ω, E0
h be the set

of internal edges of partition Th , e ∈ E0
h be the interface of two adjacent elements K±, and τ

be the unit tangential vector of the edge e. We denote by v± = (v|K±)|e and introduce two

notations as follows [∇× v℄ = ∇× v+ −∇× v−,

{∇ ×∇× v} =
∇×∇× v+ · τ +∇×∇× v− · τ

2
,

which are a little different from the definitions of jump and mean in 3 dimensions. Furthermore,

we use the second family of Nédélec quadratic elements, namely,

Xh =
{

uh ∈ H0(curl; Ω) | uh|K ∈ (Pk)
3, ∀ K ∈ Th, k = 2

}

.

Let K be an element, the vertices of K are denoted by ai, aj, ak, and the barycenter functions

corresponding to ai, aj, ak are denoted by λi, λj , λk.
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The edge basis functions are defined thus: Let [ai, aj ] be an edge of the element, such that

the three basis functions on the edge are

ϕ1
ij = λ2

i∇λj , ϕ2
ij = λ2

j∇λi, ϕ3
ij = λiλj∇(λj − λi),

and the corresponding dual basis functions are

q1ij = 9λ2
i − 18λiλj + 3λ2

j , q2ij = −3λ2
i + 18λiλj − 9λ2

j , q3ij = −9λ2
i + 42λiλj − 9λ2

j .

The element basis functions are defined as follows: Let [ai, aj , ak] be the element, such that the

three basis functions are

ψ1
ijk = λiλj∇λk, ψ2

ijk = λiλk∇λj , ψ3
ijk = λjλk∇λi,

and the corresponding dual basis functions are

q1ijk = (−6 + 30λi)τ ik + (−6 + 30λj)τ jk,

q2ijk = (−6 + 30λi)τ ik + (−18 + 30λj)τ jk,

q3ijk = (−18 + 30λi)τ ik + (−6 + 30λj)τ jk,

where τ ik = ak − ai =
−−→aiak, τ jk = ak − aj =

−−→ajak.

There are three edges on an element, so that the total number of basis functions is 3×3+3 =

12. The interpolation of u on an element K can be written as

(Πcurl
h u)|K =

3
∑

n=1

(un
ijϕ

n
ij + un

jkϕ
n
jk + un

ikϕ
n
ik) +

3
∑

m=1

um
ijkψ

m
ijk,

where

un
ij =

1

|eij |

∫

eij

u · τ ijq
n
ijds, un

jk =
1

|ejk|

∫

ejk

u · τ jkq
n
jkds,

un
ik =

1

|eik|

∫

eik

u · τ ikq
n
ikds,

similar to τ ik, here τ ij defined as aj − ai =
−−→aiaj , and

um
ijk =

1

|K|
{

∫

K

u · qmijkdx−

3
∑

n=1

(un
ij

∫

K

ϕn
ij · q

m
ijkdx+ un

jk

∫

K

ϕn
jk · qmijkdx

+ un
ik

∫

K

ϕn
ik · qmijkdx)}.

We now set Ω = [0, 1]2, u = (3π sin2 πy cosπy sin3 πx,−3π sin2 πx cos πx sin3 πy). In order to

verify the theoretical result in Theorem 3.6, we need to compute the relative error:

relative error =
‖u−Πcurl

h u‖h
|∇×u|(H2(Ω))3

.

From Table 1, we see that the numerical results confirm the theoretical result in Theorems

3.6 and 3.7 can also be verified from Theorem 3.5.
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Table 4.1: The convergence of the relative error.

h = 1

N
relative error order

N = 4 8.2872 × 10−2 –

N = 8 4.0325 × 10−2 1

N = 16 1.9727 × 10−2 1

N = 32 9.7826 × 10−3 1

N = 64 4.8770 × 10−3 1

N = 128 2.4358 × 10−3 1

N = 256 1.2173 × 10−3 1

N = 512 6.0825 × 10−4 1

N = 1024 3.0424 × 10−4 1

5. Conclusion

In this paper, we discussed a DG method for a fourth-order curl problem. We first estab-

lished the related variational problem, and then gave the well-posedness and regularity of the

weak solution.

Based on the Nédélec finite element space, we designed a DGmethod for the fourth-order curl

problem, proposed the discrete variational problem of the method, and proved the boundedness

and coercivity of the discrete variational problem. We thereby obtained an optimal error

estimate. Some numerical results in 2 dimensions were also presented in this paper.
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