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Abstract

In this paper, using a bubble function, we construct a cuboid element to solve the

fourth order elliptic singular perturbation problem in three dimensions. We prove that the

nonconforming C
0-cuboid element converges in the energy norm uniformly with respect to

the perturbation parameter.
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1. Introduction

Let Ω ⊂ R3 be a bounded polyhedral domain with boundary ∂Ω. For f ∈ L2(Ω), we consider

finite element methods for the following boundary value problem of fourth order elliptic singular

perturbation equation:










ε2∆2u−∆u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω.

(1.1)

where ∆ is the standard Laplace operator, ∂u/∂n denotes the outer normal derivative on ∂Ω

and ε is a small real parameter with 0 < ε ≤ 1. This problem can be considered a gross

simplification of the stationary Cahn-Hilliard equation with ε being the length of the transition

region of phase separation. In particular, we are interested in the regime when ε tends to zero.

Obviously, if ε approaches zero, the differential Eq. (1.1) formally degenerates to Poisson’s

equation.

For ε=1, that is, the usual fourth order elliptic equation, many works have been done. When

a conforming finite element is used, it should consist of piecewise polynomials that are globally

continuously differentiable (C1). Such elements require polynomials of high degree and even in

two dimensions are not easy to construct. To lower the polynomial degree, some macroelements

were created on triangle grids, see e.g., [1, 2]. Recently, a macro type of biquadratic C1 finite

element was constructed on rectangle grids [3, 4], which is a rectangular version of the (C1)

Powell-Sabin element [1]. On the other hand, many lower degree nonconforming elements in

the two and three dimensional cases have been constructed and used in practice.
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For the fourth order elliptic singular perturbation problem (1.1), the Morley element is a

nature choice for the biharmonic operator since it has the least number of degrees of freedom on

each element for fourth order problems [5]. Unfortunately, this element is divergent for general

second order elliptic problems [2,6-8], so we can not get the uniformly convergent result as ε → 0

as was shown in [6]. As a result, in order to obtain robust schemes, either the formulation of the

Morley element method must be modified or the element itself must be changed, and several

variants of the Morley element method have been presented [6, 9, 10].

In the two-dimensional case, a nonconforming C0 triangular element was constructed in [6],

by enriching second degree polynomials with cubic bubble function. A modified triangular

Morley element and a modified rectangular Morley element were presented in [9]. In that paper,

the authors used the original Morley element and changed the discrete variational problem. An

C0 rectangular element was constructed in [10]. A nine parameter non-C0 triangular element

and a twelve parameter non-C0 rectangular element were proposed in [11] by the double set

parameter technique. Later, by the same technique, a nine parameter C0 triangular element

was analyzed in [12] and a non-C0 rectangular element was constructed in [13], but the later

paper was solving problem (1.1) but with boundary conditions u = ∂2u/∂n2 = 0. All of these

nonconforming elements were proved to be uniformly convergent.

In the three-dimensional case. A nonconforming non-C0 tetrahedral element was con-

structed and analyzed in [14] by the similar way used in [9], and a nonconforming C0 tetrahedral

element was constructed in [15]. Recently, a nonconforming C0 tetrahedral element was con-

structed in [16] by Nitsche’s method. In this paper, we introduce an C0 cuboid element, which

was constructed in [17] by us, but the error estimate was valid only for ε = 1. Here, we prove

that the element is robust with respect to the perturbation parameter and uniforming conver-

gent to order h1/2. Moreover, besides the theoretical interest, our new finite element method

is expected to be useful in the computation of the Cahn-Hilliard equation.

The rest of this paper is organized as follows. In the following section, we list some nota-

tions and two basic preliminaries. Next, we give detailed descriptions of the cuboid element.

Finally, we prove the element is uniformly convergent in ε for the fourth order elliptic singular

perturbation equation.

2. Preliminaries

For a nonnegative integer m, we shall use the standard notation Hm(Ω) to denote the

Sobolev space of functions with partial derivatives up to m in L2(Ω). The corresponding norm

and semi-norm are denoted by ‖·‖m,Ω and | · |m,Ω, respectively. The space H
m
0 (Ω) is the closure

in Hm(Ω) of C∞
0 (Ω) with respect to the norm ‖ · ‖m,Ω and (·, ·) denotes the inner product of

L2(Ω). Pk is the polynomial space of degree not greater than k and Qk is the polynomial space

of degree in each coordinate not greater than k.

Define

a(u, v) =

∫

Ω

3
∑

i,j=1

∂iju∂ijvdx, ∀u, v ∈ H2(Ω), (2.1)

b(u, v) =

∫

Ω

3
∑

i=1

∂iu∂ivdx, ∀u, v ∈ H1(Ω). (2.2)

The weak form of (1.1) is: find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = f(v), ∀v ∈ H2
0 (Ω). (2.3)
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The energy norm of (2.3) is defined by

|||v|||2ε = ε2a(v, v) + b(v, v) = ε2|v|22,Ω + |v|21,Ω.

Let Th be a division of Ω into cuboids with mesh size h, and {Th} be a family of divisions

with h → 0. Throughout this paper, we assume that {Th} is regular and quasi-uniform, namely,

it satisfies that :

hT /ρT ≤ σ1, hT /hT ′ ≤ σ2, ∀T, T
′

∈ Th, ∀h,

where hT and ρT are the diameters of T and the largest ball contained in T , respectively,

σ1 > 0, σ2 > 0 are constants independent of h. The nonconforming finite element space Vh

is a piecewise polynomial space such that Vh 6⊂ H2
0 (Ω). The discrete problem of (2.3) is: find

uh ∈ Vh satisfying

ε2ah(uh, vh) + bh(uh, vh) = f(vh), ∀vh ∈ Vh, (2.4)

where

ah(uh, vh) =
∑

T∈Th

∫

T

3
∑

i,j=1

∂ijuh∂ijvhdx, (2.5)

bh(uh, vh) =
∑

T∈Th

∫

T

3
∑

i=1

∂iuh∂ivhdx. (2.6)

The discrete energy norm is :

|||vh|||
2
ε,h = ε2ah(uh, vh) + bh(uh, vh) = ε2|v|22,h + |v|21,h,

where | · |2i,h =
∑

T∈Th

| · |2i,T , i = 1, 2.

The following result is well known as the Strang Lemma [2, 18].

Lemma 2.1. Let u and uh be the solutions of (2.3) and (2.4), then

|||u− uh|||ε,h ≤ C

(

inf
vh∈Vh

|||u− vh|||ε,h + sup
wh∈Vh

|ah(u,wh) + bh(u,wh)− f(wh)|

|||wh|||ε,h

)

, (2.7)

where C > 0 is a constant independent of h.

The first term of (2.7) is the approximation error and the second term of (2.7) is the

consistency error.

Let F ⊂ ∂T be a face of T and Fh = {F ;F ⊂ ∂T, T ∈ Th}. Suppose F = T ∩ T
′

, define

[w]|F = w|T∩F − w|T ′
∩F ; [w]|F = w|F , if F ⊂ ∂Ω.

For any F ⊂ ∂T , ∀T ∈ Th, let n = (n1, n2, n3)
⊤ be the unit outer normal vector to F , τ ,

s be two unit vectors and orthogonal to each other on F , and they constitute the right hand

coordinate system. Then we have

∂j = nj∂n + τj∂τ + sj∂s, 1 ≤ j ≤ 3,

where

∂j =
∂

∂xj
, ∂τ =

∂

∂τ
, ∂s =

∂

∂s
, ∂n =

∂

∂n
.
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If Vh ⊂ H1
0 (Ω), then for all F ⊂ Fh, wh ∈ Vh, we have [wh]|F = [∂τwh]|F = [∂swh]|F = 0.

From Green formula [2, 18], we derive

ε2ah(u,wh) + bh(u,wh)

= ε2
∑

T∈Th

∫

T

3
∑

i,j=1

∂iju∂ijwhdx+
∑

T∈Th

∫

T

3
∑

i=1

∂iu∂iwhdx

= ε2
∑

T∈Th

3
∑

i,j=1

{

∫

∂T

∂iju∂jwhnidτds +

∫

T

∂iijjuwhdx} −
∑

T∈Th

∫

T

∆uwhdx

= ε2
∑

T∈Th

∫

∂T

3
∑

i,j=1

∂iju(nj∂nwh + τj∂τwh + sj∂swh)nidτds

+ ε2
∑

T∈Th

∫

T

∆2uwhdx−
∑

T∈Th

∫

T

∆uwhdx

= ε2
∑

T∈Th

∫

∂T

∂nnu∂nwhdτds+ ε2
∑

T∈Th

∫

T

∆2uwhdx−
∑

T∈Th

∫

T

∆uwhdx.

Since ε2∆2u−∆u = f , we have

ε2ah(u,wh) + bh(u,wh)− f(wh) = ε2
∑

T∈Th

∑

F⊂∂T

∫

F ∂nnu∂nwhdτds, ∀wh ∈ Vh. (2.8)

In [14], Wang and Meng derived the following refined regularity result:

Lemma 2.2. If Ω is convex, then there exists a constant C independent of ε such that

ε−
1

2 |u− u0|1,Ω + ε
1

2 |u|2,Ω + ε
3

2 |u|3,Ω ≤ C‖f‖0,Ω, (2.9)

for all f ∈ L2(Ω). where u0 is the solution of following reduced problem

{

−∆u = f, in Ω,

u = 0, on ∂Ω.
(2.10)

3. Nonconforming C0-Cuboid Element

Let T̂ = [−1, 1]3 be the reference element with nodes

â1(−1,−1,−1), â2(1,−1,−1), â3(1, 1,−1), â4(−1, 1,−1),

â5(−1,−1, 1), â6(1,−1, 1), â7(1, 1, 1), â8(−1, 1, 1).

The 6 faces of T̂ are defined by

F̂1 = �â1â2â3â4, F̂2 = �â5â6â7â8, F̂3 = �â1â5â6â2,

F̂4 = �â4â8â7â3, F̂5 = �â1â4â8â5, F̂6 = �â2â3â7â6.

The 12 edges of T̂ are defined by

l̂1 = â1â2, l̂2 = â3â4, l̂3 = â7â8, l̂4 = â5â6, l̂5 = â1â4, l̂6 = â2â3,
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l̂7 = â6â7, l̂8 = â5â8, l̂9 = â1â5, l̂10 = â2â6, l̂11 = â3â7, l̂12 = â4â8.

The middle points of l̂i is denoted by ĝi (1 ≤ i ≤ 12). See Fig. 3.1. Let

bT̂ = (1− x̂2
1)(1 − x̂2

2)(1 − x̂2
3).

Then bT̂ is the bubble function satisfying bT̂ ∈ Q2(T̂ ), bT̂ |F̂i
= 0, 1 ≤ i ≤ 6.

The shape function space for C0 cuboid element is taken as:

P̂ = P̂ ∗
2 ⊕ bT̂ { x̂i, x̂

2
i , 1 ≤ i ≤ 3}, (3.1)

where P̂ ∗
2 = P2(T̂ ) ⊕ { x̂1x̂2x̂3, x̂

2
i x̂i+1, x̂

2
i x̂i+2, x̂

2
i x̂i+1x̂i+2, 1 ≤ i ≤ 3, mod 3}. Hence, the

space P̂ is a linear space of dimension 26. The degrees of freedom are given as follows:

ΣT̂ =

{

v̂(âi), 1 ≤ i ≤ 8, v̂(ĝi), 1 ≤ i ≤ 12,

∫

F̂i

∂v̂

∂n̂
dŝ, 1 ≤ i ≤ 6

}

. (3.2)

ĝ10

â6(1,−1, 1)

â2(1,−1,−1)

ĝ6

ĝ7

ĝ4

ĝ1

â3(1, 1,−1)

â7(1, 1, 1)

ĝ11

ĝ9

ĝ3

ĝ2

â5(−1,−1, 1)

ĝ8

ĝ5

â1(−1,−1,−1)

ĝ12

â4(−1, 1,−1)

â8(−1, 1, 1)

Fig. 3.1. Degrees of freedom of C0 cuboid element.

Lemma 3.1. ([17]) Any function w ∈ P̂ is uniquely determined by the degrees of freedom (3.2),

namely, ΣT̂ is P̂ -unisolvent.

For cuboid mesh Th, let T ∈ Th be an element with center (x10, x20, x30) and 2hT1, 2hT2,

2hT3 be the lengths of T along x1, x2, x3 coordinates, respectively. The affine transformation

x = F (x̂) : T̂ → T is

xi = hTix̂i + xi0, 1 ≤ i ≤ 3.

Under x = F (x̂), let âi ↔ ai, 1 ≤ i ≤ 8; F̂i ↔ Fi, 1 ≤ i ≤ 6; l̂i ↔ li, ĝi ↔ gi, 1 ≤ i ≤ 12;

P̂ ↔ PT ; v̂(x̂) = v(x). Then the degrees of freedom of PT on T are

vi, 1 ≤ i ≤ 8, v(gi), 1 ≤ i ≤ 12,

∫

Fi

∂v

∂n
dτds, 1 ≤ i ≤ 6. (3.3)

The degrees of freedom (3.3) defines a local interpolation operator ΠT : H3(T ) → PT . It is

easy to prove that the interpolation operate ΠT is affine interpolation equivalent.

The finite element space for the C0 cuboid element is defined by

Vh0 =

{

vh : vh|T ∈ PT , [vh]|F = 0,

∫

F

[∂vh
∂n

]

dτds = 0, ∀F ⊂ ∂T, ∀T ∈ Th

}

. (3.4)
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The corresponding finite element interpolation operator Πh : H3(Ω) ∩H2
0 (Ω) → Vh0 is defined

by Πh|T = ΠT , for all T ∈ Th. It is easy to prove that

Vh0 ⊂ H1
0 (Ω), (3.5)

Then, the discrete variational problem using C0 cuboid element to solve (2.3) is: find uh ∈ Vh0

such that

ε2ah(uh, vh) + b(uh, vh) = f(vh), ∀vh ∈ Vh0. (3.6)

4. Convergence Analysis

In this section, we discuss the convergence properties of the C0 cuboid element given in the

previous section.

It is easy to check that ||| · |||ε,h is a norm of Vh0, so (3.6) are unisolvent by the Lax-Milgram

Theorem [2, 18].

Because P2(T ) ⊂ PT , namely, interpolation operator Πh preserves quadratics locally, it

follows from a standard scaling argument, using the Bramble-Hilbert lemma, that there exists

a constant C independent of h such that
∑

T∈Th

‖v −Πkv‖j,T ≤ Chk−j |v|k,Ω, j = 0, 1, 2; k = 2, 3, ∀v ∈ Hk(Ω). (4.1)

Moreover, if T̂ is a reference element, by using a Bramble-Hilbert argument and following the

standard trace inequality [2, 18]

‖v̂‖
0,∂T̂ ≤ C‖v̂‖

1

2

0,T̂
‖v̂‖

1

2

1,T̂
, (4.2)

we get

|v −Πv|1,Ω ≤ Ch
1

2 |v|
1

2

1,Ω|v|
1

2

2,Ω, ∀v ∈ H2
0 (Ω). (4.3)

By the definition of the space Vh0, we obtain the following convergence theorem for the C0

cuboid element.

Theorem 4.1. Assume that u is the weak solution of (1.1) for a given f ∈ L2(Ω). Furthermore,

let uh be the discrete solutions of (3.6). Then there exists a constant C, independent of ε and

h, such that

|||u− uh|||ε,h ≤ C

{

(h2 + εh)|u|3,Ω,

h(|u|2,Ω + ε|u|3,Ω).

Proof. By Lemma 2.1

|||u− uh|||ε,h ≤ C

(

inf
vh∈Vh0

|||u− vh|||ε,h + sup
wh∈Vh

|Eε,h(u,wh)|

|||wh|||ε,h

)

. (4.4)

The interpolation estimate (4.1) implies that

inf
vh∈Vh

|||u − vh|||ε,h ≤ |||u−Πhu|||ε,h ≤ C

{

(h2 + εh)|u|3,Ω,

h(|u|2,Ω + ε|u|3,Ω).
(4.5)

Hence, it remains to estimate Eε,h(u,wh). Put

PF v =
1

|F |

∫

F

vdτds, PT v =
1

|T |

∫

T

vdτdx.
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Then

PF v =
1

|F |

∫

F

vdτds =
1

|F̂ |

∫

F̂

v̂dτ̂dŝ = PF̂ v̂,

PT v =
1

|T |

∫

T

vdx =
1

|T̂ |

∫

T̂

v̂dx̂ = PT̂ v̂.

Since u ∈ H3(Ω), from (2.8) and the definition of the space Vh0, we have

Eε,h(u,wh) = ε2ah(u,wh) + bh(u,wh)− f(wh)

= ε2
∑

T∈Th

∑

F⊂∂T

∫

F

∂nnu∂nwhdτds,

= ε2
∑

T∈Th

∑

F⊂∂T

∫

F

(∂nnu− PT ∂nnu)(∂nwh − PF ∂nwh)dτds. (4.6)

Set µ = ∂nnu and ϕ = ∂nwh. Then from trace theorem [19] and scaling argument, we obtain

∣

∣

∣

∣

∫

F

(∂nnu− PT ∂nnu)(∂nwh − PF ∂nwh)dτds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

F

(µ− PTµ)(ϕ− PFϕ)dτds

∣

∣

∣

∣

≤ Ch2‖µ̂− PT̂ µ̂‖0,F̂‖ϕ̂− PF̂ ϕ̂‖0,F̂ ≤ Ch2‖µ̂− PT̂ µ̂‖1,T̂‖ϕ̂− PF̂ ϕ̂‖1,T̂

≤ Ch2|µ̂|
1,T̂ |ϕ̂|1,T̂ ≤ Ch|µ|1,T |ϕ|1,T ≤ Ch|u|3,T |wh|2,T .

(4.7)

Putting (4.7) into (4.6) we get

sup
wh∈Vh0

|Eε,h(u,wh)|

|||wh|||ε,h
≤ Cεh|u|3,Ω, (4.8)

and together with (4.4) and (4.5) this implies the desired estimates. �

The regularity result of Lemma 2.2 given in the Section 2 leads to the following uniform

convergence property for the nonconforming finite element method (3.6).

Theorem 4.2. Suppose that u and uh are the solutions of (2.3) and (3.6), respectively, there

exists a constant C > 0 independent of h, ε and f , such that

|||u− uh|||ε,h ≤ Ch
1

2 ‖f‖0,Ω.

Proof. Similar to the proof of Theorem 4.1 we start with the basic estimate (4.4). Throughout

this proof, we assume that C denotes a constant independent of ε, h and f . We first show that

inf
vh∈Vh

|||u− vh|||ε,h ≤ |||u−Πhu|||ε,h ≤ Ch
1

2 ‖f‖0,Ω. (4.9)

By (4.1) and Lemma 2.2, we get

ε2|u−Πhu|
2
2,h ≤ cε2|u|2,h|u−Πhu|2,h

≤ Ch
(

ε
1

2 |u|2,h

)(

ε
3

2 |u|3,h

)

≤ Ch‖f‖20,Ω.

(4.10)
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Then, we have

ε|u−Πhu|2,h ≤ Ch
1

2 ‖f‖0,Ω.

In order to estimate the H1-part of the energy norm we use the triangle inequality to obtain

|u−Πhu|1,Ω ≤ |u− u0 −Πh(u − u0)|1,Ω + |u0 −Πhu
0|1,Ω.

From (4.3) and Lemma 2.2 it follows that

|u− u0 −Πh(u− u0)|1,Ω ≤ Ch
1

2 |u− u0|
1

2

1,Ω|u− u0|
1

2

2,Ω

= Ch
1

2

(

ε−
1

2 |u− u0|1,Ω

)
1

2

(

ε
1

2 |u − u0|2,Ω

)
1

2

≤ Ch
1

2 ‖f‖0,Ω,

while (4.1) gives

|u0 −Πhu
0|1,Ω ≤ Ch‖u0‖2,Ω ≤ Ch‖f‖0,Ω. (4.11)

So, we get the approximation error (4.9).

Using (4.2), the estimate (4.7) can be replaced by

∣

∣

∣

∣

∫

F

(∂nnu− PT ∂nnu)(∂nwh − PF∂nwh)dτds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

F

(µ− PTµ)(ϕ− PFϕ)dτds

∣

∣

∣

∣

≤ Ch2‖µ̂− PT̂ µ̂‖0,F̂‖ϕ̂− PF̂ ϕ̂‖0,F̂

≤ Ch2‖µ̂− PT̂ µ̂‖
1

2

0,T̂
‖µ̂− PT̂ µ̂‖

1

2

1,T̂
‖ϕ̂− PF̂ ϕ̂‖1,T̂

≤ Ch2‖µ̂‖
1

2

0,T̂
|µ̂|

1

2

1,T̂
|ϕ̂|

1,T̂ ≤ Ch
1

2 ‖µ‖
1

2

0,T |µ|
1

2

1,T |ϕ|1,T ≤ Ch
1

2 |u|
1

2

2,T |u|
1

2

3,T |wh|2,T . (4.12)

Furthermore, from (4.6) and (4.12) we conclude that the consistency error Eε,h(u,wh) is

bounded by

|Eε,h(u,wh)| ≤ Cεh
1

2 |u|
1

2

2,Ω|u|
1

2

3,Ω|||wh|||ε,h,

for any w ∈ Vh, Hence, by Lemma 2.2

|Eε,h(u,wh)| ≤ Ch
1

2 ‖f‖0,Ω|||wh|||ε,h, (4.13)

and together with (4.4) and (4.9) this completes the proof. �

5. Conclusion

In this paper, using bubble functions, we construct a nonconforming C0 cuboid element to

solve the fourth order elliptic singular perturbation problem in three dimensions. The element

is proved to be convergent uniformly respect to the perturbation parameter. Besides the theo-

retical interest, our new finite element method is expected to be useful in the computation of

the Cahn-Hilliard equation. This will be our next work.
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