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Abstract

In this paper, we study the local discontinuous Galerkin (LDG) method for one-

dimensional singularly perturbed convection-diffusion problems by an exponentially fitted

technique. We prove that the method is uniformly first-order convergent in the energy

norm with respect to the small diffusion parameter.
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1. Introduction

In this paper we consider the one-dimensional convection-diffusion problem:

{

Lǫu := −ǫu′′ + (au)′ = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where ǫ is a small positive diffusion coefficient and the convection velocity a is positive.

This is a fundamental model problem in computational fluid dynamics. In general, the

solution of the problem has a boundary layer at x = 1 and the width of the layer is O(ǫ ln(1/ǫ)).

When ǫ is big enough, the problem can be solved well by standard finite element methods. But

when ǫ is too small, that is to say the problem is convection dominated, the standard finite

element methods do not work well, except for the partition step h < ǫ. But it maybe is

impossible, since the computing cost is too expensive.

In order to avoid the difficulties, many investigators have resorted to methods based on

exponentially-fitted techniques. In [8–10, 18], the authors explored the so-called L spline to

solve the problem and gave some uniform error estimates with respect to the small parameter

ǫ. However, there are quite a few other techniques developed to treat this problem. We refer to

two books focusing on this topic [15, 17]. In [11], the author proposed the interesting tailored

finite point method to solve the singular perturbation problem. There are some other papers

(see, e.g., [12,16]) about this method. An upwind finite difference scheme with the grid formed

by equidistributing a monitor function is proposed in [14].
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Recently, some authors (see, e.g., [1, 4–7, 19]) applied DG or LDG methods to solve the

problem. In [6], the authors analyzed the minimal dissipation LDG method (MD-LDG) for

convection-diffusion or diffusion problems. They took the stabilization parameter α to zero on

all the inter-element faces except on some part of the Dirichlet boundary to guarantee that

the method is well defined. In [4], the authors used LDG method to solve one dimensional

time-dependent convection-diffusion problem and obtained some optimal priori error estimates.

The numerical result shows that, on a uniform mesh, it can not get the accuracy when the

mesh-size h is bigger than the small diffusion parameter ǫ.

In fact, in all the above mentioned works, only piecewise polynomials are used in the approx-

imate finite element spaces and all the error estimates had the form like ||u− uh|| ≤ Chα||u||β,
where u is the exact solution and uh is the numerical solution. In general, for singularly per-

turbed problems, the constant C and the Sobolev norm ||u||β depend on the negative power

of the small diffusion parameter ǫ. Therefore, when the mesh-size h > ǫ, this kind of error

estimates does not make sense.

As known, one of the advantages of the DG methods is the flexibility with the finite element

approximation space. So in [20], the authors used the approximate spaces including non-

polynomial functions such as exponentials. With properly selected spaces, they got much more

accurate numerical results than only using piecewise polynomial spaces. However there is no

theoretical result given on the uniformly convergence of such methods.

In this paper, we will consider a minimal dissipation exponential-fitted LDG method with no

penalty involved, i.e. the stabilization parameter α is identically zero everywhere. A first order

uniform convergence is obtained in the energy norm as: ‖q − qh‖L2(0,1) ≤ ch, with q =
√
ǫu′

and qh the approximation for q. Here ‘uniformly’ means that the constant c > 0 in the above

estimate is independent of either the small parameter ǫ and h or the exact solution u. To do so,

the ingredient is that only ‖u′‖L1(0,1) is involved in the error estimate. Throughout this paper,

the constant c is independent of the parameter ǫ and the exact solution u.

The paper is structured as follows. In Section 2, we review the minimal dissipation LDG

method and then present the numerical scheme and the main result on the uniform error

estimate, which is proved in Section 3. In Section 4, we show some numerical results.

2. Exponentially Fitted LDG Method

2.1. Review of LDG method

In this subsection, we introduce the minimal dissipation LDG method discussed in [6]. At

first, by introducing a new variable, q =
√
ǫu′, the problem (1.1) can be rewrite as follows:















(au−
√
ǫq)′ = f(x), x ∈ (0, 1),

q + (−√
ǫu)′ = 0, x ∈ (0, 1),

u(0) = u(1) = 0.

(2.1)

Let {xj+ 1
2
}Nj=0, j = 1, · · · , N be a uniform partition of the interval [0, 1]. Denote by Ij =

(xj− 1
2
, xj+ 1

2
), and h = 1/N . Multiplying (2.1) by smooth functions v, w, and integrating over
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Ij , after a simple formal integration by parts, the weak formulation of the exact solution reads














−
∫

Ij

(au−
√
ǫq)v′ + (au−

√
ǫq)−

j+ 1
2

v−
j+ 1

2

− (au−
√
ǫq)+

j− 1
2

v+
j− 1

2

=

∫

Ij

fv,
∫

Ij

qw +

∫

Ij

√
ǫuw′ −

√
ǫu−

j+ 1
2

w−

j+ 1
2

+
√
ǫu+

j− 1
2

w+
j− 1

2

= 0,
(2.2)

where the notation v±
j± 1

2

stands for v(x±

j± 1
2

).

In order to define the LDG method, we need the finite element space

Vh =

{

v ∈ L2(0, 1) : v|Ij ∈ P k(Ij), j = 1, · · · , N
}

,

where P k(I) denotes the space of polynomials in I of degree at most k. Then, the LDG method

is defined by a discrete version of the formulation (2.2): find uh ∈ Vh and qh ∈ Vh, such that














−
∫

Ij

(auh −
√
ǫqh)v

′ + (aûc
h −

√
ǫq̂h)j+ 1

2
v−
j+ 1

2

− (aûc
h −

√
ǫq̂h)j− 1

2
v+
j− 1

2

=

∫

Ij

fv,
∫

Ij

qhw +

∫

Ij

√
ǫuhw

′ −
√
ǫ(ûd

h)j+ 1
2
w−

j+ 1
2

+
√
ǫ(ûd

h)j− 1
2
w+

j− 1
2

= 0,
(2.3)

for all v, w ∈ Vh. Here ûd
h and q̂h are the numerical fluxes associated with diffusion and ûc

h is

the numerical flux associated with convection. In the MD-LDG method, the numerical flux ûc
h

is defined as

(ûc
h)j+ 1

2
=







uh(x
−

j+ 1
2

), j = 1, · · · , N,

0, j = 0.
(2.4)

The numerical flux associated with diffusion, ûd
h, has a similar definition

(ûd
h)j+ 1

2
=







uh(x
−

j+ 1
2

), j = 1, · · · , N − 1,

0, j = 0, N,
(2.5)

and the numerical flux for qh is given by

(q̂h)j+ 1
2
=







qh(x
+
j+ 1

2

), j = 0, · · · , N − 1,

qh(x
−

j+ 1
2

)− αuh(x
−

j+ 1
2

), j = N,
(2.6)

where α is the stabilization parameter. In our scheme, we can set α = 0 and the stability still

holds.

For convenience we list some commonly used notations: jumps and averages on the node

points

[p]j+ 1
2
=















p+
j+ 1

2

, j = 0,

p+
j+ 1

2

− p−
j+ 1

2

, j = 1, · · · , N − 1,

−p−
j+ 1

2

, j = N,

p̄j+1/2 =















p+
j+ 1

2

, j = 0,

1
2 (p

+
j+ 1

2

+ p−
j+ 1

2

), j = 1, · · · , N − 1,

p−
j+ 1

2

, j = N.
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2.2. Exponentially fitted LDG method

We now introduce the numerical scheme. Assume the convection velocity a is a positive

constant and f ∈ W 1,∞(0, 1). In order to fit the property of boundary layer, we add exponential

functions to the basis space. Then the scheme reads: find uh ∈ V1 := {v ∈ L2(0, 1) : v|Ij ∈
span{1, x, exp(aǫ (x − xj+ 1

2
))}}, qh ∈ V2 := {v ∈ L2(0, 1) : v|Ij ∈ span{1, exp(aǫ (x − xj+ 1

2
))}}

such that














−
∫

Ij

(auh −
√
ǫqh)v

′ + (aûc
h −

√
ǫq̂h)j+ 1

2
v−
j+ 1

2

− (aûc
h −

√
ǫq̂h)j− 1

2
v+
j− 1

2

=

∫

Ij

fv,
∫

Ij

qhw +

∫

Ij

√
ǫuhw

′ −
√
ǫ(ûd

h)j+ 1
2
w−

j+ 1
2

+
√
ǫ(ûd

h)j− 1
2
w+

j− 1
2

= 0,
(2.7)

for all v ∈ V1, w ∈ V2. The numerical flux ûc
h, ûd

h, q̂h are the same as (2.4), (2.5) and (2.6)

with the penalty parameter α = 0.

Summing over j from 1 to N in (2.7), we obtain

Bh(uh, qh; v, w) =

N
∑

j=1

∫

Ij

fv, (2.8)

where

Bh(uh, qh; v, w) =

N
∑

j=1

∫

Ij

qhw −
N
∑

j=1

∫

Ij

(

(auh −
√
ǫqh)v

′ −
√
ǫuhw

′
)

+

N
∑

j=1

(

(aûc
h −

√
ǫq̂h)j+ 1

2
v−
j+ 1

2

− (aûc
h −

√
ǫq̂h)j− 1

2
v+
j− 1

2

)

+

N
∑

j=1

(

−
√
ǫ(ûd

h)j+ 1
2
w−

j+ 1
2

+
√
ǫ(ûd

h)j− 1
2
w+

j− 1
2

)

(2.9)

For simplicity, we denote

N
∑

j=1

ĥ(uh, qh; v, w) =

N
∑

j=1

(

(aûc
h −

√
ǫq̂h)j+ 1

2
v−
j+ 1

2

− (aûc
h −

√
ǫq̂h)j− 1

2
v+
j− 1

2

)

+
N
∑

j=1

(

−
√
ǫ(ûd

h)j+ 1
2
w−

j+ 1
2

+
√
ǫ(ûd

h)j− 1
2
w+

j− 1
2

)

Let v = uh, w = qh in (2.9), then after a simple calculate, we get

Bh(uh, qh;uh, qh) =

N
∑

j=1

∫

Ij

(qh)
2 +

N+1
∑

j=1

a

2
[uh]

2
j− 1

2

=

N
∑

j=1

∫

Ij

fuh. (2.10)

Next, we will prove the existence and uniqueness of the numerical scheme (2.7).

Theorem 2.1. (Existence and uniqueness)The exponentially fitted LDG methods (2.7) has a

unique solution (uh, qh) ∈ V1 × V2.

Proof. We only need to prove the uniqueness of the solution. The existence is equivalent to

the uniqueness since the discrete problem (2.7) is finite dimensional.
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When f = 0, from (2.10), we have

N
∑

j=1

∫

Ij

(qh)
2 +

N+1
∑

j=1

a

2
[uh]

2
j− 1

2

= 0. (2.11)

That is to say qh = 0 and [uh]j− 1
2
= 0, ∀j = 1, · · · , N +1. Then from the first equation of (2.7),

let f = 0, qh = 0 and after a simple formal integration by parts, we get
∫

Ij

au′

hv + a[uh]j− 1
2
v+
j− 1

2

= 0. (2.12)

Using the fact [uh]j− 1
2
= 0, and letting v = u′

h, we have
∫

Ij
a(u′

h)
2 = 0. Then we have the result

u′

h|Ij = 0. As uh is in the space V1, we can easily say uh = 0 by using the fact [uh]j− 1
2
= 0,

j = 1, · · · , N + 1.

The following is the main result on the error estimate.

Theorem 2.2. Suppose that u, q be the exact solution of (2.1). Let uh ∈ V1, qh ∈ V2 be the

approximate solution given by (2.7), then we have, for ǫ > 0 sufficiently small, there exists a

positive constant c independent of ǫ, h, u and q, such that

N
∑

j=1

∫

Ij

(q − qh)
2 ≤ c h2. (2.13)

3. Error Estimate

This section is devoted to the proof of Theorem 2.2. In order to derive the error estimate for

(eu, eq) = (u−uh, q−qh), we first split it into two parts (eu, eq) = (u−ũ+ũ−uh, q−q̃+q̃−qh) :=

(ρu + ηu, ρq + ηq). To define ũ ∈ V1 and q̃ ∈ V2, we first introduce the bubble functions which

were used in [21].

3.1. Bubble functions

Let

Bj(x) =
x− xj− 1

2

a
− h

a

1− exp(aǫ (x− xj− 1
2
))

1− exp(aǫh)
.

Then Bj ∈ H1
0 (Ij) is the solution of the local boundary value problem:

{

L0Bj := −ǫB′′

j + aB′

j = 1, in Ij = (xj− 1
2
, xj+ 1

2
),

Bj(xj− 1
2
) = Bj(xj+ 1

2
) = 0.

(3.1)

Moreover, the following properties hold:











































(1) 0 ≤ c0
2h

(x− xj− 1
2
)(xj+ 1

2
− x) ≤ Bj(x) ≤

h

a
, c0 = min{ h

2ǫ
,
1

a
},

(2)

∫

Ij

Bj(x) = ǫ

∫

Ij

|B′

j(x)|2,

(3)
c0h

12
≤ h̃j :=

1

h

∫

Ij

Bj(x)dx ≤ h

a
,

(4) 0 ≤
∫

Ij

∣

∣B′

j(x)
∣

∣ ≤ 2h

a
.

(3.2)
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It is easily to see that V1 ≡ {v ∈ L1(0, 1) : v|Ij ∈ span{1, x, Bj}} and V2 ≡ {v ∈ L1(0, 1) :

v|Ij ∈ span{1, B′
j}}. Then we can split uh and qh into two parts respectively as uh = uL + uB

and qh = qL + qB, where uL|Ij is linear, qL|Ij a constant and uB|Ij = cBj, qB |Ij = cB′
j . Taking

v = Bj in (2.7), we will see that

qB |Ij =

(

−a
√
ǫu′

L|Ij +
√
ǫ
∫

Ij
fBj

∫

Ij
Bj

)

B′

j . (3.3)

3.2. Error estimate in energy norm

Now, we define ũ = ũL + ũB and q̃ = q̃L + q̃B :=
√
ǫũ′

L +
√
ǫũ′

B by

ũL = Πhu, (3.4)

and

ǫ

∫

Ij

(u − ũ)′B′

j +

∫

Ij

a(u− ũ)′Bj = 0, j = 1, · · · , N, (3.5)

where Πhu is the continuous piecewise linear nodal interpolation of u. Using the properties

(3.2) of Bj(x) and (3.5), we have

ũB|Ij =

(

−aũ′

L|Ij +
∫

Ij
fBj

∫

Ij
Bj

)

Bj . (3.6)

The following Lemmas consider the uniform estimates for ρu and ρq.

Lemma 3.1. ([8]) There exists positive constants ǫ0 and c such that, for all v ∈ H1(s, t)

ǫ|v′(x)|+ |v(x)| ≤ c

(

||Lǫv||L1(s,t) + |v(s)|+ |v(t)|
)

, s ≤ x ≤ t, 0 < ǫ ≤ ǫ0.

Lemma 3.2. For ρu = u− ũ and ρq = q − q̃, we have

ǫ|ρ′u|+ |ρu| ≤ ch2,

N
∑

j=1

∫

Ij

(ρq)
2 ≤ ch2. (3.7)

Proof. By the definition of ρ, we can easily see











L0ρu := −ǫρ′′u + aρ′u = f −
∫

Ij
fBj

∫

Ij
Bj

:= Fj , x ∈ Ij

ρu(xj− 1
2
) = ρu(xj+ 1

2
) = 0.

(3.8)

Using Lemma 3.1, we obtain

ǫ||ρ′u||L∞(Ij) + ||ρu||L∞(Ij) ≤ c||L0ρu||L1(Ij) = c||Fj ||L1(Ij) ≤ ch2.

Noting that

(ρq)
2 = (

√
ǫρ′u)

2 ≤ ǫ|ρ′u|(|u′|+ |ũ′|),
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we have by using the fact (see [15]) ||u′||L1(0,1) ≤ c that

N
∑

j=1

∫

Ij

(ρq)
2 ≤

N
∑

j=1

∫

Ij

ǫ|ρ′u|
(

|u′|+ |ũ′|
)

≤ ch2
N
∑

j=1

∫

Ij

(

|u′|+ |ũ′|
)

≤ ch2 + ch2
N
∑

j=1

∫

Ij

|ũ′| ≤ ch2 + ch2
N
∑

j=1

∫

Ij

(

|ũ′

L|+ |ũ′

B|
)

. (3.9)

This completes the first part of (3.7).

From the definition (3.4) of ũL, we have
∣

∣ũ′
L|Ij

∣

∣ ≤ 1
h

∫

Ij
|u′| . Thus,

N
∑

j=1

∫

Ij

|ũ′

L| ≤
N
∑

j=1

∫

Ij

|u′| ≤ c.

Using the expression (3.6) of ũB and the properties (3.2), we similarly have

N
∑

j=1

∫

Ij

|ũ′

B| ≤ c.

Therefore, the second part of (3.7) is also established. �

Now we give the estimate for (ηu, ηq).

Lemma 3.3. For 0 < ǫ ≤ ǫ0, we have

N
∑

j=1

∫

Ij

(ηq)
2 +

1

2

N+1
∑

j=1

a[ηu]
2
j− 1

2

≤ ch3. (3.10)

Proof. Denote by ρ = (ρu, ρq) and η = (ηu, ηq). From (2.10) and (2.8), we have

N
∑

j=1

∫

Ij

(ηq)
2 +

1

2

N+1
∑

j=1

a[ηu]
2
j− 1

2

= Bh(η; η) = Bh(u − uh, q − qh; η)−Bh(ρ; η) = −Bh(ρ, η)

= −
N
∑

j=1

∫

Ij

ρqηq +

N
∑

j=1

ĥ(ρu, ρq; ηu, ηq) +

N
∑

j=1

∫

Ij

(aρu −
√
ǫρq)η

′

u −
N
∑

j=1

∫

Ij

√
ǫρuη

′

q

=: T1 + T2 + T3 + T4. (3.11)

The first term can be eliminated by the fourth term by using integration by parts and (3.4),

T4 = −
N
∑

j=1

∫

Ij

√
ǫρuη

′

q =

N
∑

j=1

∫

Ij

(
√
ǫρu)

′ηq −
N
∑

j=1

√
ǫρuηq|

x
j+ 1

2
x
j− 1

2

=

N
∑

j=1

∫

Ij

ρqηq = −T1. (3.12)

As to the second term T2, by Lemma 3.2, we obtain

|T2| =
∣

∣

∣

∣

N
∑

j=1

ĥ(ρu, ρq; ηu, ηq)

∣

∣

∣

∣
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=

∣

∣

∣

∣

N
∑

j=1

√
ǫρ̂q(xj− 1

2
)ηu(x

+
j− 1

2

)−
√
ǫρ̂q(xj+ 1

2
)ηu(x

−

j+ 1
2

)

∣

∣

∣

∣

≤
N+1
∑

j=1

∣

∣

∣

√
ǫ(ρ̂q)j− 1

2
[ηu]j− 1

2

∣

∣

∣
≤

N+1
∑

j=1

ch2
∣

∣

∣
[ηu]j− 1

2

∣

∣

∣

≤ c

N+1
∑

j=1

(h2)2 +
1

4

N+1
∑

j=1

a[ηu]
2
j− 1

2

= ch3 +
1

4

N+1
∑

j=1

a[ηu]
2
j− 1

2

(3.13)

by using the fact ρu(x
±

j− 1
2

) = 0, j = 1, · · · , N + 1.

It remains to estimate the term T3. Denote by ηu = ηL + ηB, where ηL is a piecewise linear

function and ηB|Ij = cBj . We can rewrite the third term as follows:

T3 =

N
∑

j=1

∫

Ij

(aρu −
√
ǫρq)η

′

u

=

N
∑

j=1

∫

Ij

(aρu −
√
ǫρq)η

′

L +

N
∑

j=1

∫

Ij

(aρu −
√
ǫρq)η

′

B

=

N
∑

j=1

∫

Ij

(aρu − ǫρ′u)η
′

L +

N
∑

j=1

∫

Ij

(aρu − ǫρ′u)η
′

B . (3.14)

By the definition of ũ (3.5) and (3.4), we derive

N
∑

j=1

∫

Ij

(aρu − ǫρ′u)η
′

B = −
N
∑

j=1

∫

Ij

(aρ′uηB + ǫρ′uη
′

B) +

N
∑

j=1

aρuηB|x+
1
2

x− 1
2

= 0. (3.15)

As η′L is a piecewise constant, from (3.4), we see

N
∑

j=1

∫

Ij

(−ǫρ′uη
′

L) = −ǫ

N
∑

j=1

η′L|Ij
∫

Ij

ρ′u = 0. (3.16)

Thus, thanks to (3.2),

|T3| = |
N
∑

j=1

∫

Ij

aρuη
′

L| ≤
N
∑

j=1

(||ρu||L2(Ij)h̃
−1/2
j )(||aη′L||L2(Ij)h̃

1/2
j )

≤ ch−1
N
∑

j=1

||ρu||2L2(Ij)
+

1

2

N
∑

j=1

||aη′L||L2(Ij)h̃j . (3.17)

Using Lemma 3.2, we obtain

ch−1
N
∑

j=1

||ρu||2L2(Ij)
= ch−1

N
∑

j=1

∫

Ij

|ρu|2 ≤ ch3. (3.18)

From (3.2), (3.3) and (3.6), we see that



306 T. YU AND X.Y. YUE

N
∑

j=1

||aη′L||L2(Ij)h̃j =

N
∑

j=1

(aη′L|Ij )2
∫

Ij

Bj =

N
∑

j=1

(a
√
ǫη′L|Ij )2

∫

Ij

(B′

j)
2

=

N
∑

j=1

∫

Ij

(a
√
ǫη′LB

′

j)
2 =

N
∑

j=1

∫

Ij

(q̃B − qB)
2 ≤

N
∑

j=1

∫

Ij

(ηq)
2,

where we have used the facts
∫

Ij

(ηq)
2 =

∫

Ij

(q̃L − qL + q̃B − qB)
2 =

∫

Ij

(q̃L − qL)
2 +

∫

Ij

(q̃B − qB)
2.

Therefore, we get

|T3| ≤ ch3 +
1

2

N
∑

j=1

∫

Ij

(ηq)
2. (3.19)

Consisting (3.11), (3.13) and (3.19) yields

N
∑

j=1

∫

Ij

(ηq)
2 +

1

2

N+1
∑

j=1

a[ηu]
2
j− 1

2

≤ ch3 +
1

2

N
∑

j=1

∫

Ij

(ηq)
2 +

1

4

N+1
∑

j=1

a[ηu]
2
j− 1

2

,

which gives the desired estimate (3.10). �

Form Lemmas 3.2 and 3.3, we obtain the main result of Theorem 2.2, i.e., (2.13).

4. Numerical Results

In this section, we present some numerical examples.

Example 1. Consider the problem:

{

−ǫu′′ + 2 u′ = f(x), x ∈ (0, 1),

u(0) = u0, u(1) = u1,

with the exact solution

u(x) = exp

(

2(x− 1)

ǫ

)

+ 2 x3 + x.

Table 4.1: ǫ = 1.0, h = 1/n, α = 0, piecewise linear space

n L2 error rate energy error rate

4 2.6929e-002 - 5.5963e-002 -

8 7.4939e-003 1.8454 1.4389e-002 1.9595

16 1.9879e-003 1.9145 3.6495e-003 1.9792

32 5.1248e-004 1.9557 9.1908e-004 1.9894

64 1.3014e-004 1.9774 2.3062e-004 1.9947

128 3.2791e-005 1.9887 5.7762e-005 1.9973

256 8.2302e-006 1.9943 1.4454e-005 1.9987

512 2.0616e-006 1.9972 3.6151e-006 1.9994

1024 5.1592e-007 1.9985 9.0395e-007 1.9997
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Table 4.2: ǫ = 1.0, h = 1/n, α = 1/h, piecewise linear space

n L2 error rate energy error rate

4 2.8905e-002 - 5.5963e-002 -

8 7.9843e-003 1.8561 1.4389e-002 1.9595

16 2.0744e-003 1.9445 3.6495e-003 1.9792

32 5.2544e-004 1.9811 9.1908e-004 1.9894

64 1.3192e-004 1.9939 2.3062e-004 1.9947

128 3.3024e-005 1.9981 5.7762e-005 1.9973

256 8.2601e-006 1.9993 1.4454e-005 1.9987

512 2.0654e-006 1.9997 3.6151e-006 1.9994

1024 5.1639e-007 1.9999 9.0396e-007 1.9997

Table 4.3: ǫ = 10−2, h = 1/n, α = 0, piecewise linear space

n L2 error rate energy error rate

4 5.6421e-002 - 9.2245e-001 -

8 4.5013e-002 - 8.4816e-001 -

16 3.7733e-002 - 7.1516e-001 -

32 2.6491e-002 - 5.0798e-001 -

64 5.0798e-001 - 2.7117e-001 -

128 5.1888e-003 - 1.0416e-001 -

256 1.6164e-003 1.6826 3.1723e-002 1.7152

512 4.4252e-004 1.8690 8.6373e-003 1.8769

1024 1.1419e-004 1.9543 2.2430e-003 1.9452

The numerical results are displayed in Tables 4.1– 4.6. The L2 error is ||u− uh||L2(0,1) and

the error in energy norm is ||q− qh||L2(0,1). In Tables 4.1 and 4.3, only piecewise linear function

space are used for uh and qh in the approximation finite element spaces. In Tables 4.4 – 4.5,

we use the exponential functions space in (2.7). In Table 4.6, we use the same exponential

functions space V1 for both uh and qh.

In Tables 4.1 and 4.3, when only piecewise linear functions are used, we can see that when

h ≤ ǫ, i.e., the grid is fine enough to resolve the boundary layer, the scheme is of order h2 in

L2 norm and energy norm. But when h > ǫ, the accuracy is destroyed.

From Tables 4.1 and 4.2, whether we take α = 0 or α = 1/h, the schemes are both of order

h2 in the L2 norm and energy norm. That means there is no need to add the penalty term.

In Table 4.4, in the case h ≤ ǫ, the energy error and the L2 error are of order h2. But when

the problem is singularly perturbed, the error in energy norm is of first order in Table 4.5, for

Table 4.4: ǫ = 1.0, h = 1/n, α = 0, exponential functions space V1 for uh and V2 for qh

n L2 error rate energy error rate

4 1.2122e-002 - 2.4279e-002 -

8 3.1554e-003 1.9417 6.3719e-003 1.9299

16 8.0520e-004 1.9704 1.6228e-003 1.9732

32 2.0351e-004 1.9842 4.0890e-004 1.9887

64 5.1167e-005 1.9918 1.0259e-004 1.9949

128 1.2829e-005 1.9958 2.5692e-005 1.9975

256 3.2079e-006 1.9997 6.4284e-006 1.9988

512 7.9139e-007 2.0192 1.6078e-006 1.9994
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Table 4.5: ǫ = 10−6, h = 1/n, α = 0, exponential functions space V1 for uh and V2 for qh

n L2 error rate energy error rate

4 2.6782e-002 - 4.9686e-004 -

8 6.6533e-003 2.0091 2.4961e-004 0.9932

16 1.6559e-003 2.0065 1.2495e-004 0.9983

32 4.1288e-004 2.0038 6.2492e-005 0.9996

64 1.0307e-004 2.0021 3.1247e-005 1.0000

128 2.5745e-005 2.0013 1.5623e-005 1.0000

256 6.4319e-006 2.0010 7.8102e-006 1.0002

512 1.6066e-006 2.0012 3.9040e-006 1.0004

1024 4.0111e-007 2.0019 1.9509e-006 1.0008

Table 4.6: ǫ = 10−6, h = 1/n, α = 0, exponential functions space V1 both for uh and qh

n L2 error rate energy error rate

4 2.6782e-002 - 2.7951e-005 -

8 6.6533e-003 2.0091 6.9876e-006 2.0000

16 1.6559e-003 2.0065 1.7469e-006 2.0000

32 4.1288e-004 2.0038 4.3671e-007 2.0000

64 1.0307e-004 2.0021 1.0917e-007 2.0001

128 2.5745e-005 2.0013 2.7289e-008 2.0002

256 6.4319e-006 2.0010 6.8207e-009 2.0003

512 1.6067e-006 2.0012 1.7043e-009 2.0007

1024 4.0111e-007 2.0019 4.2569e-010 2.0013

Table 4.7: ǫ = 10−6, h = 1/n, α = 0, exponential functions space V1 for uh and V2 for qh

n L2 error rate energy error rate

4 3.5635e-005 - 6.2361e-002 -

8 1.6658e-005 1.0971 3.1234e-002 0.9975

16 8.0636e-006 1.0467 1.5623e-002 0.9994

32 3.9682e-006 1.0229 7.8123e-003 0.9999

64 1.9685e-006 1.0114 3.9063e-003 0.9999

128 9.8044e-007 1.0056 1.9532e-003 1.0000

256 4.8929e-007 1.0027 9.7662e-004 1.0000

512 2.4443e-007 1.0013 4.8834e-004 0.9999

1024 1.2218e-007 1.0004 2.4420e-004 0.9998

h > ǫ, which confirms our error estimate.

In Table 4.6, the L2 error and the energy error are of order h2, when the space for qh is

the same as uh. The accuracy in energy norm is better than that in Table 4.5. However, this

numerical observation can not be verified theoretically.

Example 2. Consider the problem:

{

−ǫu′′ + ((1 + x)u)′ = f(x), x ∈ (0, 1),

u(0) = u0, u(1) = u1,

with the exact solution

u(x) = exp

(

(x+ 3)(x− 1)

2ǫ

)

+ x.



Local Discontinuous Galerkin Method for Convection-Diffusion Problems 309

The numerical result is displayed in Table 4.7. The result indicate that the scheme is of the

first-order accuracy both in L2 norm and in energy norm.
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