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Abstract

The problem of finding a L∞-bounded two-dimensional vector field whose divergence

is given in L2 is discussed from the numerical viewpoint. A systematic way to find such

a vector field is to introduce a non-smooth variational problem involving a L∞-norm.

To solve this problem from calculus of variations, we use a method relying on a well-

chosen augmented Lagrangian functional and on a mixed finite element approximation.

An Uzawa algorithm allows to decouple the differential operators from the nonlinearities

introduced by the L∞-norm, and leads to the solution of a sequence of Stokes-like systems

and of an infinite family of local nonlinear problems. A simpler method, based on a L2-

regularization is also considered. Numerical experiments are performed, making use of

appropriate numerical integration techniques when non-smooth data are considered; they

allow to compare the merits of the two approaches discussed in this article and to show

the ability of the related methods at capturing L∞-bounded solutions.
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1. Introduction and Motivations

The purpose of this article is to investigate the numerical solution of the following problem

Find u ∈ (L∞ (Ω) ∩W 1,p(Ω))2 such that ∇ · u = f in Ω ⊂ R
2, (1.1)

where f ∈ Lp(Ω) is given. This problem is under-determined in the sense that the solution is

defined up to the addition of an arbitrary function with zero curl. It is common to look for a

solution that is the gradient of a potential function (as in electromagnetism for example). The

resulting potential function is therefore the solution of a Poisson equation.

However, when p = 1 or p = +∞, obtaining a solution which is the gradient of a potential

function is not necessarily possible, see, e.g., [1, 2]. Moreover, when considering p = 2, the

gradient of such a potential function obtained by solving a Poisson equation is not necessarily

bounded [3]. Therefore, we focus hereafter on the so-called non-smooth case that consists in

enforcing bounded solutions instead of gradients of potential functions.
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This problem has been studied from the theoretical viewpoint in [1, 2, 4], with a particular

emphasis on the torus domain, using arguments from [5]. Regularity issues have been discussed

in [6, 7]. The case p = 1 is partially discussed in [8]. In [1], it is shown that one can actually

replace L∞(Ω) by C0
(

Ω
)

in (1.1) if p = 2.

In order to search for a bounded solution, we introduce an equivalent variational formulation.

More precisely, for g > 0 a given parameter and f ∈ Lp(Ω) given, we look for the solution of

inf
v∈Ef

[

1

p

∫

Ω

|∇v|p dx+ g ||v||∞

]

, (1.2)

where ||v||∞ := ess supx∈Ω

√

v21 + v22 , for all v = {v1, v2} and

Ef =
{

v ∈ (W 1,p(Ω) ∩ L∞(Ω))2 , ∇ · v = f in Ω
}

.

This choice of the objective function allows to enforce the appropriate regularity of the solution.

The minimizer of this constrained variational problem provides a solution to the divergence

equation (1.1) with the appropriate regularity, and allows to “fix the constant” in the family

of solutions of the divergence equation. From now on, we focus on the case p = 2 (f ∈ L2(Ω)).

Actually for some test problems, we will assume that f ∈ Lp(Ω) with 1 ≤ p < 2.

Numerical methods for such non-smooth variational problems require an appropriate treat-

ment of the non-Hilbertian features introduced by the sup-norm. Such numerical algorithms

for non-smooth problems have been developed in the framework of fully nonlinear elliptic prob-

lems [9, 10], or for generalized eigenvalue problems [11–14].

We advocate an augmented Lagrangian algorithm that allows to decouple the solution of a

non-smooth variational problem into the solution of a sequence of Stokes-like systems (solved for

instance with stabilized continuous finite elements [15, 16]), and non-smooth problems solved

locally (namely at each grid point of a finite element triangulation). The treatment of the

sup-norm is achieved with a duality approach that has already been successfully applied in [17].

In a second part, we will address a L2-regularization of problem (1.1) and compare with the

previous approach. Namely, for γ > 0, we look for a solution of

inf
v∈Tf

[

1

2

∫

Ω

|∇v|2 dx+
γ

2

∫

Ω

|v|2 dx

]

(1.3)

with

Tf =
{

v ∈ (H1(Ω))2 , ∇ · v = f in Ω
}

.

This variational problem leads to the solution of a Stokes system.

Regularization methods are quite common in the literature as basic tools for the solution

of ill-posed problems. They are well-known in the framework of inverse problems, starting

with [18–21]. In [22, 23], classical questions such as the appropriate choice of parameters and

generalizations to family of regularization methods have been addressed. Many advances have

been recently made when relying on non-smooth regularization terms using L1 or L∞ norms

(or their algebraic equivalents), see, e.g., [24, 25] This approach has already been used by the

authors in the framework of non-smooth problems, see, e.g., [17, 26].

This article is organized as follows: Section 2 details the generic model problem and provides

some existence results as well as the description of some properties of the solution of (1.2). In

Section 3, an augmented Lagrangian algorithm à la Uzawa is described. The discrete equiva-

lent of this algorithm, obtained after discretization with continuous mixed piecewise linear finite

elements, is detailed in Section 4. Numerical experiments with the L∞-regularization are per-

formed in Section 5, for smooth and non-smooth data, and a computational investigation of the

convergence of the approximations (with respect to the mesh size) is achieved. Section 6 details

the L2-regularization method, and presents numerical results to compare both approaches.
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2. A Non-Smooth Variational Problem

2.1. Model problem and generalities

Let Ω ⊂ R
2 be a bounded domain, with a smooth boundary Γ = ∂Ω, and f ∈ L2(Ω). The

problem of interest is to find a function u : Ω → R
2 such that

u ∈
(

H1(Ω) ∩ C0
(

Ω
))2

, ∇ · u = f. (2.1)

The following existence result for a solution to (2.1) is extracted from [1, 2]:

Theorem 2.1 (Existence) Problem (2.1) has a solution, not necessarily unique. Moreover,

if Ω is convex and Γ is smooth enough, there exists a constant C such that:

||u||∞ + ||u||(H1(Ω))2 ≤ C ||f ||L2(Ω) .

Let us denote ||·||∞ := ||·||(L∞(Ω))2 , and let g > 0 be a given positive number. First we

define the set:

Sf =

{

v ∈ (H1(Ω) ∩ C0
(

Ω
)

)2 : ∇ · v = f in Ω

}

; (2.2)

next, g being a given positive number, we define the functional

J(v) =
1

2

∫

Ω

|∇v|2 dx+ g ||v||∞ .

It follows from Theorem 2.1 that the non-smooth variational problem:

Find u ∈ Sf such that J(u) ≤ J(v), ∀v ∈ Sf , (2.3)

has a solution. The formulation (2.3) enforces the admissible solution to be L∞-bounded. The

positive coefficient g allows to enforce the L∞-boundedness requirement. The uniqueness of the

solution is enforced in some case, as shown by the following

Theorem 2.2 (Uniqueness) For g > 0 a given parameter, the solution of (2.3) is unique.

Moreover, if g1 and g2 are two given parameters, and u1 and u2 are the corresponding (unique)

solutions of (2.3) where the objective functionals are associated with g1 and g2 respectively, then:

(g1 − g2) (||u2||∞ − ||u1||∞) ≥ 0;

i.e. the sup-norm of the solution is a decreasing function of the parameter g.

Proof. For g > 0 given, let us assume that (2.3) admits two solutions u1 and u2. It follows

from, e.g., [27, 28] that u1 and u2 satisfy the following variational inequalities

∫

Ω

∇u1 : ∇(v − u1)dx + g (||v||∞ − ||u1||∞) ≥ 0, ∀v ∈ Sf (2.4)

and
∫

Ω

∇u2 : ∇(v − u2)dx+ g (||v||∞ − ||u2||∞) ≥ 0, ∀v ∈ Sf , (2.5)

respectively. We take v = u2 in (2.4), v = u1 in (2.5), and add both relations to obtain

−

∫

Ω

|∇(u2 − u1)|
2
dx ≥ 0,

which implies in turn that ∇(u2 − u1) = 0, that is u2 − u1 = C, where C is a constant

two-dimensional vector, and (since ∇u1 = ∇u2) that

||u1||∞ = ||u2||∞ . (2.6)
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Suppose that C 6= 0, we have then

u1(x) 6= u2(x), ∀x ∈ Ω. (2.7)

Denote by w(= {w1, w2}) the vector-valued function 1
2 (u1 + u2); we clearly have

∇w = ∇u1 = ∇u2. (2.8)

Suppose now that the (continuous) function x → |w1(x)|
2
+ |w2(x)|

2
reaches its maximum value

over Ω at x̂; we have then

||w||2∞ = |w(x̂)|2 . (2.9)

where |ξ| =
√

ξ21 + ξ22 , for all ξ = {ξ1, ξ2} ∈ R
2. It follows from (2.6), (2.7), (2.9), and from the

strict convexity of the function ξ → |ξ|2, that

||w||2∞ = |w(x̂)|2 <
1

2

(

|u1(x̂)|
2
+ |u2(x̂)|

2
)

≤
1

2

(

||u1||
2
∞ + ||u2||

2
∞

)

= ||u1||
2
∞ = ||u2||

2
∞ .

We have thus shown that

||w||2∞ < ||u1||
2
∞ = ||u2||

2
∞ . (2.10)

Combining (2.10) with (2.6) and (2.8), we obtain that J(w) < J(u1) = J(u2), which

contradicts the fact that u1 and u2 are solutions of problem (2.3). We have thus C = 0, which

implies uniqueness.

Let us now consider g1 and g2 two positive parameters. The relations corresponding to (2.4)

(with g = g1) and (2.5) (with g = g2) lead to

−

∫

Ω

|∇(u2 − u1)|
2
dx+ (g1 − g2) (||u2||∞ − ||u1||∞) ≥ 0,

and conclusion follows, namely ||u2||∞ ≥ ||u1||∞ if g2 ≤ g1.

Actually, numerical results suggest that the solution u is independent of the choice of the

parameter g.

2.2. On the well-posedness of the problem and the singular cases

For a given f ∈ L2(Ω), a well-posed problem (arising, e.g., in electromagnetism) consists in

finding a function u ∈ (H1(Ω))2 that satisfies

∇ · u = f in Ω, ∇× u = 0 in Ω,

together with appropriate boundary conditions. According to the Helmholtz-Hodge decompo-

sition, every function u ∈ (L2(Ω))2 has an orthogonal decomposition into the gradient of a

potential function and the curl of a vector-valued function (see, e.g., [29, Chapter I]); this result

implies that the solution of this problem satisfies u = ∇Φ in Ω, where Φ ∈ H2(Ω) is a potential

function. Another consequence of this decomposition is that, if u satisfies (2.1), then the poten-

tial function Φ satisfies the Poisson equation ∆Φ = f in Ω. However, when f ∈ L2(Ω)\L∞(Ω),

the function u = ∇Φ is not necessarily bounded, since the solution Φ of this Poisson equation is

in H2(Ω) but has no more regularity in general. Hence u ∈ (H1(Ω))2, but it may happen that

u /∈ (L∞(Ω))2 (for Ω ⊂ R
2). Therefore the additional condition ∇× u = 0 does not guarantee

the required regularity on the solution of our problem of interest.

In the variational framework in which we investigate the solution of (2.1), the condition

∇ × u = 0 is disregarded and, instead, we look for the function that minimizes the ’energy’
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J(·). Numerical experiments in Section 5 actually suggest that this solution may still be the

gradient of a potential function.

The most interesting case therefore occurs when f ∈ L2(Ω)\L∞(Ω). In particular, we are

going to investigate the following case of a radial function with a point singularity:

f(x) = f(x1, x2) =
1

((x1 − x0
1)

2 + (x2 − x0
2)

2)
s/2

, s > 0, (2.11)

where (x0
1, x

0
2) ∈ Ω and s > 0 arbitrary.

Lemma 2.1. When Ω = D1 is the unit disk
{

(x1, x2) ∈ R
2 : x2

1 + x2
2 < 1

}

and (x0
1, x

0
2) =

(0, 0), the function f defined as in (2.11) satisfies the property: f ∈ Lq(D1) if s < 2
q , for

q > 0. In particular, f ∈ L2(D1) if s < 1.

Proof. By definition, f ∈ Lq(D1) if

∫

D1

|f(x1, x2)|
q
dx1dx2 < +∞. This implies

∞ >

∫

D1

|f(x1, x2)|
q
dx1dx2 =

∫ 2π

0

∫ 1

0

|f(r, θ)|q rdrdθ =

∫ 2π

0

∫ 1

0

1

rsq
rdrdθ

>2π

∫ 1

0

1

rsq
rdr = 2π

∫ 1

0

r1−sqdr.

The function r1−sq is integrable over (0, 1) if 1− sq > −1 and conclusion follows.

2.3. Theoretical results

In this Section, we present some results about the solution of (2.3) in various, smooth and

non-smooth, cases. These results will be confirmed by the numerical experiments reported in

Section 5, and help to understand the nature of the solution. When the data f is smooth (for

instance, we will consider f = 2), partial information about the solution is the topic of the

following result.

Proposition 2.1 (Case of data f with radial invariance) For any Ω ⊂ R
2 with a smooth

boundary, let us consider f ∈ L2(Ω) that is radially symmetric with respect to (x0
1, x

0
2) ∈ Ω.

Assume that the solution u ∈ (H1(Ω) ∩ C0
(

Ω
)

)2 of (2.3) has the form

u(x1, x2) = ϕ

(

√

(x1 − x0
1)

2 + (x2 − x0
2)

2

)(

x1 − x0
1

x2 − x0
2

)

,

where ϕ(·) is a smooth function. Then it should read as

ϕ(r) =
1

r2

∫ r

0

f(t)t dt. (2.12)

Proof. For u given by the assumptions of the Theorem, we have

∇ · u = 2ϕ(r) + ϕ′(r)r, with r =
√

(x1 − x0
1)

2 + (x2 − x0
2)

2.

If f is radially symmetric, f = f(r), and the relation ∇ ·u = f implies the ordinary differential

equation 2ϕ(r) + ϕ′(r)r = f(r), for 0 < r < 1. Solving this equation, with, e.g., the boundary

condition ϕ(0) = 0, gives (2.12).

In particular, for the case f = 2, we obtain ϕ(r) = 1 and u(x1, x2) = (x1 − x0
1 , x2 − x0

2)
T ,

implying (by symmetry) that u(x1, x2) = (x1, x2)
T when Ω is the unit disk

D1 =

{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 < 1

}

,
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and u(x1, x2) = (x1 −
1
2 , x2 −

1
2 )

Twhen Ω is the unit square Ωs = (0, 1)2. When f(r) = r−s,

which corresponds to (2.11), one obtains

ϕ(r) =
r−s

2− s
, and u(x1, x2) =

1

rs
1

2− s

(

x1 − x0
1

x2 − x0
2

)

. (2.13)

A consequence of (2.13) is the following result.

Proposition 2.2. The solution u of (2.3) with f given by (2.11) is continuous when s < 1, but

discontinuous when s = 1.

Proof. Starting from (2.13) it is easy to see that, when s < 1,

lim
(x1,x2)→(x0

1
,x0

2
)
u(x1, x2) = 0.

The limit is not defined when s = 1 (actually, when s = 1, the limit depends on the slope

(x2 − x0
2)/(x1 − x0

1) with which (x1, x2) tends to (x0
1, x

0
2)).

We have just shown that, if f(r) = r−1 (i.e. f(x) = 1/ |x|), then f /∈ L2(Ω) if (x0
1, x

0
2) ∈

Ω ⊂ R
2. However, f ∈ Lp(Ω) for 1 ≤ p < 2. Although the results of [1] do not apply to the

associated problem (1.1), this particular case has been investigated numerically in Section 5.

In the sequel, we address the numerical solution of the variational problem (2.3) by an

augmented Lagrangian algorithm.

3. An Augmented Lagrangian Approach

3.1. Augmented lagrangian and saddle-point problem

Let us focus first on the L∞-regularization given by (2.3). An alternative approach, based

on the L2-regularization (see (1.3)) is discussed in Section 6. Problem (2.3) is equivalent to:

Find {u,p} ∈ Wf such that j(u,p) ≤ j(v,q), ∀{v,q} ∈ Wf , (3.1)

where

Wf =

{

{v,q} ∈ (H1(Ω))2 × (L∞(Ω))2 : ∇ · v = f in Ω , v − q = 0 in Ω

}

, (3.2)

and

j(v,q) =
1

2

∫

Ω

|∇v|2 dx+ g ||q||∞ .

The introduction of the vector-valued function q allows to decouple the boundedness constraint

from the divergence equation. The augmented Lagrangian method discussed here is inspired

from [27,30]; it consists in searching for a saddle point of the following augmented Lagrangian

functional:

Lr(v,q;µ) = j(v,q) +
r

2

∫

Ω

|v − q|2 dx+

∫

Ω

µ · (v − q)dx, (3.3)

where µ is a Lagrange multiplier. Namely, we are looking for {u,p,λ} ∈ Vf × (L∞(Ω))2 ×

(L2(Ω))2 such that

Lr(u,p;µ) ≤ Lr(u,p;λ) ≤ Lr(v,q;λ), (3.4)

for all {v,q;µ} ∈ Vf × (L∞(Ω))2 × (L2(Ω))2, where Vf =
{

v ∈ (H1(Ω))2 : ∇ · v = f in Ω
}

.

Theorem 3.1. Any solution {u,p,λ} of the saddle-point problem (3.4) is such that u solves

(2.3) and p = u.
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Proof. The first (left) inequality in (3.4) implies that
∫

Ω

(λ− µ) · (u− p)dx ≥ 0,

for all µ ∈ (L2(Ω))2, which implies u = p, a.e. in Ω. Starting from this property, the second

(right) inequality in (3.4) reads

j(u,p) ≤ j(v,q) +
r

2

∫

Ω

|v − q|2 dx+

∫

Ω

λ · (v − q)dx,

for all {v,q} ∈ Vf × (L∞(Ω))2; in particular, by taking q = v, one obtains

J(u) = j(u,u) ≤ j(v,v) = J(v), ∀v ∈ Sf ,

and conclusion follows.

The following Uzawa algorithm is advocated to solve (3.4). It is inspired from the so-called

ALG2 algorithm presented in [30].

3.2. Uzawa algorithm

An Uzawa-Douglas-Rachford type algorithm reads as follows: let u−1 ∈ Vf and λ0 ∈

(L2(Ω))2 be arbitrary given functions. Then, for n ≥ 0, {un−1,λn} being known, the iterates

pn,un and λn+1 are computed as follows:

(a) Solve

pn = arg inf
q∈(L∞(Ω))2

Lr(u
n−1,q;λn). (3.5)

(b) Solve

un = arg inf
v∈Vf

Lr(v,p
n;λn). (3.6)

(c) Update the multipliers λn ∈ (L2(Ω))2:

λn+1 = λn + r(un − pn), (3.7)

until convergence is reached. Typically the stopping criterion is
∣

∣

∣

∣un − un−1
∣

∣

∣

∣

(L2(Ω))2
< ε,

where ε is a given tolerance. The augmented Lagrangian algorithm produces a sequence of

iterates {un}n≥0 that eventually converges to the function realizing the infimum of (2.3). The

updating operation described in (3.7) being straightforward, we will detail in the following

sections the solution of the sub-problems (3.5) and (3.6).

3.3. On the solution of the sub-problem (3.5)

Problem (3.5) can be written as

pn = arg inf
q∈(L∞(Ω))2

[

r

2

∫

Ω

|q|2 dx+ g ||q||∞ −

∫

Ω

Xn · qdx

]

, (3.8)

where Xn := run−1 + λn ∈ (L2(Ω))2. We first observe that

||q||∞ = sup
µ∈Λ

∫

Ω

µ · qdx,

where

Λ =

{

µ ∈ (L2(Ω))2 :

∫

Ω

|µ| dx ≤ 1

}
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(see, e.g., [17]). Problem (3.8) is thus equivalent to

inf
q∈(L∞(Ω))2

{

sup
µ∈Λ

[

r

2

∫

Ω

|q|2 dx+ g

∫

Ω

µ · qdx−

∫

Ω

Xn · qdx

]}

. (3.9)

which is equivalent to

sup
µ∈Λ

{

inf
q∈(L∞(Ω))2

[

r

2

∫

Ω

|q|2 dx+ g

∫

Ω

µ · qdx−

∫

Ω

Xn · qdx

]}

. (3.10)

For a given µ, the minimization problem is a quadratic problem for the variable q ∈ (L∞(Ω))2,

whose explicit solution is given by

pn(µ) =
1

r
(Xn − gµ) . (3.11)

It remains to compute the supremum of (3.10) in terms of the variable µ ∈ Λ. Inserting (3.11)

into (3.10), one obtains an optimization problem for the variable µ ∈ Λ that reads:

sup
µ∈Λ

[

−
g2

2r

∫

Ω

|µ|2 dx+
g

r

∫

Ω

Xn · µdx

]

,

or equivalently,

inf
µ∈Λ

[

1

2

∫

Ω

|µ|2 dx−
1

g

∫

Ω

Xn · µdx

]

. (3.12)

Another Uzawa iterative algorithm is advocated for the solution of (3.12) in order to take into

account the non-smooth constraint in the definition of the set Λ. Namely, we introduce the

Lagrangian L defined by:

L(µ,m) =
1

2

∫

Ω

|µ|2 dx−
1

g

∫

Ω

Xn · µdx+m

(
∫

Ω

|µ| dx− 1

)

, (3.13)

where m ≥ 0 is a scalar Kuhn-Tucker multiplier. The solution of (3.12) therefore corresponds

to finding a saddle-point of the Lagrangian (3.13), that is to find ξn ∈ (L2(Ω))2 and ln ∈ R+,

such that

L(ξn,m) ≤ L(ξn, ln) ≤ L(µ, ln), ∀µ ∈ (L2(Ω))2, ∀m ∈ R+. (3.14)

Again, we advocate an (embedded) Uzawa-type method. The corresponding algorithm reads

as follows: let ln,0 ∈ R+ be given; for k ≥ 0, ln,k being known:

(Step 1) Solve

ξn,k = arg inf
µ∈(L2(Ω))2

[

1

2

∫

Ω

|µ|2 dx−
1

g

∫

Ω

Xn · µdx+ ln,k
∫

Ω

|µ| dx

]

. (3.15)

Problem (3.15) admits a closed form solution, defined point-wise by:

ξn,k(x) =

(

1

g
−

ln,k

|Xn(x)|

)+

Xn(x), a.e. on Ω, (3.16)

where (p)+ = max(p, 0).

(Step 2) Update

ln,k+1 = max

{

0, ln,k + ρ

(
∫

Ω

∣

∣

∣
ξ
n,k
∣

∣

∣
dx− 1

)}

, (3.17)

where ρ > 0 is a given positive parameter (sufficiently small).

Remark 3.1. When k → ∞, (3.16) leads to

ξ
n(x) =

(

1

g
−

ln

|Xn(x)|

)+

Xn(x), a.e. on Ω,

and combining this relation with (3.11) leads to an explicit formulation of pn(x), namely

pn(x) =
gln

r

Xn(x)

sup{gln, |Xn(x)|}
.

Thus we can note that, when gln > |Xn(x)|, the parameter g disappears in the expression of

the final solution.
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3.4. On the solution of the sub-problem (3.6)

Problem (3.6) can be written as follows: find un ∈ Vf satisfying

r

∫

Ω

un · vdx +

∫

Ω

∇un : ∇vdx =

∫

Ω

(rpn − λn) · vdx, ∀v ∈ V0,

where V0 =
{

v ∈ (H1(Ω))2 : ∇ · v = 0
}

, and S : T =
∑2

i,j=1 sijtij , for all S = (sij) ∈

R
2×2, T = (tij) ∈ R

2×2. From a computational point of view, we introduce a (pressure-like)

multiplier pn ∈ L2(Ω) and consider the equivalent formulation: find {un, pn} ∈ (H1(Ω))2 ×

L2(Ω) satisfying, for all v ∈ (H1(Ω))2 and q ∈ L2(Ω)

r

∫

Ω

un · vdx+

∫

Ω

∇un : ∇vdx −

∫

Ω

pn∇ · vdx =

∫

Ω

(rpn − λn) · vdx, (3.18a)

∫

Ω

∇ · unqdx =

∫

Ω

fqdx. (3.18b)

Remark 3.2. Problem (3.18) is the weak formulation of a generalized Stokes problem, which

has a unique solution in (H1(Ω))2 × L2(Ω) [29, 31]. The strong formulation of this problem

actually reads














run −∇2un +∇pn = rpn − λn in Ω,

∇ · un = f in Ω,

∇unn− pnn = 0 on Γ,

where n is the outward unit normal vector at Γ.

The solution methods discussed for the Stokes problem with f = 0 still apply here. For

instance, a preconditioned conjugate gradient algorithm, see, e.g., [31, Chapter 4], can be ap-

plied. A monolithic approach with stabilized piecewise linear finite element techniques [15, 16]

is favored in the sequel for implementation convenience, and detailed in Section 4. Note that, as

highlighted in [12] for similar problems from the calculus of variations, the choice of the solution

method for the Stokes problem does not influence the behavior of the iteration algorithm (as

seen for instance when replacing stabilized finite elements with the mini-element [32]). The use

of low order finite element is appropriate for such non-smooth problems, for which the data and

therefore the solution have low regularity properties.

4. Finite Element Approximation

4.1. Generalities

Finite element techniques are used for the computer implementation of algorithm (3.5)-

(3.7). Let h > 0 be a discretization step. A family {Ωh}h of polygonal approximations of the

domain Ω is introduced such that limh→0 Ωh = Ω, together with limh→0 Γh = Γ. Next we

consider a family {Th}h of triangulations of Ωh, verifying the following (classical) assumptions

(see, e.g., [33]): (i) all the triangles K of Th are closed, and
⋃

K⊂Th
K = Ωh; (ii) if K1 and K2

belong to Th then either K1 ∩K2 = ∅, or K1 and K2 have only a vertex in common or only a

full edge in common; (iii) h is the length of the largest edge(s) of Th; (iv) if θh is the smallest

angle of Th, then infh θh > 0; and (v) all the vertices of Th located on Γh belong to Γ.

Let us denote by Nn the number of vertices of Th in Ωh, and by K a generic element

(triangle) of Th. Let Pk be the space of polynomials of degree less than or equal to k. We will
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approximate H1(Ω), L∞(Ω) and L2(Ω) by the finite element space defined by

V 1
h =

{

ϕ ∈ C0
(

Ωh

)

: ϕ|K ∈ P1, ∀K ∈ Th

}

.

Let ϕj , j = 1, · · · , Nn denote the piecewise affine finite element basis functions of V 1
h , associated

with the triangulation Th. The discrete sup-norm is defined as

||q||∞,h = max
j=1,··· ,Nn

|q(Pj)| = max
j=1,··· ,Nn

√

q21(Pj) + q22(Pj),

where q = (q1, q2)
T , and Pj is a vertex of Th, while the discrete L2-scalar product is given by

(ph,qh)0,h =
1

3

Nn
∑

j=1

Ajph(Pj) · qh(Pj),

where Aj is the area of the polygonal which is the union of those triangles of Th which have Pj

as a common vertex. The corresponding norm is defined by ||ph||0,h =
√

(ph,ph)0,h.

4.2. Discrete augmented lagrangian and saddle-point problem

The discrete equivalent to the augmented Lagrangian functional Lr is given by

Lr,h(vh,qh;µh)

=
1

2

∫

Ωh

|∇vh|
2 dx+ g ||qh||∞,h +

r

2
||vh − qh||

2
0,h + (µh,vh − qh)0,h. (4.1)

The discrete functional space corresponding to Vf is given by

Vf,h =

{

vh ∈ (V 1
h )

2 : ∇ · vh is approximately equal to fh in Ωh

}

,

where fh is a suitable approximation of f (typically the interpolant of f that is piecewise

constant on Th). We will detail a specific method to impose the divergence constraint at the

discrete level when discussing later the method of approximation of the Stokes problems. The

discrete saddle-point problem consists in looking for {uh,ph;λh} ∈ Vf,h × (V 1
h )

2 × (V 1
h )

2 such

that

Lr,h(uh,ph;µh) ≤ Lr,h(uh,ph;λh) ≤ Lr,h(vh,qh;λh), (4.2)

for all {vh,qh;µh} ∈ Vf,h × (V 1
h )

2 × (V 1
h )

2.

4.3. Discrete Uzawa algorithm

A discrete Uzawa-Douglas-Rachford type algorithm corresponding to (3.5)-(3.7) reads as

follows: let u−1
h ∈ Vf,h and λ0

h ∈ (V 1
h )

2 be arbitrary given functions. Then, for n ≥ 0,

{un−1
h ,λn

h} being known, the iterates pn
h,u

n
h and λn+1

h are computed as follows:

(a) Solve

pn
h = arg min

qh∈(V 1

h
)2
Lr,h(u

n−1
h ,qh;λ

n
h). (4.3)

(b) Solve

un
h = arg min

vh∈Vf,h

Lr,h(vh,p
n
h;λ

n
h). (4.4)

(c) Update the multipliers λn
h ∈ (V 1

h )
2:

λ
n+1
h = λ

n
h + r(un

h − pn
h), (4.5)

until convergence is reached. Similarly, the stopping criterion is typically
∣

∣

∣

∣un
h − un−1

h

∣

∣

∣

∣

0,h
< ε,

where ε is a given tolerance.
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4.4. On the solution of the sub-problem (4.3)

Let us define Xn
h := run−1

h + λn
h ∈ (V 1

h )
2. Problem (4.3) reads

min
qh∈(V 1

h
)2

[r

2
(qh,qh)0,h + g ||qh||∞,h − (Xn

h ,qh)0,h

]

. (4.6)

Since ||qh||∞,h = maxµh∈Λh
(µh,qh)0,h, where

Λh =
{

µh ∈ (V 1
h )

2 : (|µh| , 1)0,h ≤ 1
}

,

Eq. (4.6) is equivalent to

min
qh∈(V 1

h
)2

{

max
µh∈Λh

[r

2
(qh,qh)0,h + g(µh,qh)0,h − (Xn,qh)0,h

]

}

,

Similarly to the continuous case, minimum and maximum operators commute; for a given

µh, the solution of the minimization problem reads ph(µh) = (Xn
h − gµh) /r. Inserting this

explicit solution into the previous problem, one obtains an optimization problem for the variable

µh ∈ (V 1
h )

2 that reads:

min
µh∈Λh

[

1

2
(µh,µh)0,h −

1

g
(Xn

h ,µh)0,h

]

. (4.7)

The constraint (|µh| , 1)0,h ≤ 1 is taken into account with a Kuhn-Tucker multiplier mh ∈ R+.

The discrete Uzawa algorithm for the solution of (4.7) relies on the discrete Lagrangian Lh

defined by:

Lh(µh,mh) =
1

2
(µh,µh)0,h −

1

g
(Xn

h ,µh)0,h +mh ((|µh| , 1)0,h − 1) . (4.8)

The solution of (4.7) therefore corresponds to finding the saddle-point of the Lagrangian (4.8).

The Uzawa algorithm reads as follows: let ln,0h ∈ R+ be given, and, for k ≥ 0, ln,kh being known:

(Step 1) Solve

min
µh∈(V 1

h
)2

[

1

2
(µh,µh)0,h −

1

g
(Xn

h ,µh)0,h + ln,kh (|µh| , 1)0,h

]

. (4.9)

Problem (4.9) admits a closed form solution, which is given by:

ξ
n,k
h =

(

1

g
−

ln,kh

|Xn
h|

)+

Xn
h. (4.10)

(Step 2) Update

ln,k+1
h = max

{

0, ln,kh + ρ
(

(
∣

∣

∣
ξ
n,k
h

∣

∣

∣
, 1)0,h − 1

)}

, (4.11)

where ρ > 0 is a given positive parameter (sufficiently small).

4.5. On the solution of the sub-problem (4.4)

Problem (4.4) is equivalent to finding un
h ∈ Vf,h satisfying

r(un
h ,vh)0,h +

∫

Ω

∇un
h : ∇vhdx = (Yn

h ,vh)0,h, ∀vh ∈ V0,h,

where V0,h =
{

vh ∈ (V 1
h )

2 : ∇ · vh is approx. equal to 0
}

, and Yn
h := rpn

h − λn
h ∈ (V 1

h )
2. We

introduce a multiplier pnh ∈ V 1
h to take into account the divergence constraint in the definition

of Vf,h. We add stabilization terms to make this choice of finite element spaces for {un
h, p

n
h}
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a stable one. The finite element formulation considered here reads as follows: find {un
h, p

n
h} ∈

(V 1
h )

2 × V 1
h satisfying

r(un
h ,vh)0,h +

∫

Ω

∇un
h : ∇vhdx−

∫

Ωh

pnh∇ · vhdx+

∫

Ωh

∇ · un
hqhdx+ Sh(u

n
h , p

n
h;vh, qh)

=(Yn
h ,vh)0,h +

∫

Ωh

fhqhdx+ Th(Y
n
h , fh;vh, qh), (4.12)

for all {vh,qh} ∈ (V 1
h )

2 × V 1
h , and where (following [15])

Sh(u
n
h, p

n
h;vh, qh) :=

∑

K∈Th

αh2
K

∫

K

∇pnh · ∇qhdx, Th(Y
n
h , fh;vh, qh) ≡ 0,

where α ∈ R+ (α = 1 in the numerical experiments) is a given parameter and hK is the diameter

of the element K.

Remark 4.1. Following [16], another choice would be a Galerkin Least-Squares-type of stabi-

lization method that reads:

Sh(u
n
h, p

n
h;vh, qh) :=

∑

K∈Th

αh2
K

∫

K

∇pnh · ∇qhdx, Th(Y
n
h , fh;vh, qh)

:=
∑

K∈Th

αh2
K

∫

K

Yn
h · vhdx.

Numerical experiments have shown similar results with both choices of stabilization terms.

Remark 4.2. Note that the numerical method for the solution of the Stokes problem can be

replaced by any other solution method. In particular, the use of conjugate gradient algorithms,

together with P1-iso-P2/P1 finite element approximations, or the mini element (P1-bubble/P1)

are other options described in [31] and [32]. Numerical results in [12] have shown convergence

properties that are independent of the solution method for the Stokes problem, when applied

to a related non-smooth eigenvalue problem.

Remark 4.3. When the function f presents some singularity, exact integration is needed to

evaluate the right-hand side
∫

Ωh
fhqhdx, as the classical trapezoidal formula cannot be used if

the singularity coincides with a grid point. A method mixing numerical quadrature and exact

integration is detailed in Appendix 7 for the case of f given by (2.11).

5. Numerical Results

We present numerical results for various choices of data f (smooth and non-smooth), and for

the unit disk D1 =
{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 < 1

}

, and the unit square Ωs = (0, 1)× (0, 1).

In the following numerical experiments, we have considered (unless specified otherwise) r = 10,

ε = 10−5 and ρ = 1.

5.1. Smooth data

Skipping the case f = 0 that naturally leads to the solution u = uh = 0, we first consider a

constant function f , namely f = 2. Fig. 5.1 visualizes the piecewise linear approximation uh of

the solution u to Eq. (2.3) obtained by the augmented Lagrangian approach for various mesh

sizes when f = 2. Fig. 5.2 illustrates cuts of the Euclidean norm |uh|2 : x →
√

u2
1h(x) + u2

2h(x)
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Fig. 5.1. Approximated solution uh (left), contours of |uh|2 (middle), and graph of |uh|2 (right) obtained

with the augmented Lagrangian method on the unit disk D1 for f = 2 (first row: h = 0.06942, second

row: 0.01285).
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Fig. 5.2. Cuts of the graph of |uh|2 along x2 = 0 (left) and x1 = x2 (right) obtained with the augmented

Lagrangian method on the unit disk D1 for f = 2 (h = 0.06942).

along the lines x2 = 0 and x2 = x1, and confirms that the solution is a radial field centered

around the origin (as stated in Proposition 2.1).

Following Proposition 2.1, and considering the field uex(x1, x2) = (x1 , x2)
T as the exact

solution on D1, the convergence of the solution uh towards uex is illustrated in Fig. 5.3 (left).

It shows that ||uh − uex||(L2(Ω))2 = O(h2). Fig. 5.3 (middle) illustrates that ∇ · uh → 2 when

h → 0, and shows that

||∇ · uh − fh||∞ = O(h4).

Fig. 5.3 (right) illustrates the behavior of the sup-norm ||uh||∞ as a function of h. One can

observe that ||uh||∞ → 1 when h → 0 (as expected), with nearly second order accurate conver-

gence. Table 5.1 contains the corresponding numerical values.

Remark 5.1. For f = 2, the solution obtained with the augmented Lagrangian approach is

independent of the value of the parameter g appearing in the definition of J(·) in (2.3) (the

parameter g varying in the range of 10−10−103). Actually any (strictly positive) value of g > 0

is sufficient to force the solution to be bounded. In other words, the function g → ||uh||∞,
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Fig. 5.3. Augmented Lagrangian algorithm: Case f = 2 and uex(x1, x2) = (x1 , x2)
T on the unit disk.

Left: Convergence (log-log plot) of the error ||uh − uex||(L2(Ω))2 . Middle: Convergence (log-log plot)

of the error ||∇ · uh − fh||
∞
. Right: Convergence (log-log plot) of the error ||uh||

∞
− 1.

Table 5.1: Augmented Lagrangian algorithm: Case f = 2 and uex(x1, x2) = (x1 , x2)
T on the unit disk.

Convergence of the errors ||uh − uex||(L2(Ω))2 , ||∇ · uh − fh||
∞

and ||uh||
∞

− 1.

h ||uh − uex||(L2(Ω))2 ||∇ · uh − fh||
∞

||uh||
∞

− 1

0.069422 1.94750 · 10−3 5.63330 · 10−4 5.92519 · 10−5

0.027670 1.06827 · 10−5 3.40814 · 10−6 6.13026 · 10−6

0.012846 4.66425 · 10−6 3.51247 · 10−7 2.57716 · 10−6

0.006137 2.15005 · 10−7 1.33799 · 10−8 8.73001 · 10−7

(where uh = uh(g) is considered as a function of g) is constant. The same remark holds for the

non-smooth functions f considered in the sequel.

Remark 5.2. When the function f is smooth (i.e. for instance f ∈ C0(Ω), as it is the case for

f = 2), the vector-valued field u obtained by differentiating the solution Φ ∈ H2(Ω) ∩ H1
0 (Ω)

of the potential problem −∆Φ = f coincides with the solution of the variational problem (2.3).

Remark 5.3. If u = (u1, u2)
T ∈ Sf is the solution of (2.3), numerical experiments show that

it satisfies:

sup
x∈Ω

ess ui(x) + inf
x∈Ω

ess ui(x) = 0, i = 1, 2. (5.1)

This property can be easily verified analytically when the norm on C0
(

Ω
)

is given by

|||v|||∞ := maxx∈Ωmax{|v1(x)| , |v2(x)|}. It is also satisfied numerically when using the norm

||v||∞ = maxx∈Ω

√

|v1(x)|
2
+ |v2(x)|

2
. To show that relation (5.1) holds with the norm |||·|||∞

replacing the norm ||·||∞ that is used in the computations, let us define αi = supx∈Ω ess ui(x)+

infx∈Ω ess ui(x), for i = 1, 2. Assume that αi 6= 0, i = 1, 2. In that case, define ū = (ū1, ū2)
T

such that ūi = ui − αi, i = 1, 2, and verify that ||∇ū||L2(Ω) = ||∇u||L2(Ω), and in turn that

|||ū|||∞ < |||u|||∞. This implies that J(ū) < J(u) and leads to a contradiction since u is the

minimizer of J(·).

Fig. 5.4 visualizes the piecewise linear approximation uh of the solution to Eq. (2.3) on the

unit square Ωs obtained by the augmented Lagrangian approach for various mesh sizes when

f = 2. The solution is a radial field centered around (0.5, 0.5) that agrees with Proposition 2.1.

Fig. 5.5 shows the cuts of |uh|2 along the lines x2 = 1/2 and x1 = x2, and confirms the radial

invariance of the solution.
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Fig. 5.4. Field uh (left), contours of |uh|2 (middle), and graph of |uh|2 (right) obtained with the

augmented Lagrangian method on the unit square Ωs for f = 2 (first row: h = 0.05, second row:

0.0125).
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Fig. 5.5. Cuts of |uh|2 along x2 = 1/2 (left) and x1 = x2 (right) obtained with the augmented

Lagrangian method on the unit square Ωs for f = 2 (h = 0.05).

Fig. 5.6 finally shows the evolution of J(un
h) for the unit disk (left) and the unit square

(right), J being the objective function and un
h the nth iterate produced by the discrete aug-

mented Lagrangian algorithm (4.3)-(4.5); we took u−1
h = 0 and λ0

h = 0 for both cases. Results

confirm the convergence of J(un
h) in less than 20 iterations for both cases.

5.2. Non-smooth data with point singularity: the case f ∈ L2(Ω)

Let us consider now the case (2.11) with s ≤ 1. If s < 1, we have f ∈ L2(Ω), and Theorem 2.1

holds. Actually, when s = 1, f /∈ L2(Ω) and, a priori, the general theory from [1, 2] does not

apply. However, we will see in Section 5.4 that the numerical method we advocate is still

constructive if s = 1.

The quasi-exact integration detailed in Appendix 7 is used, with Ni = 3, to compute the

integrals in the right-hand side, for elements K adjacent to the singularity point when the

singularity point coincides with a grid point. Fig. 5.7 shows the solution obtained for the unit

disk D1, (x
0
1, x

0
2) = (0, 0), and s = 3/4. Instabilities develop near the singularity point. It also

visualizes cuts of the graph of |uh|2 along the line x2 = x1, and shows that the oscillations
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Fig. 5.6. Evolution of objective function J(un
h) for f = 2 on the unit disk (h = 0.06942) (left) and the

unit square Ωs (h = 0.05) (right). The initial data are u
−1
h = 0 and λ

0
h = 0.
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Fig. 5.7. Approximation uh obtained with the augmented Lagrangian method on the unit disk D1 for

the function f(x1, x2) = (
√

x2
1 + x2

2)
−3/4 (s = 3/4), for h = 0.069422, 0.022983, and 0.012846 (left to

right). Top row: field uh; bottom row: cut of the graph of |uh|2 along x1 = x2.

concentrate at the singularity point when h → 0. Observe that we have been able to ’capture’

the solution when it does not belong to C0
(

Ω
)

but to L∞(Ω), only.

Remark 5.4. Our numerical experiments show that the quality of the solution is pretty much

independent of the number of integration points if Ni > 2. Thus, we used Ni = 3 integration

points for our computations.

In Fig. 5.8, we have shown the behavior of the sup-norm ||uh||∞ for f = r−s, 0.25 ≤ s ≤ 1,

as a function of the exponent s (with quasi-exact integration of the singularity and Ni = 3).

We observe that ||u||∞ remains bounded even when s = 1, i.e. when f loses the L2-regularity.

In Fig. 5.9, we have visualized the approximate solution associated with the unit disk D1

for s = 0.95, 0.75, 0.5, 0.25, 0.1, respectively. One can observe that wiggles arise for all values

of s > 0, even though they are smaller when s → 0. Indeed, when s → 0, f → 1, and the

data and the problem become smooth. The solution associated to f = 1 being u1(x1, x2) =
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Fig. 5.8. Norm ||uh||
∞

of the solution obtained with the augmented Lagrangian method on the unit

disk D1 with f = r−s, as a function of the exponent s (h ≃ 0.0276 and h ≃ 0.0128).

(x1/2 , x2/2)
T , one can observe in Fig. 5.8 that ||uh||∞ → 1/2 when s → 0 as expected, since

||u1||∞ = 1/2.

We can investigate the convergence properties of the solution in the case f(x) = 1/ |x|s on

the unit disk, in a similar fashion as the analysis in the smooth case presented in Fig. 5.3. Let

us consider f(x1, x2) = r−s, with r =
√

x2
1 + x2

2; following Proposition 2.1, we compare the

approximated solution uh with

uex(x1, x2) =
1

rs
1

2− s

(

x1

x2

)

(5.2)

on the unit disk D1. When s = 1, the solution is in L∞(Ω)2 (but not in C0
(

Ω
)2
), despite

the fact that f /∈ L2(Ω). The numerical experiment results reported in Fig. 5.10 suggest the

following convergence behavior: When f(r) = r−s, with s ∈ (0, 1], the approximated solution

uh satisfies the following error estimate: there exists a constant C independent of the mesh size

h such that

||uh − uex||(L2(Ω))2 ≤ Ch2−s,

where uex is the exact solution given by Proposition 2.1 and (5.2). This figure includes the case

s = 1, even though f does not have the regularity required in [1,2] (the case s = 1 is treated in

Section 5.4).

5.3. Non-smooth data with line singularity : regularization approach

Let us consider the (smooth) function fε defined by

fε(x) = fε(x1, x2) =
1

((x1 − x0
1)

2 + ε)
s/2

, (5.3)

where ε > 0 is a small parameter, s > 0, and x0
1 such that there exists x0

2 with (x0
1, x

0
2) ∈

Ω: the function fε defined by (5.3) is obtained by regularization of the non-smooth function

f : (x1, x2) →
(

(x1 − x0
1)

2
)−s/2

, which exhibits a singularity along the line x1 = x0
1. We take

typically ε = h2, so that the regularization effect takes place on a layer whose thickness is of the

order of h. Note that, when s = 1, the singular function f satisfies f(x1, x2) =
∣

∣x1 − x0
1

∣

∣

−1/2

that is f ∈ Lq(Ω), for all q < 2, while f ∈ L2(Ω) if s < 1.

Fig. 5.11 illustrates the results for the unit square Ωs, x
0
1 = 0.5, s = 0.5, ε = h2, and for

various values of h. We perform 100 iterations of the augmented Lagrangian algorithm. We
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Fig. 5.9. Approximation uh obtained with the augmented Lagrangian method on the unit disk D1 for

f(r) = r−s and h = 0.0128. Left: field uh; middle: contours of the norm |uh|2; right: cuts of |uh|2
along x2 = 0; From top to bottom: s = 0.95, 0.75, 0.5, 0.25 and 0.1.



372 A. CABOUSSAT AND R. GLOWINSKI

h ||uh − uex||(L2(Ω))2 ||uh − uex||(L2(Ω))2
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Fig. 5.10. Augmented Lagrangian algorithm: Case f(r) = r−s and uex(x1, x2) =
1
rs

1
2−s

(x1 , x2)
T on

the unit disk. Convergence of the error ||uh − uex||(L2(Ω))2 for s = 1, 0.75, 0.5, 0.25. Left: numerical

values; right: plot on log-log scale.

observe that, when h is large, the regularization is important, leading to a function fε that is

smooth, and a corresponding solution that is nearly radial. When h decreases, a discontinuity

line takes place at x1 = x0
1. Boundary effects appear at the top and bottom of the domain.

Cuts along the line x2 = 0.5 illustrate the axial symmetry, but also the lack of radial symmetry

of the solution; this becomes clearer when h → 0. The smaller h, the slower the convergence

of the augmented Lagrangian algorithm; indeed, typically, after 100 iterations, the residual
∣

∣

∣

∣u100 − u99
∣

∣

∣

∣

(L2(Ω))2
is smaller than 10−8 when h ∼ 10−1 and between 10−3 and 10−2 when

h ∼ 10−4.

In conclusion, the regularization approach converges when h → 0 and is numerically con-

sistent. The convergence is slow since the data becomes singular; this behavior shows the
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Fig. 5.11. Approximation uh obtained with the augmented Lagrangian method on the unit square Ωs

(top) and cuts of |uh|2 along x2 = 1/2 (middle) and x1 = 1/2 (bottom), for fε given by (5.3) with

s = 1/2, ε = h2 and x0
1 = 0.5. Left to right: h = 5 · 10−2, 3.33 · 10−2, 2.50 · 10−2 and 6.25 · 10−3.
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importance of designing exact or quasi-exact integration methods as those in Appendix 7.

5.4. Non-smooth data with point singularity: the case f /∈ L2(Ω)

Let us turn back to the non-smooth case (2.11) with s = 1. As specified earlier, f /∈ L2(Ω) in

this case. However, the numerical results presented below show that the augmented Lagrangian

algorithm succeeds in finding a bounded solution to (2.1).

Fig. 5.12 shows the solution obtained for the unit disk D1 and (x0
1, x

0
2) = (0, 0). Instabilities

develop near the singularity point. It also visualizes cuts of the graph of |uh|2 along the line

x2 = x1, and shows that the oscillations concentrate at the singularity point when h → 0.

Fig. 5.8 actually shows that the sup-norm ||uh||∞ increases exponentially when s → 1,

but remains bounded. Fig. 5.10 shows that, for this non-smooth problem, the order of the

error ||uh − uex||L2(Ω)2 is consistent with the value of s in the definition of f (f(r) = r−s).

Convergence order for the approximation of the solution uh is obtained, also in this case with

less regularity.
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Fig. 5.12. Approximation uh obtained with the augmented Lagrangian method on the unit disk D1 for

the function f(x1, x2) = (x2
1+x2

2)
−1/2 (s = 1), for h = 0.069422, 0.022983, and 0.012846 (left to right).

Top row: fields uh; bottom row: cuts of the graph of |uh|2 along x1 = x2.

Numerical experiments for various functions f (smooth, non-smooth, and even with less

regularity than the L2-regularity) have shown the ability of the L∞-regularization at finding

solutions to (2.1). However, the advocated augmented Lagrangian method is fairly complicated

conceptually (albeit relatively easy to implement). A natural question is therefore: What

happens when using a simpler regularization technique based, e.g., on a L2-regularization? The

answer to this question is the topic of Section 6.
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6. L2-Regularization of the Divergence Equation

6.1. Model problem and generalities

Relaxing the condition u ∈ (C0(Ω))2 ,we consider the following variant of problem (2.3):

Find u ∈ Tf such that
1

2

∫

Ω

|∇u|2 dx ≤
1

2

∫

Ω

|∇v|2 dx, ∀v ∈ Tf , (6.1)

whereTf =
{

v ∈ (H1(Ω))2 : ∇ · v = f in Ω
}

. A priori, the solution to (6.1) is not in (L∞(Ω))2.

By introducing a Lagrange multiplier p ∈ L2(Ω), the Euler-Lagrange system associated with

(6.1) correspond to solving the Stokes type system:


































Find (u, p) ∈ (H1(Ω))2 × L2(Ω) such that

−∇2u+∇p = 0 in Ω,

∇ · u = f in Ω,

∂u

∂n
− pn = 0 on ∂Ω,

(6.2)

where n is the outward unit normal vector at ∂Ω. Problem (6.2) is not well-posed as the

unknown u (the equivalent of a ’velocity’) is defined up to an additive constant vector. Let γ

be a positive constant. A simple way to force uniqueness is to replace (6.2) by:


































Find (uγ , pγ) ∈ (H1(Ω))2 × L2(Ω) such that

−∇2uγ + γuγ +∇pγ = 0 in Ω,

∇ · uγ = f in Ω,

∂uγ

∂n
− pγn = 0 on ∂Ω,

(6.3)

Problem (6.3) is well-posed; actually, it corresponds to replacing (6.1) by

Find uγ ∈ Tf such that Jγ(uγ) ≤ Jγ(v), ∀v ∈ Tf , (6.4)

where

Jγ(v) =
1

2

∫

Ω

|∇v|2 dx+
γ

2

∫

Ω

|v|2 dx.

A priori, the solution to (6.4) is not in (L∞(Ω))2. We are interested in computing the solution

of (6.4) for small values of the parameter γ > 0, and to study the convergence of uγ when

γ → 0.

6.2. Numerical algorithm and finite element discretization

Problem (6.3) is solved with stabilized piecewise linear finite element techniques, like those

used to solve problem (4.4) in Section 4.5. Let uγ,h ∈ (V 1
h )

2 and pγ,h ∈ V 1
h be approximations

of uγ and pγ respectively. The finite element formulation considered here reads as follows:

Find {uγ,h, pγ,h} ∈ (V 1
h )

2 × V 1
h such that

γ(uγ,h,vh)0,h +

∫

Ω

∇uγ,h : ∇vhdx−

∫

Ωh

pγ,h∇ · vhdx+

∫

Ωh

∇ · uγ,hqhdx

+
∑

K∈Th

αh2
K

∫

K

∇pγ,h · ∇qhdx,=

∫

Ωh

fhqhdx, (6.5)

for all {vh, qh} ∈ (V 1
h )

2 × V 1
h . Numerical results obtained by solving (6.5) are shown in Sec-

tion 6.3.
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Fig. 6.1. Field uh (left), graph of |uh|2 (middle), and cut of the graph of |uh|2 according to x2 = 0

(right) obtained with the L2-regularization approach (γ = 10−3) on the unit disk D1 for f = 2 (first

row: h = 0.06942, second row: 0.01285).

6.3. Numerical results

Smooth and non-smooth functions f are used to test the L2 regularization approach, and

the test cases from Section 5 are considered.

Smooth data. Fig. 6.1 illustrates the solution of (6.5) on the disk domain when f = 2. The

computed results are identical to those obtained with the L∞-regularization (see Fig. 5.1). This

is not surprising since both the data and the domain are very smooth.

Non-smooth data with point singularity (the case f ∈ L2(Ω)). Let us consider the

(non smooth) case when f is given by (2.11) with s = 0.75. In Fig. 6.2, we have visualized

the solution of (6.5) on the disk domain in that case, when using γ = 10−3 as a regularization

parameter; these results compare well with those in Fig. 5.7. The solution obtained with the L2-

regularization method for different values of γ are very similar; moreover, they exhibit the same

oscillations than the ones of the solution obtained with the L∞-regularization approach. Similar

conclusions can be drawn with the data with a line singularity proposed in Section 5.3. In these

cases, the L2-regularization allows to obtain bounded solutions even though not enforcing the

L∞ regularity explicitly.

Non-smooth data with point singularity (the case f /∈ L2(Ω)). Let us finally consider

the (even less smooth, and more interesting) case when f is given by (2.11) with s = 1. Fig. 6.3

illustrates the solution of (6.5) on the disk domain in that case, when using γ = 10−3 as a

regularization parameter; these results compare well with those in Fig. 5.12. However, in that

case, the solution of the L2-regularized Eq. (6.3) depends on the value of the parameter γ;

indeed, numerical results reported in Fig. 6.4 shows that, for small values of γ (γ ≃ 10−9) the

solution changes drastically. On the other hand, for large values of γ, the solution is identical to

the one obtained with the L∞-regularization. Results in Fig. 6.4 illustrates cuts of the graph of
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Fig. 6.2. Approximation uh obtained with the L2-regularization method (γ = 10−3) on the unit disk

D1 for the function f(x1, x2) =
(

√

x2
1 + x2

2

)

−3/4

(s = 3/4), for h = 0.069422, 0.022983, and 0.012846

(left to right). Top row: fields uh; bottom row: cuts of the graph of |uh|2 along x1 = x2.
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Fig. 6.3. Same as Fig. 6.2, except for the function f(x1, x2) = (x2
1 + x2

2)
−1/2 (s = l).

the norm |uh|2 of the solution along x1 = x2 for various mesh sizes. The numerical results show

the convergence when h → 0, and show also that the maximum of the norm |uh|2 is actually

smaller when γ = 10−9. Fig. 6.4 shows that, for a given value of γ, convergence is obtained when

the mesh size tends to zero. On the other hand, there is no evidence to show that the limits uh

when h → 0 for different parameters γ are the same. This implies that an appropriate choice

of the parameter γ is not guaranteed. Let us remark that this parameter dependence does not

exist for the L∞-regularization method, as already emphasized in Remark 5.1. Therefore, the

choice of the parameter γ is much more difficult to make than the choice for the parameter g
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Fig. 6.4. Approximation uh obtained with the L2-regularization method. Cuts of the graph of |uh|2
along x1 = x2 for γ = 10−3, 10−6 and 10−9 (top row: h = 0.022983, bottom row: h = 0.012846).

of the L∞-regularization method, and a systematic way of choosing γ is still an open question.

7. Conclusions

The approximation of the bounded solution of the divergence equation ∇ · u = f has been

investigated from the numerical viewpoint based on the introduction of regularizing L∞ and

L2 terms in well-chosen functionals.

An augmented Lagrangian method for the L∞-based approach, together with piecewise

linear finite elements, has been discussed. An Uzawa iterative algorithm allows to decouple

nonlinearities and differential operators, requiring the solution of a sequence of local nonlinear

problems and of generalized Stokes equations. A simpler regularization method based on a L2

term has been considered and both approaches have been compared, leading to similar (but not

always equal) solutions. Numerical results have been presented for various data, from smooth

functions to functions with point or line singularities; they show good convergence properties.

It is worth mentioning that the methods discussed in this article apply also to the numerical

solution of (1.1) when f has less regularity than L2; in this case, the approach based on a

L∞-regularization is more robust.
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Appendix: Quasi-Exact Integration of Functions with Point

Singularity

We consider (x0
1, x

0
2) ∈ Ω and f(x1, x2) given by (2.11). This function has a singularity at

(x0
1, x

0
2). Let us consider a triangulation Th such that P0 := (x0

1, x
0
2) is one grid point, and let

us denote by ϕ0 the piecewise linear finite element basis function associated to that node. In

that case, one has to compute

d0 :=

∫

Ω

fϕ0dx =
∑

K∈Th,P0∈K

∫

K

fϕ0dx.

On each triangle K which has P0 as a vertex, one has ϕ0(x1, x2) = a(x1 − x0
1) + b(x2 − x0

2) + 1,

where a, b ∈ R. Therefore

d0,K :=

∫

K

fϕ0dx

=

∫

K

1

((x1 − x0
1)

2 + (x2 − x0
2)

2)
s/2

(

a(x1 − x0
1) + b(x2 − x0

2) + 1
)

dx1dx2

=

∫

K

1

rs
(ar cos θ + br sin θ + 1) rdrdθ

=

∫ θ2

θ1

∫ R(θ)

0

1

rs
(ar cos θ + br sin θ + 1) rdrdθ, (A.1)

with the polar change of variables (x1, x2) = (x0
1 + r cos θ, x0

2 + r sin θ). Notation is illustrated

in Fig. A.1.

θ1

θ2 θ

R(θ)

R1

R2

(x0

1
, x0

2
)

(x1

1
, x1

2
)

(x2

1
, x2

2
)

x1

x2

Fig. A.1. Exact integration on the triangle K. Sketch and notation.

Concerning the bounds of integration for the polar coordinates (r, θ), the variable θ varies

between the maximal and minimal angles θ1 and θ2 respectively. It remains to determine the

upper bound R(θ) for the variable r. In order to do so, let us denote by P1 = (x1
1, x

1
2) and

P2 = (x2
1, x

2
2) the other two vertices of K. The equation of the line going through P1 and P2 is

x2 = x1
2 +m(x1 − x1

1), where m = (x2
2 − x1

2)/(x
2
1 − x1

1). By using the change of variables, one

obtains r sin θ = x1
2 − x0

2 +m(r cos θ − (x1
1 − x0

1)), and finally

r = R(θ) =
x1
2 − x0

2 −m(x1
1 − x0

1)

sin θ −m cos θ
.
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The integral (A.1) becomes, for s < 1,

d0,K =

∫ θ2

θ1

∫ R(θ)

0

(ar cos θ + br sin θ + 1) r1−sdrdθ

=

∫ θ2

θ1

∫ R(θ)

0

(

a cos θ r2−s + b sin θ r2−s + r1−s
)

drdθ

=

∫ θ2

θ1

(

a cos θ

3− s
R(θ)3−s +

b sin θ

3− s
R(θ)3−s +

1

2− s
R(θ)2−s

)

dθ.

Appropriate modifications are made when s = 1. Let us denote by F (θ) the function

F (θ) =
a cos θ

3− s
R(θ)3−s +

b sin θ

3− s
R(θ)3−s +

1

2− s
R(θ)2−s.

In order to use a trapezoidal formula, let us introduce a partition of [θ1, θ2] defined by (ξj)
Ni+1
j=1 ,

with θ1 = ξ1 < ξ2 < · · · < ξNi
< ξNi+1 = θ2 (Ni is the number of discretization points).

Therefore, the coefficient d0,K can be approximated by:

d0,K =

∫ θ2

θ1

F (θ)dθ ≃
Ni
∑

j=1

ξj+1 − ξj
2

[F (ξj) + F (ξj+1)] ,

by using a trapezoidal formula. It remains to determine the coefficients a and b. Note that the

last coefficient is one since ϕ0(P0) = 1. In order to do so, we solve the 2× 2 system:

a(x1
1 − x0

1) + b(x1
2 − x0

2) + 1 = 0, a(x2
1 − x0

1) + b(x2
2 − x0

2) + 1 = 0,

whose solution is

b =
x1
1 − x2

1

(x2
1 − x0

1)(x
1
2 − x0

2)− (x1
1 − x0

1)(x
2
2 − x0

2)
, a =

−1− b(x1
2 − x0

2)

x1
1 − x0

1

,

with the appropriate modifications if any of the denominators is vanishing.
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