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Abstract

We derive some residual-type a posteriori error estimates for the local C0 discontinuous

Galerkin (LCDG) approximations ([31]) of the Kirchhoff bending plate clamped on the

boundary. The estimator is both reliable and efficient with respect to the moment-field

approximation error in an energy norm. Some numerical experiments are reported to

demonstrate theoretical results.
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1. Introduction

Over the past two decades, discontinuous Galerkin (DG) methods have been attracting

considerable attention as a flexible and efficient computational scheme for many kinds of prob-

lems arising in physics and engineering, including linear and nonlinear hyperbolic problems,

Navier-Stokes equations, convection-dominated diffusion problems and Maxwell equations; see

e.g., [21] and the references therein. A very extensive and thorough study has been done in

solving second-order equations/systems by DG methods ([2, 11, 16, 18, 20], to name but a few).

For fourth order problems, e.g., the biharmonic equation and the Kirchhoff plate bending

problem, the research dates back to the 1970s [3, 4] and focuses on the interior penalty (IP)

methods [10,23,24,27,34–36,39]. Based on the ideas in [16,20] for second order problems, there

have developed in [31] a general framework, covering methods in [10,41], of constructing stable

C0 discontinuous Galerkin (CDG) methods for solving the Kirchhoff plate bending problem.
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With some parameter, precisely C22, taken to be zero in determining numerical traces, a so-

called local C0 discontinuous Galerkin (LCDG) method follows, which may be viewed as an

extension of the local discontinuous Galerkin (LDG) method in [16, 20] to fourth order elliptic

problems. In addition, optimal-order a priori error estimates for the displacement field in

certain discrete energy norm and H1-norm are established in [31]. It is also worth mentioning

that in a recent work [19] a new DG method, called LDG-Hybridizable Galerkin method, is

applied to the biharmonic problem and the a priori error estimates are derived. Although this

method is formulated as a first-order system approximating four variables simultaneously, the

globally coupled degrees of freedom are only two of them on the faces of the elements so that

the implementation is very efficient.

As is known to all, DG methods are well-suited for use in adaptive algorithms, which

are usually based on a posteriori error estimates measuring actual discretization errors without

recourse to the exact solution and providing information on where a local refinement is required.

There have been great and rapid advances in the theory of a posteriori error analysis for second

order elliptic problems. In [5], Becker, Hansbo and Larson derived a residual-based reliable

error estimate in certain mesh-dependent energy norm for IP methods with the help of the

Helmholtz decomposition. Later with a similar technique applied, a reliable a posteriori error

estimate for the LDG method was presented in [13]. Further results concerning the issue are

available in [1, 14, 15, 29, 32, 37].

Very recently, Hansbo and Larson [28] developed a reliable a posteriori bound of the energy-

norm displacement error for a C0 interior penalty method for the Kirchhoff bending plate by

means of a Helmholtz decomposition of second order tensor fields due to Beirão da Veiga et

al [6]. We remark in passing that the decomposition had been originally proposed to construct

the residual-based a posteriori error estimate of the nonconforming Morley plate bending ele-

ment [33], which was then improved in [30] and was extended to the case of general boundary

conditions [7]. A different approach [25] was taken in treating the case of a fully discontinuous

interior penalty method [24], where the derivation of the reliability bound heavily depends on

a suitable recovery operator mapping discontinuous finite element spaces into H2
0 -conforming

spaces composed of high-order versions of the classical Hsieh-Clough-Tochner macro-element

defined in [22]. The idea was also applied to establish an a posteriori bound for a quadratic C0

interior penalty method for the biharmonic problem [8].

The aim of this paper is to construct reliable and efficient residual-based a posteriori error

estimates of the moment-field error in an energy norm for the LCDG methods in [31]. Similar to

the approach in [28], we make use of the Helmholtz decomposition in [6] to deduce the reliability

(the upper bound). Particularly, two improved bounds are available when the orders of discrete

spaces approximating the moment field and the displacement field satisfy some relation. As

regards the efficiency (the lower bound), we follow the traditional lines [40] to bound all error

indicators except the jump term with respect to the normal derivative of the approximating

displacement field from above by the moment-field error in the energy norm plus the data

oscillation.

The rest of the paper is organized as follows. In Section 2, we review the local C0 discontin-

uous Galerkin methods for the Kirchhoff plate bending problem. An a posteriori error analysis

is performed in Section 3. Finally, in Section 4 we report some numerical examples to illustrate

the effectiveness of the error estimator.

We conclude the introduction with some basic notations used in the sequel. Given a bounded

domain ω ⊂ R
2, we will use the usual L2-based Sobolev space Hs(ω) (s ≥ 0) unless specified.
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The corresponding norm and semi-norm are denoted by ‖ · ‖s,ω and | · |s,ω, respectively. If ω is

Ω, we abbreviate them by ‖ · ‖s and | · |s. H
s
0(ω) serves as the closure of C∞

0 (ω) with respect to

the norm ‖ · ‖s,ω. L
2
0(Ω) (resp. H̃

1(Ω)) consists of the functions in L2(Ω) (resp. H1(Ω)) with

zero average over the domain Ω. The symbol “ : ” indicates the double dot product operation of

two second order tensor fields. Given an integer m ≥ 0, Pm(ω) denotes the set of all polynomial

of degree at most m on ω. For any Banach space B, (B)s2×2 consists of all symmetric second

order tensor fields with each component in B. C denotes a generic constant independent of the

functions under consideration and may be different at each occurrence. Finally, for any scalar

field v, vector field φ and second order tensor field τ , various differential operators in need are

defined below:

∇v =

(
∂1v

∂2v

)
, curlv =

(
−∂2v

∂1v

)
;

∇φ =

(
∂1φ1 ∂2φ1
∂1φ2 ∂2φ2

)
, Curlφ =

(
−∂2φ1 ∂1φ1
−∂2φ2 ∂1φ2

)
, divφ = ∂1φ1 + ∂2φ2;

divτ =

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
, rotτ =

(
∂1τ12 − ∂2τ11
∂1τ22 − ∂2τ21

)
.

2. The Local C0 Discontinuous Galerkin Method

In this section, an LCDG method for the Kirchhoff plate bending problem is reviewed in

brief. We refer to [31] for more details on deriving the numerical scheme.

Let Ω denote a polygon domain in R
2 occupied by the midsection of a plate. The clamped

Kirchhoff plate bending model subject to a vertical load density f ∈ L2(Ω) reads: find the

displacement field u such that

{
−divdivM(u) = f in Ω,

u = ∂nu = 0 on ∂Ω,
(2.1)

where the symmetric second order tensor field M(u) standing for the moment field satisfies the

Hooke’s law:

M(u) :=
Ed3

12(1− ν2)

(
(1 − ν)K(u) + νtr(K(v))I

)
,

K(u) := −(∂iju)ij , i, j = 1, 2, (2.2)

with the constants d, E and ν ∈ (0, 0.5) being the thickness, the Young’s modulus, and the

Poisson’s ratio of the plate respectively, n is the unit normal outward to ∂Ω and I is the identity

matrix. The corresponding variational problem takes the form: Find u ∈ H2
0 (Ω) such that

∫

Ω

M(u) : K(v)dx =

∫

Ω

fvdx ∀ v ∈ H2
0 (Ω). (2.3)

Introducing an auxiliary 2 × 2 tensor field, by σ := M(u) , we can reformulate (2.1) as the

following second order system:





K(u) = C(σ),

−divdivσ = f in Ω,

u = ∂nu = 0 on ∂Ω,

(2.4)
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where

C(σ) =
12(1− ν2)

Ed3
( 1

1− ν
σ −

ν

1− ν2
tr(σ)I

)
. (2.5)

Next we let Th be a shape regular triangulation of Ω into disjoint triangles K with the

diameter hK . Fh (resp. Fh(Ω)) denotes the set of all edges in Th (resp. all interior edges) and

for each F ∈ Fh, hF is its length. We shall use two finite element spaces associated with Th to

approximate the moment field and the displacement field respectively: for integers k ≥ 1 and

l ≥ 0

Σl
h :=

{
τ ∈

(
L2(Ω)

)s
2×2

: τij |K ∈ Pl(K), ∀ K ∈ Th, i, j = 1, 2
}
,

V k
h :=

{
v ∈ H1

0 (Ω) : v|K ∈ Pk(K), ∀ K ∈ Th

}
.

Moreover, to guarantee uniqueness of the solution to the LCDG method presented later, it is

assumed that

Kh(V
k
h ) ⊂ Σl

h, C(Σl
h) ⊂ Σl

h, (2.6)

where Kh(V
k
h ) is an elementwise version of K(V k

h ) on each K ∈ Th and the same holds true of

Mh in the sequel.

Before proceeding to the LCDG method, more basic notations are needed. For two vectors

a and b, a ⊗ b represents a second order tensor with aibj being its (i, j)-th element. For two

adjacent triangles K+ and K− sharing an interior edge F , n+ and n− are related unit outward

normals to F . For a scalar field v, v+ and v− are written for v|K+ and v|K− respectively. The

same is also true of a second order tensor field τ . Then we define averages and jumps as follows:

{v} =
1

2
(v+ + v−), [v] = v+n+ + v−n−,

{∇v} =
1

2
(∇v+ +∇v−), [∇v] = ∇v+ · n+ +∇v− · n−,

{τ} =
1

2
(τ+ + τ−), [τ ] = τ+n+ + τ−n−.

On an edge F ⊂ ∂Ω, the above definitions are given by

{v} = v, [v] = vn,

{∇v} = ∇v, [∇v] = ∇v · n,

{τ} = τ , [τ ] = τn,

where n is the unit outward normal on the boundary. Furthermore, the jump [[·]] of a gradient

∇v is defined by

[[∇v]] =
1

2
(∇v+ ⊗ n+ + n+ ⊗∇v+ +∇v− ⊗ n− + n− ⊗∇v−), if F ∈ Fh(Ω),

[[∇v]] =
1

2
(∇v ⊗ n+ n⊗∇v), if F ∈ Fh ∩ ∂Ω.

The main idea of the LCDG method is to construct discrete local conservation laws on each

K ∈ Th by replacing the traces of σ and ∇u in the continuous counterpart determined by (2.4)

on the boundary of each K ∈ Th with suitable numerical traces σ̂h and ∇̂uh. As in [31], we
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consider the following formulation: Find (σh, uh) ∈ Σl
h × V k

h such that on each K ∈ Th

∫

K

C(σh) : τdx =

∫

K

divτ ·∇uhdx−

∫

∂K

τn · ∇̂uhds ∀ τ ∈ Σl
h,

∫

K

σh : K(v)dx +

∫

∂K

σ̂hn ·∇vds =

∫

K

fvdx ∀ v ∈ V k
h

(2.7)

with

σ̂h = {σh}+
αF,h

hF
[[∇uh]], ∇̂uh = {∇uh}, if F ∈ Fh(Ω);

σ̂h = σh +
αF,h

hF
[[∇uh]], ∇̂uh = 0, if F ∈ Fh ∩ ∂Ω.

(2.8)

Here the set {αF,h}F∈Fh
has a uniform positive bound from above and below. After some

direct manipulations, the LCDG method based on (2.7) and the numerical traces (2.8) to

approximate (2.1), or equivalently (2.4), can be formulated in a mixed formulation as follows:

Find (σh, uh) ∈ Σl
h × V k

h such that for any (τ , v) ∈ Σl
h × V k

h





∫

Ω

C(σh) : τdx−
∑

K∈Th

∫

K

τ : K(uh)dx −
∑

F∈Fh

∫

F

{τ} : [[∇uh]]ds = 0,

∑

K∈Th

∫

K

σh : K(v)dx +
∑

F∈Fh

∫

F

{σh} : [[∇v]]ds+
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇v]]ds =

∫

Ω

fvdx.

(2.9)

The well-posedness of (2.9) as well as the a priori error estimates is shown in [31].

3. An a Posteriori Error Analysis for the Moment Field

This section is devoted to deriving reliable and efficient a posteriori error estimates of the

moment field. We begin with some preliminaries, particularly the Helmholtz decomposition and

definitions of error indicators. Then an upper bound and a lower bound of the moment-field

error in terms of the error indicators are presented.

To any given edge F ∈ Fh(Ω), we assign a fixed normal unit vector nF := (n1, n2)
T and a

tangential unit vector tF := (−n2, n1)
T . ωF is set to be the union of two elements sharing F .

The same convention is also applicable to ∂K for all K ∈ Th. For some Mh ⊆ Fh, we define

η2h(σh, f,Mh) := η2h,1(σh, f,Mh) + η2h,2(σh,Mh)

with

η2h,1(σh, f,Mh) :=
∑

F∈Mh∩Fh(Ω)

( ∑

K∈ωF

h4K‖f + divdivσh‖
2
0,K

+ h3F ‖[divσh · nF + ∂t(σh)nt]‖
2
0,F + hF ‖[(σh)nn]‖

2
0,F

)
, (3.1)

η2h,2(σh,Mh) :=
∑

F∈Mh

( ∑

K∈ωF

h2K‖rotC(σh)‖
2
0,K + hF ‖[C(σh)tF ]‖

2
0,F

)
, (3.2)

η2h,J(uh,Mh) :=
∑

F∈Mh

α2
F,hh

−1
F ‖[[∇uh]]‖

2
0,F , (3.3)
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where (σh)nn := nT
KσhnK , (σh)nt := tTKσhnK ; [divσh·nF+∂t(σh)nt], [(σh)nn] and [C(σh)tF ]

are all jumps across an interior edge F ∈ Fh(Ω) while [C(σh)tF ] is equal to the value of C(σh)tF
on a boundary edge F ∈ Fh ∩ ∂Ω. The oscillation is given by

osc2h(f,Mh) =
∑

K∈Mh

h4K‖f − f̄K‖20,K

for some Mh ⊆ Th, with f̄K being the L2-projection of f onto the constant space P0(K) if

l = 0, 1 and Pl−2(K) if l ≥ 2. For ease of notation, we further write η2h(σh, f), η
2
h,J(uh) and

osc2h(f) for η
2
h(σh, f,Fh), η

2
h,J(uh,Fh) and osc2h(f, Th). And an energy norm ‖τ‖2C =

∫
Ω C(τ ) :

τdx is needed for τ ∈
(
L2(Ω)

)s
2×2

.

To show the reliability, we shall use the following Helmholtz decomposition introduced in [6].

Lemma 3.1. For any second order tensor field τ ∈
(
L2(Ω)

)s
2×2

, there exist ψ ∈ H2
0 (Ω),

ρ ∈ L2
0(Ω) and φ ∈ (H̃1(Ω))2 such that

τ = M(ψ) + ρ+Curlφ, (3.4)

(M(ψ),K(v)) = (τ ,K(v)) ∀ v ∈ H2
0 (Ω), (3.5)

where

ρ =

(
0 −ρ

ρ 0

)
. (3.6)

Moreover,

‖ψ‖2 + ‖ρ‖0 + ‖φ‖1 ≤ C‖τ‖0 (3.7)

with the C depending on the coefficients in M.

Theorem 3.1. Let σ and σh be solutions of the continuous problem (2.4) and the discrete prob-

lem (2.9) respectively. Then there exists a constant C1 only depending on the shape-regularity

of Th and the coefficients in C, such that

‖σ − σh‖
2
C ≤ C1(η

2
h(σh, f) + η2h,J(uh)). (3.8)

Proof. An application of the Helmholtz decomposition (3.4) in Lemma 3.1 to the error tensor

σ − σh gives

‖σ − σh‖
2
C =

∫

Ω

C(σ − σh) : M(ψ)dx +

∫

Ω

C(σ − σh) : (ρ+Curlφ)dx

:= I1 + I2, (3.9)

and due to (3.7), it holds

‖ψ‖2 + ‖φ‖1 ≤ C‖σ − σh‖0. (3.10)

Next we handle I1 and I2 separately. Noting that C is the inverse of M, making use of (2.3),

ψ ∈ H2
0 (Ω) and the second equation of (2.9) with v taken to be a usual Lagrange interpolant
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Ikhψ in V k
h , and doing an elementwise integration by parts twice, we get

I1 =

∫

Ω

(σ − σh) : K(ψ)dx

=

∫

Ω

fψdx−
∑

K∈Th

∫

K

σh : K(ψ)dx−
∑

F∈Fh

∫

F

{σh}:[[∇ψ]]ds−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]]:[[∇ψ]]ds

=

∫

Ω

f(ψ − Ikhψ)dx−
∑

K∈Th

∫

K

σh : (K(ψ − Ikhψ))dx −
∑

F∈Fh

∫

F

{σh} : [[∇(ψ − Ikhψ)]]ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ikhψ)]]ds

=
∑

K∈Th

∫

K

(f + divdivσh)(ψ − Ikhψ)dx−
∑

F∈Fh(Ω)

∫

F

[divσh · nF ](ψ − Ikhψ)ds

+
∑

K∈Th

∫

∂K

σhn ·∇(ψ − Ikhψ)ds−
∑

F∈Fh

∫

F

{σh} : [[∇(ψ − Ikhψ)]]ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ikhψ)]]ds. (3.11)

Now we turn our attention to the term
∑

K∈Th

∫
∂K

σhn ·∇(ψ − Ikhψ)ds. As ψ and Ikhψ agree

at all vertices of Th and ψ − Ikhψ is continuous across all F ∈ Fh(Ω), a direct manipulation

leads to

∑

K∈Th

∫

∂K

σhn ·∇(ψ − Ikhψ)ds

=
∑

F∈Fh(Ω)

∫

F

[σh] · {∇(ψ − Ikhψ)}ds+
∑

F∈Fh

∫

F

{σh} : [[∇(ψ − Ikhψ)]]ds

= −
∑

F∈Fh(Ω)

∫

F

[∂t(σh)nt](ψ − Ikhψ)ds+
∑

F∈Fh(Ω)

∫

F

[(σh)nn]{∂n(ψ − Ikhψ)}ds

+
∑

F∈Fh

∫

F

{σh} : [[∇(ψ − Ikhψ)]]ds. (3.12)

Substituting (3.12) into (3.11), we proceed

I1 =
∑

K∈Th

∫

K

(f + divdivσh)(ψ − Ikhψ)dx−
∑

F∈Fh(Ω)

∫

F

[divσh · nF

+ ∂t(σh)nt](ψ − Ikhψ)ds+
∑

F∈Fh(Ω)

∫

F

[(σh)nn]{∂n(ψ − Ikhψ)}ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ikhψ)]]ds. (3.13)

With the help of the Cauchy-Schwarz inequality and the interpolation error estimates for Ikh
(cf. [9, 17]), we obtain

I1 ≤ C
(
ηh,1(σh, f) + ηh,J(uh)

)
‖ψ‖2. (3.14)
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Regarding I2, we first use the relation C(σ) = K(u), the definition of the tensor field ρ and

an integration by parts to get

I2 =

∫

Ω

C(σ − σh) : (ρ+Curlφ)dx = −

∫

Ω

C(σh) : (ρ+Curlφ)dx. (3.15)

Then invoking the vectorial Scott-Zhang interpolation operator Is,l+1
h : (H1(Ω))2 → Vl+1

h [38],

where Vl+1
h := {v ∈ (H1(Ω))2| v|K ∈ (Pl+1(K))2 ∀ K ∈ Th}, we obtain I

s,l+1
h φ ∈ Vl+1

h and

construct a tensor field ρh by

ρh =

(
0 −ρh
ρh 0

)

with ρh = 1
2div(I

s,l+1
h φ). It is not difficult to check that ρh +CurlI

s,l+1
h φ ∈ Σl

h. Furthermore,

by the definition of [[∇uh]] and the fact that uh ∈ H1
0 (Ω), it holds on each F ∈ Fh

[[∇uh]] =
(
[[∇uh]] : nF ⊗ nF

)
nF ⊗ nF +

(
[[∇uh]] : tF ⊗ nF

)
nF ⊗ tF

+
(
[[∇uh]] : nF ⊗ tF

)
tF ⊗ nF +

(
[[∇uh]] : tF ⊗ tF

)
tF ⊗ tF

= [∇uh]nF ⊗ nF + [∇uh · tF ]nF ⊗ tF + [∇uh · tF ]tF ⊗ nF + 0

= [∇uh]nF ⊗ nF ,

where [∇uh · tF ] is the jump across interior edges and takes the value of ∇uh · tF on boundary

edges. Noting the antisymmetry of ρh, the definition of {ρh} and the symmetry of [[∇uh]], we

have ∑

K∈Th

∫

K

ρh : K(uh)dx+
∑

F∈Fh

∫

F

{ρh} : [[∇uh]]ds = 0. (3.16)

Since

div(CurlI
s,l+1
h φ) = 0, (CurlI

s,l+1
h φ)nK = −(∇I

s,l+1
h φ)tK ∀ K ∈ Th,

we also have

∑

K∈Th

∫

K

CurlI
s,l+1
h φ : K(uh)dx

=
∑

K∈Th

(∫

K

div
(
CurlI

s,k+1
h φ

)
·∇uhdx−

∫

∂K

(
CurlI

s,k+1
h φ

)
nK ·∇uhds

)

= −
∑

F∈Fh

∫

F

nT
F

(
CurlI

s,k+1
h φ

)
nF [∇uh]ds. (3.17)

On the other hand, using the representation of [[∇uh]] given above and the continuity of Is,l+1
h φ

across all interior edges we find

∑

F∈Fh

∫

F

{CurlI
s,l+1
h φ} : [[∇uh]]ds =

∑

F∈Fh

∫

F

nT
F (CurlI

s,k+1
h φ)nF [∇uh]ds. (3.18)

Now from the first equation of (2.9) with τ = ρh +CurlI
s,l+1
h φ and (3.16)-(3.18) we know

∫

Ω

C(σh) :
(
ρh +CurlI

s,l+1
h φ

)
dx = 0. (3.19)
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Subtracting (3.19) from (3.15) and noting the antisymmetry of the tensor field ρ, we arrive at

I2 = −

∫

Ω

C(σh) :
(
ρ− ρh +Curl(φ− I

s,l+1
h φ)

)
dx

= −

∫

Ω

C(σh) : Curl(φ− I
s,l+1
h φ)dx. (3.20)

Using an elementwise integration by parts, the error estimates of the Scott-Zhang interpolation

operator [38], and the Cauchy-Schwarz inequality, we are further led to

|I2| =

∣∣∣∣
∑

K∈Th

∫

K

rotC(σh) : (φ− I
s,l+1
h φ)dx−

∑

F∈Fh

∫

F

[C(σh)tF ] : (φ− I
s,l+1
h φ)ds

∣∣∣∣

≤Cηh,2(σh)‖φ‖1. (3.21)

The proof is completed by collecting (3.9)-(3.10), (3.14) and (3.21).

When l ≥ 1, we are able to derive an improved estimate on the assumption of l = k− 1. To

be specific, the error indicator h3F ‖[divσh ·nF + ∂t(σh)nt]‖
2
0,F is not involved in this case. We

begin with an interpolation operator Ĩkh : H2(Ω) ∩H1
0 (Ω) → V k

h , which is defined by




Ĩkhv(p) = v(p) for any node p in Ω,

∫
F (Ĩ

k
hv − v)qds = 0 ∀ q ∈ Pk−2(F ) and ∀ F ∈ Fh (k ≥ 2),

∫
K
(Ĩkhv − v)qdx = 0 ∀ q ∈ Pk−3(K) and ∀ K ∈ Th (k ≥ 3).

(3.22)

For this operator, we have the following error estimates, the proofs of which are standard

(cf. [9, 17]).

Lemma 3.2. Suppose v ∈ H2(Ω) ∩H1
0 (Ω). Then for k ≥ 0,

‖v − Ĩkhv‖0,K ≤ Ch2K‖v‖2,K ∀ K ∈ Th, (3.23)

‖∂n(v − Ĩkhv)‖0,F ≤ Ch
1/2
F ‖v‖2,ωF

∀ F ∈ Fh. (3.24)

Now in the proof of Theorem 3.1 replacing Ikhv with Ĩkhv in dealing with I1 and noting

[divσh·nF+∂t(σh)nt] is a polynomial of degree k−2 on F ∈ Fh(Ω) in the current circumstances,

we find from the second equation of (3.22) that (3.13) is recast as

I1 =
∑

K∈Th

∫

K

(f + divdivσh)(ψ − Ĩkhψ)dx −
∑

F∈Fh(Ω)

∫

F

[divσh · nF

+ ∂t(σh)nt](ψ − Ĩkhψ)ds+
∑

F∈Fh(Ω)

∫

F

[(σh)nn]{∂n(ψ − Ĩkhψ)}ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ĩkhψ)]]ds

=
∑

K∈Th

∫

K

(f + divdivσh)(ψ − Ĩkhψ)dx +
∑

F∈Fh(Ω)

∫

F

[(σh)nn]{∂n(ψ − Ĩkhψ)}ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ĩkhψ)]]ds, (3.25)
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which, together with the Cauchy-Schwarz inequality and the error estimates (3.23)-(3.24) in

Lemma 3.2, yields

|I1| ≤ C

( ∑

F∈Fh(Ω)

( ∑

K∈ωF

h4K‖f + divdivσh‖
2
0,K + hF ‖[(σh)nn]‖

2
0,F

)

+ η2J,h(uh)

)1/2

‖ψ‖2. (3.26)

Combining (3.26) with (3.21) and using (3.7), we derive the following theorem:

Theorem 3.2. Let σ and σh be solutions of the continuous problem (2.4) and the discrete

problem (2.9) with l ≥ 1 and l = k − 1 respectively. Then there exists a constant C̃1 only

depending on the shape-regularity of Th and the coefficients in C, such that

‖σ − σh‖
2
C ≤ C̃1

(
η̃2h(σh, f) + η2h,J(uh)

)
, (3.27)

where

η̃2h(σh, f) := η̃2h,1(σh, f) + η2h,2(σh),

η̃2h,1(σh, f) :=
∑

F∈Fh(Ω)

( ∑

K∈ωF

h4K‖f + divdivσh‖
2
0,K + hF ‖[(σh)nn]‖

2
0,F

)
.

Remark 3.1. In fact if it is further assumed that k ≥ 3 on the assumption of Theorem 3.2,

noting that divdivσh is a polynomial of degree k− 3 on K ∈ Th in this case, we may make use

of the third equation of (3.22) in (3.25) and error estimates (3.23)-(3.24) to obtain

|I1| =

∣∣∣∣
∑

K∈Th

∫

K

(f − f̄K)(ψ − Ĩkhψ)dx +
∑

F∈Fh(Ω)

∫

F

[(σh)nn]{∂n(ψ − Ĩkhψ)}ds

−
∑

F∈Fh

αF,h

hF

∫

F

[[∇uh]] : [[∇(ψ − Ĩkhψ)]]ds

∣∣∣∣

≤ C
(
osc2h(f) +

∑

F∈Fh(Ω)

hF ‖[(σh)nn]‖
2
0,F + η2J,h(uh)

)1/2
‖ψ‖2. (3.28)

Thus taking (3.21) into account and using (3.7) again, we arrive at

‖σ − σh‖
2
C ≤ C∗

1

(
osc2h(f) + η̃2h(σh) + η2h,J(uh)

)
(3.29)

with η̃2h(σh) :=
∑

F∈Fh(Ω) hF ‖[(σh)nn]‖
2
0,F + η2h,2(σh).

Next we prove the efficiency of the error indicator η2h(σh, f).

Theorem 3.3. Let σ and σh be solutions of the continuous problem (2.4) and the discrete prob-

lem (2.9) respectively. Then there exists a constant C2 only depending on the shape-regularity

of Th and the coefficients in C, such that

C2η
2
h(σh, f) ≤ ‖σ − σh‖

2
C + osc2h(f). (3.30)
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Proof. By virtue of (2.3) and twice elementwise integration by parts, we have a residue equation

with respect to the error σ − σh: for v ∈ H2
0 (ωF )

∫

ωF

(σ − σh) : K(v)dx

=

∫

ωF

fvdx−
∑

K∈ωF

∫

K

σh : K(v)dx

=
∑

K∈ωF

∫

K

(f + divdivσh)vdx −

∫

F

[divσh · nF + ∂t(σh)nt]vds+

∫

F

[(σh)nn]∂nvds. (3.31)

For some given element K ∈ Th, bK denotes the scaled standard third order polynomial bubble

on K. Letting RK = f + divdivσh on some K ∈ Th and RK = f̄K + divdivσh, we define

ψK ∈ H2
0 (K) as ψK = RKb

2
K . The standard scaling arguments and the definition of RK show

that

C‖RK‖20,K ≤

∫

K

RKψKdx

=

∫

K

RKψKdx+

∫

K

(f̄K − f)ψKdx

=

∫

K

(f + divdivσh)ψKdx+

∫

K

(f̄K − f)ψKdx. (3.32)

Invoking (3.31) with v = ψK , we get

∫

K

(f + divdivσh)ψKdx =

∫

K

(σ − σh) : K(ψK)dx. (3.33)

Now combining (3.32) and (3.33) and using the Cauchy-Schwarz inequality, the inverse inequal-

ity, the scaling arguments and the triangle inequality give

Ch2K‖RK‖0,K ≤ ‖σ − σh‖C,K + h2K‖fK − f̄K‖0,K . (3.34)

For each edge F = K1 ∩ K2 ∈ Fh(Ω), bF , bK1
and bK2

denote the standard bubble function

with respect to F , K1 and K2 respectively. We construct an extension of the jump [(σh)nn]

to ωF by extending constantly along the normal to F . The resulting extension E([(σh)nn]) is

a piecewise polynomial of degree ≤ l on ωF so that φF = (bK1
− bK2

)b2FE([(σh)nn]) ∈ H2
0 (ωF )

and φF = 0 on F . Utilizing the scaling arguments and the residue equation (3.31) with v = φF ,

we have

Ch−1
F ‖[(σh)nn]‖

2
0,F ≤

∫

F

[(σh)nn]∂nφF ds

=
∑

K∈ωF

∫

K

(σ − σh) : K(φF )dx−
∑

K∈ωF

∫

K

RKφF dx, (3.35)

which, together with the inverse estimate, the estimate ‖φF ‖0,ωF
≤ Ch

1/2
F ‖[(σh)nn]‖0,F and

the bound (3.34), yields

Ch
1/2
F ‖[(σh)nn]‖0,F ≤

∑

K∈ωF

(
‖σ − σh‖C,K + h2K‖f − f̄K‖0,K

)
. (3.36)
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For h
3/2
F ‖[divσh · nF + ∂t(σh)nt]‖0,F on some F = K1 ∩K2 ∈ Fh(Ω), we define ψF ∈ H2

0 (Ω)

as 256Π2
i=1(λK1iλK2i)

2E([divσh · nF + ∂t(σh)nt]) on ωF and zero on Ω \ ωF , where λK1i and

λK2i, i = 1, 2, are barycentric coordinates of K1 and K2 associated with two end points of F

respectively and E([divσh · nF + ∂t(σh)nt]) is given by the same process as before. We apply

the arguments similar to deriving (3.35) and resort to the residue equation (3.31) with v = ψF

to proceed

C‖[divσh · nF + ∂t(σh)nt]‖
2
0,F ≤ ([divσh · nF + ∂t(σh)nt], ψF )F

=
∑

K∈ωF

(∫

K

RKψF dx−

∫

K

(σ − σh) : K(ψF )dx

)
+

∫

F

[(σh)nn]∂nψF ds. (3.37)

From (3.34), (3.36)-(3.37), and the inverse inequality, we know

h
3/2
F ‖[divσh · nF + ∂t(σh)nt]‖0,F

≤ C

( ∑

K∈ωF

(h2K‖RK‖0,K + ‖σ − σh‖C,K) + h
1/2
F ‖[(σh)nn]‖0,F

)

≤ C
∑

K∈ωF

(
‖σ − σh‖C,K + h2K‖fK − f̄K‖0,K

)
. (3.38)

Next we bound another two terms hK‖rotC(σh)‖0,K and h
1/2
F ‖[C(σh)tF ]‖0,F . As before, we

are able to derive another residue equation with respect to the error σ−σh: for v ∈ (H1(Ω))2

∫

Ω

C(σ − σh) : Curlvdx =

∫

Ω

K(u) : Curlvdx−
∑

K∈Th

∫

K

C(σh) : Curlvdx

=
∑

K∈Th

∫

K

rotC(σh) · vdx−
∑

F∈Fh

∫

F

[C(σh)tF ] · vds. (3.39)

For some K ∈ Th, we define φK ∈ (H1
0 (K))2 as φK = bKrotC(σh). Then, the standard scaling

arguments yield

C‖rotC(σh)‖
2
0,K ≤

∫

K

rotC(σh) · φKdx. (3.40)

So using (3.39) with v = φK , (3.40), the Cauchy-Schwarz inequality, the inverse inequality, and

the standard scaling arguments, we obtain

‖rotC(σh)‖
2
0,K ≤C(C(σ − σh),CurlφK)K ≤ C‖σ − σh‖C,K‖CurlφK‖0,K

≤Ch−1
K ‖σ − σh‖C,K‖φK‖0,K ≤ Ch−1

K ‖σ − σh‖C,K‖rotC(σh)‖0,K ,

i.e.,

ChK‖rotC(σh)‖0,K ≤ ‖σ − σh‖C,K . (3.41)

For the last error indicator h
1/2
F ‖[C(σh)tF ]‖0,F on F ∈ Fh, we may define φF ∈ (H1

0 (ωF ))
2 as

bFh
1/2
F ‖[C(σh)tF ]‖0,F and argue as above to get

Ch
1/2
F ‖[C(σh)tF ]‖0,F ≤ ‖σ − σh‖C,ωF

. (3.42)

The desired bound results from (3.34), (3.36), (3.38), and (3.41)-(3.42).
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From Theorem 3.3, it is easy to conclude the efficiency of the estimator η̃2h(σh, f) and

η2h(σh).

Theorem 3.4. Let σ and σh be solutions of the continuous problem (2.4) and the discrete

problem (2.9) with l ≥ 1 and l = k − 1 respectively. Then there exists a constant C̃2 only

depending on the shape-regularity of Th and the coefficients in C, such that

C̃2η̃
2
h(σh, f) ≤ ‖σ − σh‖

2
C + osc2h(f). (3.43)

Furthermore, when k ≥ 3, there exists a constant C∗
2 only depending on the shape-regularity of

Th and the coefficients in C, such that

C∗
2 η̃

2
h(σh) ≤ ‖σ − σh‖

2
C + osc2h(f). (3.44)

Remark 3.2. In the case of l = k − 1 and k ≥ 3, it is clear that on each K ∈ Th

h2K‖f − f̄K‖0,K ≤ h2K‖f + divdivσh‖0,K . (3.45)

On the other hand, with v = RKbK ∈ H1
0 (K) ∩ V k

h on K and zero outside K in the second

equation of (2.9), we do twice integration by parts to find

∫
K

σh : K(RKbK)dx+
∑

F⊂∂K

∫
F

{σh}nF ·∇(RKbK)ds+
∑

F⊂∂K

αF,h

hF

∫
F

[∇uh]∂n(RKbK)ds

=

∫
K

divσh ·∇(RKbK)dx −

∫
∂K

σhn ·∇(RKbK)ds+
∑

F⊂∂K

∫
F

{σh}nF ·∇(RKbK)ds

+
∑

F⊂∂K

αF,h

hF

∫
F

[∇uh]∂n(RKbK)ds

= −

∫
K

divdivσhRKbKdx−
1

2

∑
F⊂∂K

∫
F

[σh] ·∇(RKbK)ds+
∑

F⊂∂K

αF,h

hF

∫
F

[∇uh]∂n(RKbK)ds

=

∫
K

fRKbKdx,

i.e.,

−
1

2

∑

F⊂∂K

∫

F

[(σh)nn]∂n(RKbK)ds+
∑

F⊂∂K

αF,h

hF

∫

F

[∇uh]∂n(RKbK)ds

=

∫

K

(f + divdivσh)RKbKdx. (3.46)

As arguing in (3.32), we deduce with the help of (3.46)

C‖RK‖20,K ≤

∫

K

R
2

KbKdx =

∫

K

RKRKbKdx+

∫

K

(f̄K − f)RKbKdx

=

∫

K

(f + divdivσh)RKbKdx+

∫

K

(f̄K − f)RKbKdx

= −
1

2

∑

F⊂∂K

∫

F

[(σh)nn]∂n(RKbK)ds+
∑

F⊂∂K

αF,h

hF

∫

F

[∇uh]∂n(RKbK)ds

+

∫

K

(f̄K − f)RKbKdx, (3.47)
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which, along with the Cauchy-Schwarz inequality, the scaling arguments, and the triangle in-

equality, implies

h2K‖f + divdivσh‖0,K

≤ C

(
h2K‖f − f̄K‖0,K +

∑

F⊂∂K

(h
1/2
F ‖[(σh)nn]‖0,F +

αF,h

h
1/2
F

‖[[∇uh]]‖0,F )

)
. (3.48)

Now from (3.45) and (3.48), we find two quantities

η̃2h,1(σh, f) + η2h,J(uh), osc2h(f) +
∑

F∈Fh(Ω)

hF ‖[(σh)nn]‖
2
0,F + η2h,J(uh)

are equivalent.

4. Numerical Experiments

In this section we report two numerical examples to validate the effectiveness of the proposed

error estimator. First an adaptive local C0 discontinuous Galerkin (ALCDG) method for the

Kirchhoff bending plate is presented on the basis of the mixed formulation (2.9) and the error

estimator. In the following algorithm, all dependence on triangulation Th is now replaced by

the iteration counter m. Define

η̄2m(σm, um, f, F ) := η2m(σm, f, F ) + η2m,J (um, F ) ∀ F ∈ Fm,

η̄2m(σm, um, f,Sm) :=
∑

F∈Sm

η̄2m(σm, um, f, F ) ∀ Sm ⊆ Fm,

η̄2m(σm, um, f) := η̄2m(σm, um, f,Fm).

Algorithm 4.1. ALCDG

Given a parameter 0 < θ < 1 and an initial mesh T0. Set m := 0.

1. (SOLVE) Solve the discrete problem (2.9) on Tm for the discrete solution (σm, um) ∈

Σl
m × V k

m.

2. (ESTIMATE) Compute the error indicator {η̄2m(σm, um, f, F )}F∈Fm
.

3. (MARK) Mark a set Sm ⊂ Fm with minimal cardinality such that

η̄2m(σm, um, f,Sm) ≥ θη̄2m(σm, um, f).

4. (REFINE) Refine each triangle K with at least one edge in Sm by the newest vertex

bisection to get Tm+1.

5. Set m := m+ 1 and go to Step 1.

Now we test the above algorithm on three examples, in all of which, we choose θ = 0.6, ν =

0.3 and take E, d such that

Ed3 = 12(1− ν2).

With this choice, it follows

M(u) = (1− ν)K(u) + νtr(K(u))I,
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C(σ) =
1

1− ν
σ −

ν

1− ν2
tr(σ)I.

Example 4.1. In this example, let Ω = (−1, 1)× (−1, 1) and

u(x, y) = (x2 − 1)2(y2 − 1)2e−5(x2+y2).

f(x, y) is computed by the first equation of (2.1). Polynomial degrees are chosen as l = 0 and

k = 2. Fig. 4.1 shows meshes generated successively by Algorithm 4.1. The top-left one of

Fig. 4.1 is the initial mesh T0. The top-right, bottom-left and bottom-right ones of Fig. 4.1

represent meshes generated by the adaptive algorithm for m = 6, 9, 12 respectively. From Fig.

4.1, we find that singularities of the solution are detected by the adaptive process. Detailed

numerical results are given in Table 4.1, in which #DOFs stands for the number of degrees of

freedom. It is discovered from the last column of Table 4.1 that as the algorithm proceeds the

computed effectivity index remains a constant, which quantifies the overestimation of the error

estimator. The true error and the error estimator are depicted in Fig. 4.2 as functions of the

number of DOFs on the mesh sequence generated by the adaptive algorithm in a ln-ln scale.

We observe an optimal convergence rate ‖σ − σm‖C = O((#DOFs)−1/2).

(a) Initial mesh (m=0) (b) m=6

(c) m=9 (d) m=12

Fig. 4.1. Meshes generated in ALCDG with different m for Example 4.1.
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Table 4.1: Number of DOFs, energy-norm error, error estimator, and effectivity index in Example 4.1.

m #DOFs ‖σ − σm‖C η̄m(σm, um, f) η̄m/‖σ − σm‖C
0 49 7.9760E+00 5.9648E+01 7.48

1 89 6.4339E+00 3.2296E+01 5.02

2 141 4.0420E+00 1.8274E+01 4.52

3 217 2.8074E+00 1.1347E+01 4.04

4 325 2.2937E+00 8.2861E+00 3.61

5 541 1.8029E+00 5.8119E+00 3.22

6 861 1.4648E+00 4.4208E+00 3.02

7 1481 1.0984E+00 3.2148E+00 2.93

8 2453 8.5371E-01 2.4373E+00 2.86

9 3989 6.6239E-01 1.8673E+00 2.82

10 6477 5.3485E-01 1.4669E+00 2.74

11 11045 4.0873E-01 1.1175E+00 2.73

12 18985 3.0789E-01 8.4458E-01 2.74

13 31221 2.3721E-01 6.4669E-01 2.73

Example 4.2. In this example we consider a problem with a corner singularity in the solution

[26]. Ω is taken to be an L-shaped domain Ω = (−1, 1)× (−1, 1)\[0, 1)× (−1, 0] and the exact

singular solution

u(r, θ) = (r2 cos2 θ − 1)2(r2 sin2 θ − 1)2r(1+z)g(θ),

where z = 0.544483736782464 is a noncharacteristic root of sin2(zω) = z2 sin2 ω, ω = 3π
2 and

g(θ) =

(
1

z − 1
sin((z − 1)ω)−

1

z + 1
sin((z + 1)ω)

)
× (cos((z − 1)θ)− cos((z + 1)θ))

−

(
1

z − 1
sin((z − 1)θ)−

1

z + 1
sin((z + 1)θ)

)
× (cos((z − 1)ω)− cos((z + 1)ω)).

3 4 5 6 7 8 9 10 11
−2

−1

0

1

2

3

4

5

 

 
ln η̄m(σm, um, f)
ln‖σ − σm‖C

1

2

ln#DOFs

Fig. 4.2. Estimator, energy error vs #DOFs in ln–ln scale for Example 4.1.
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(a) Initial mesh (m=0) (b) m=6

(c) m=9 (d) m=12

Fig. 4.3. Meshes generated in ALCDG with different m for Example 4.2.

3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4
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ln η̄m(σm, um, f)
ln‖σ− σm‖C

1

2

ln#DOFs

Fig. 4.4. Estimator, energy error vs #DOFs in ln–ln scale for Example 4.2.
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Table 4.2: Number of DOFs, energy-norm error, error estimator, and effectivity index in Example 4.2.

m #DOFs ‖σ − σm‖C η̄m(σm, um, f) η̄m/‖σ − σm‖C
0 33 1.2053E+01 6.2302E+01 5.17

1 61 8.7286E+00 3.8272E+01 4.38

2 103 6.9163E+00 2.4909E+01 3.60

3 169 5.0710E+00 1.9940E+01 3.93

4 257 3.9881E+00 1.4836E+01 3.72

5 403 3.4390E+00 1.3240E+01 3.85

6 751 2.6713E+00 9.7210E+00 3.64

7 1259 2.1220E+00 8.3243E+00 3.92

8 2341 1.5939E+00 6.4288E+00 4.03

9 4266 1.2731E+00 5.4015E+00 4.24

10 7914 9.7111E-01 4.3264E+00 4.46

11 15039 7.7946E-01 3.6073E+00 4.63

12 26311 6.3685E-01 2.9681E+00 4.66

13 48117 5.2806E-01 2.4767E+00 4.69

Polynomial degrees l and k are also set equal to 0 and 2 respectively. The initial mesh T0 is

drawn in the top-left one of Fig. 4.3. The top-right, bottom-left and bottom-right ones of Fig.

4.3 show meshes generated by the adaptive algorithm for m = 6, 9, 12 respectively. We observe

that singularities around the re-entrant corner are captured accurately. Numerical results are

given in Table 4.2. As previously, the computed effectivity index tends to a constant as the

algorithm proceeds. Finally, the history of the error and the estimator versus the number of

DOFs in a ln-ln scale is shown in Fig. 4.4, which indicates that ‖σ − σm‖C = O((#DOFs)−s)

for some s ∈ (0.3, 0.5).

Fig. 4.5. Initial mesh for Example 4.3.
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(a) m=5 (b) m=8

(c) m=11 (d) m=14

Fig. 4.6. Meshes generated in ALCDG with η̄m(σm, um, f) and different m for Example 4.3.

(a) m=5 (b) m=8

(c) m=11 (d) m=14

Fig. 4.7. Meshes generated in ALCDG with η̃2
m(σm, um, f) and different m for Example 4.3.
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Table 4.3: Comparison of number of DOFs, error estimator and effectivity index in Example 4.3.

m #DOFs η̄m(σm, um, f) η̄m/‖σ − σm‖0 #DOFs η̃m(σm, um, f) η̃m/‖σ − σm‖0
1 13 1.6750E+02 16.9 13 1.3844E+02 15.7

2 28 9.3837E+01 12.0 28 6.5805E+01 11.0

3 45 6.4397E+01 8.09 41 4.5304E+01 7.46

4 71 4.4010E+01 6.69 71 2.9468E+01 5.81

5 127 3.2291E+01 5.01 135 1.9358E+01 4.42

6 199 2.3017E+01 4.21 217 1.5126E+01 3.40

7 341 1.9255E+01 4.10 353 1.2050E+01 3.36

8 580 1.4625E+01 3.88 585 9.7598E+00 3.13

9 942 1.1325E+01 3.66 991 7.6159E+00 3.02

10 1598 9.3919E+00 3.69 1641 6.0735E+00 3.04

11 2687 7.3761E+00 3.56 2875 4.7596E+00 2.87

12 4674 5.9432E+00 3.51 4802 3.7905E+00 2.85

13 8350 4.4915E+00 3.43 8570 2.8890E+00 2.78

14 14014 3.5669E+00 3.28 15073 2.2658E+00 2.63

Example 4.3. The final example is to compare computing performance of η̄m(σm, um, f) and

η̃m(σm, um, f) = (η̃2m(σm, f) + η2m,J (um))1/2. We implement Algorithm 4.1 using these two

estimators respectively on the same problem as in Example 4.2. Let l = 1, k = 2 and set the

initial mesh as in Fig. 4.5.

Fig. 4.6 and Fig. 4.7 display meshes generated by the adaptive algorithm form = 5, 8, 11, 14

respectively. As in Example 4.2, the singularities of the solution are detected in the vicinity of

the re-entrant corner and near the edges in the refinement process. Numerical results for two a

posteriori error estimators are reported in Table 4.3. We find that two estimators η̄m(σm, um, f)

and η̃m(σm, um, f) both overestimate the error but the computed effectivity index for the latter

is about 20% less than that for the former. It is clear that ALCDG with the improved estimator

in Theorem 3.2 provides better approximations of the true solution.
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