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Abstract. We analyze pressure stabilized finite element methods for the solution
of the generalized Stokes problem and investigate their stability and convergence
properties. An important feature of the methods is that the pressure gradient un-
knowns can be eliminated locally thus leading to a decoupled system of equations.
Although the stability of the method has been established, for the homogeneous
Stokes equations, the proof given here is based on the existence of a special inter-
polant with additional orthogonal property with respect to the projection space.
This makes it much simpler and more attractive. The resulting stabilized method
is shown to lead to optimal rates of convergence for both velocity and pressure
approximations.
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1 Introduction

Stabilized finite element methods that circumvent the restrictive inf− sup condition
have been developed for Stokes-like problems (see, e.g., [4,14,16,19,20]). These residual-
based methods represent one class of stabilized methods. They consist in modify-
ing the standard Galerkin formulation by adding mesh-dependent terms, which are
weighted residuals of the original differential equations. Although for properly cho-
sen stabilization parameters, these methods are well posed for all velocity and pres-
sure pairs. These methods are sensitive to the choice of the stabilization parameters.
Another class of stabilized methods has been derived using Galerkin methods en-
riched with bubble functions (see, [1, 3]). Alternative stabilization techniques based
on a continuous penalty method have also been proposed and analyzed in [10, 11].
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Recently, local projection methods that seem less sensitive to the choice of param-
eters and have better local conservation properties were proposed. The stabilization
by projecting the pressure gradient has been analyzed in [12]. It was shown that the
method is consistent in the sense that a smooth exact solution satisfies the discrete
problem. Though the method may seem computationally expensive due to the nonlo-
cal behaviour of the projection, iterative solvers were developed to make the method
more efficient ( [13]). Alternatively, a two-level approach with a projection onto a dis-
continuous finite element space of a lower degree defined on a coarser grid has been
analyzed in [5,22,23]. In [6,7], low order approximations of the Oseen equations were
analyzed.

A drawback of the two-level, from the implementation point of view, is that the
added stabilizing term leads to a larger stencil which may not fit the data structure of
an available programming code. In [21], stability of local projection methods is proved
based on the existence of a special interpolant with additional properties with respect
to the projection space. This general approach paves the way for introducing equal
order stabilized methods by local projection onto a discontinuous space defined on
the same mesh. In this case, the added stabilizing terms do not lead to a larger stencil
like the two-level approach.

The main objective of this paper is to analyze the pressure gradient stabilization
method for the generalized Stokes problem using the new approach. These kind of
problems arise naturally in the time discretization of the unsteady Stokes problem, or
the full Navier-Stokes equations by means of an operator splitting technique. Unlike
the proof given by [22] and [23], where stability was shown using an inf-sup condi-
tion due to [16] and the equivalence of norms on finite dimensional spaces, here, the
stability of the pressure-gradient method is proved for arbitrary Qk-elements, by con-
structing a special interpolant with additional orthogonal property with respect to the
projection space (see, e.g., [24,25]). As a result, optimal rates of convergence are found
for the velocity and pressure approximations.

2 Variational formulation

Let Ω be a bounded two-dimensional polygonal region, f ∈ L2(Ω), σ a positive real
number, typically,

σ =
1

∆t
,

where ∆t is the time step in a time discretization procedure, and ν the kinematic vis-
cosity coefficient. Then, the generalized homogeneous Stokes Problem reads: Find
(u, p) ∈ V×Q satisfying:





σu−ν∆u +∇p = f, in Ω,
∇ · u = 0, in Ω,
u = 0, on ∂Ω,

(2.1)
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where
V = (H1

0(Ω))d, and Q = L2
0( ),

with L2
0(Ω) denoting the set of square integrable functions with null average.

Define the forms
{

A
(
(u, p); (v, q)

)
= σ(u, v) + ν(∇u,∇v)− (p,∇.v) + (q,∇.u),

F(v, q) = (f, v),
(2.2)

for all (v, q) ∈ V×Q, with (., .), as usual, denoting the L2−inner product on the region
Ω. Then, the weak formulation of (2.1) reads in compact notation, as

A((u, p); (v, q)) = F(v, q) , ∀(v,q) ∈ V×Q. (2.3)

Let Vh and Qh be finite dimensional subspaces of V and Q, respectively. Then, the
Galerkin discrete problem reads: Find (uh, ph) ∈ Vh ×Qh such that:

A((uh, ph); (vh,qh)) = F(vh, qh) , ∀(vh,qh) ∈ Vh ×Qh. (2.4)

Note that the formulation (2.4) is stable only for velocity and pressure approximations
satisfying the inf-sup condition (see, e.g., [18]).

3 Local projection stabilization

Let ζh be a shape regular partition of the region Ω into quadrilateral elements K (see,
e.g., [8]). Denote by hK the diameter of element K and by h the maximum diameter of
the elements K ∈ ζh.

We then define the equal order continuous finite element spaces

Vh = V2
h =

{
v ∈ (

H1
0(Ω)

)2 : v|K ∈
(
Qk

h(K)
)2 , ∀K ∈ ζh

}
,

Qh =
{

q ∈ H1(Ω) : q pK∈ Qk
h(K), ∀K ∈ ζh

}
,

(3.1)

where Qk
h denotes the standard continuous isoparametric finite element functions de-

fined by means of a mapping from a reference element. On the reference quadrilateral,
the approximation functions are polynomials of degree less than or equal to k in each
variable. We shall also use Pk

h to denote the space of polynomials of degree less than
or equal to k over ζh.

Additionally, we define the pressure-gradient finite element space by

Yh = Y2
h = ⊕

K∈ζh

(Qk−1,disc
h (K))2. (3.2)

where Qk−1,disc
h (respectively Pk,disc

h ) denote the finite element spaces of discontinuous
functions across elements of ζh.



K. Nafa / Adv. Appl. Math. Mech., 6 (2009), pp. 862-873 865

Define the local projection operator πK : L2(K) → Qk−1
h (K) by

(w− πKw, φ)K = 0, ∀φ ∈ Qk−1
h (K), (3.3)

which generates the global projection πh : L2(Ω) → Yh defined by

(πhw) |K = πK(w|K), ∀K ∈ ζh , ∀w ∈ L2(Ω). (3.4)

The fluctuation operator κh : L2(Ω) → L2(Ω) is given by

κh = id− πh, (3.5)

where id denotes the identity operator on L2(Ω). For simplicity, we shall use the
same notation id, πM, πh, and κh for vector-valued functions. Thus, κh∇p is to be
understood as acting on each component of ∇p separately.

Now, we are ready to introduce the stabilizing term

S(ph; qh) = ∑
K∈ζh

αK (κh∇ph,∇qh)K = ∑
K∈ζh

αK (κh∇ph, κh∇qh)K , (3.6)

where αK are element parameters that depend on the local mesh size.
Thus, our stabilized discrete problem reads as: Find (uh, ph) ∈ Vh ×Qh such that

A((uh, ph); (vh,qh)) + S(ph; qh) = F(vh, qh) , ∀(vh, qh) ∈ Vh ×Qh. (3.7)

This can be written component-wise as: Find (uh, ph, λh) ∈ Vh ×Qh × Yh such that

σ(uh, vh) + ν(∇uh,∇vh)− (ph,∇.vh) = (f, vh), ∀vh ∈ Vh, (3.8a)

∑
K

αK(∇ph,∇qh)−∑
K

αK(λh,∇qh)− (qh,∇.uh) = 0, ∀qh ∈ Qh, (3.8b)

−∑
K

αK(∇ph, ξh) + ∑
K

αK(λh, ξh) = 0, ∀ξh ∈ Yh, (3.8c)

where λh is the local L2−projection of ∇ph onto a discrete space Yh.
In order to investigate the properties of the bilinear form

A((uh, ph); (vh,qh)) + S(ph; qh),

on the product space Vh ×Qh, we introduce the mesh dependent norm

‖(vh,qh)‖2 = σ ‖vh‖2
0,Ω + ν |vh|21,Ω + (σ + ν) ‖qh‖2

0,Ω + S(qh; qh). (3.9)
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3.1 Stability

The main idea in the analysis of local projection methods is the construction of an
interpolation operator jh : H1(Ω) → Yh with jhv ∈ H1

0(Ω) for all v ∈ H1
0(Ω), satisfying

the usual approximation property

‖v− jhv‖0,K + hK |v− jhv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(w(K)), 1 6 s 6 k + 1, (3.10)

where w(K) denotes a certain local neighbourhood of K. We also need the following
additional orthogonal property

(v− jhv, φh) = 0 , ∀φh ∈ Yh, ∀v ∈ H1(Ω). (3.11)

Lemma 3.1. Let ih : H1(Ω) → Vh be an interpolation operator such that ihv ∈ H1
0(Ω) for

all v ∈ H1
0(Ω) with the error estimate

‖v− ihv‖0,K + hK |v− ihv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(Ω), 1 6 s 6 k + 1. (3.12)

Further, assume that the local inf-sup condition

inf
qh∈Yh(K)

sup
vh∈Vh(K)

(vh, qh)K

‖vh‖0,K ‖qh‖0,K
> β1, (3.13)

holds for all K ∈ ζh, with a positive constant β1 independent of the mesh size. Then, there
exists an interpolation operator jh : H1(Ω) → Yh satisfying the properties (3.10) and (3.11).

Proof. For the construction of the interpolation operator jh we refer to Theorem 2.2
in [21]. ¤

Remark 3.1. Note that condition (3.13) can be checked using Stenberg’s technique on
macro-elements K ∈ ζh which are equivalent to a reference element K̂. The inf− sup
condition holds if the null space NK is such that

NK =
{

qh ∈ Yh(K) : (vh, qh)K = 0, ∀vh ∈ Vh(K) ∩ H1
0(K)

}
= {0} . (3.14)

Note also that the fluctuation operator κh satisfies the approximation property

‖κhq‖0,K ≤ Chl
K |q|l,K , ∀q ∈ Hl(K), ∀K ∈ ζh, 0 6 l 6 k. (3.15)

Since the L2- local projection πK : L2(K) → Yh(K) becomes the identity for the space
Qk−1(K) ⊂ Hl(K), and the kernel of κh contains Pk−1(K) ⊂ Qk−1(K), We have that
the Bramble-Hilbert Lemma gives the approximation properties stated in assumption
(3.15).
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Remark 3.2. The justification that the pair

Vh/Yh = Qk
h/Qk−1,disc

h , for k > 1,

satisfies (3.13) follows from (3.14) using the one-to-one property of the mapping FK :
K̂ → K combined with a positive bilinear function corresponding to the central node
of K̂ (see, e.g., [17, 21]). Further, using the same argument we can show that

Vh/Yh = Qk
h/Pk−1,disc

h , for k ≥ 1,

gives also a stable approximation.

The following theorem establishes the stability of the one-level local projection
method in the sense of Babuska and Brezzi. (see, e.g., [24, 25]).

Theorem 3.1. Let properties (3.10), (3.11), and (3.15) hold and the parameters αK be such that
αK = Ch2

K for each element K ∈ ζh.Then, the bilinear form of the pressure-gradient stabilized
method satisfies

sup
(wh,rh)∈Vh×Qh

(wh ,rh) 6=0

A((vh, qh) ; (wh,rh)) + S(qh; rh)
‖(wh,rh)‖ ≥ β ‖(vh,qh)‖ ,

for some positive constant β independent of the mesh parameter h.

Remark 3.3. For Stokes flow (σ → 0), αK = h2 has proven to be a good choice for the
stabilization parameter (see, e.g., [5]). In addition, the analysis given in (see, e.g., [2])
reveals that for the current problem αK = σh2/ν is a reasonable choice because it takes
into account the effect of the zero term.

Note that the above theorem guaranties unique solvability of the stabilized discrete
problem (3.7). However, unlike the residual-based stabilization schemes (see, e.g.,
[16, 19]), here, we do not have Galerkin orthogonality. As a consequence we need to
estimate the consistency error (see, e.g., [17]).

Lemma 3.2. Assume that the fluctuation operator κh satisfies the approximation property
(3.15). Let (u, p) ∈ V× (Q ∩ Hl(Ω)), 0 6 l 6 k, be the solution of the generalized Stokes
problem (2.3), and (uh, ph) ∈ Vh × Qh be the solution of the stabilized problem (3.7). Then,
the consistency error can be estimated by

A((u− uh, p− ph) ; (vh,qh)) 6 C

(
∑

K∈ζh

αKh2l−2
K |p|2l,K

) 1
2

‖(vh,qh)‖ ,

for all (vh, qh) ∈ Vh ×Qh.
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3.2 Error analysis

As a consequence of the above stability and consistency results, we obtain the follow-
ing error estimate.

Theorem 3.2. Assume that the solution (u, p) of (2.3) belongs to V ∩ (Hs+1(Ω))2 × (Q ∩
Hl(Ω)), 1 ≤ s, l ≤ k. Then, the following error estimate holds

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ C
(

hs ‖u‖s+1,Ω + hl ‖p‖l,Ω

)
. (3.16)

Where, C is a positive constant independent of h.

Proof. Let ũh = jhu and p̃h = ih p be the interpolants of the velocity and pressure,
respectively. Then, Theorem 4 implies the existence of (vh, qh) ∈ Vh ×Qh such that

‖(vh, qh)‖ 6 C, (3.17)

with
‖ũh − uh‖1,Ω + ‖ p̃h − ph‖0,Ω 6 3

min
{

σ
1
2 , ν

1
2

} ‖(ũh − uh, p̃h − ph)‖ ,

with the right hand side satisfying

‖(ũh − uh, p̃h − ph)‖
6 1

β̃ ‖(vh, qh)‖
[

A
(
(ũh−uh, p̃h − ph) ; (vh, qh)

)
+ S( p̃h − ph; qh)

]

6 1
β̃ ‖(vh, qh)‖

[
A

(
(ũh−u, p̃h − p) ; (vh, qh)

)
+ S( p̃h − p; qh)

]

+
1

β̃ ‖(vh, qh)‖
[

A
(
(u− uh, p− ph) ; (vh, qh)

)
+ S(p− ph; qh)

]
. (3.18)

Consequently, the consistency estimate of the method implies

1
‖(vh, qh)‖

[
A

(
(u− uh, p− ph) ; (vh, qh)

)
+ S(p− ph; qh)

]
6 Chl ‖p‖l,Ω . (3.19)

The Galerkin terms of

A
(
(ũh−u, p̃h − p) ; (vh, qh)

)
+ S( p̃h − p; qh)

can be estimated using the approximation properties of jh and ih. Hence, we get

σ(ũh−u, vh) 6 σ ‖ũh−u‖0,Ω ‖vh‖0,Ω 6 Cσhs+1 |u|s+1,Ω ‖(vh, qh)‖ , (3.20a)

ν(∇ (ũh−u) ,∇vh) 6 ν |ũh−u|1,Ω |vh|1,Ω 6 Cνhs |u|s+1,Ω ‖(vh, qh)‖ , (3.20b)

|(p− p̃h,∇ · vh)| 6 C ‖p− p̃h‖0,Ω |vh|1,Ω 6 Chl |p|l,Ω ‖(vh, qh)‖ . (3.20c)
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The fourth Galerkin term is estimated by applying the orthogonality property of jh.
Then, using αK = Ch2

K we get

|(∇ · (ũh−u), qh)| = |(ũh−u,∇qh)| = |(ũh−u, κh∇qh)|

6
(

∑
K∈ζh

α−1
K ‖ũh−u‖2

0,K

) 1
2
(

∑
K∈ζh

αK ‖κh∇qh‖2
0,K

) 1
2

6C

(
∑

K∈ζh

h2
K

αK
h2s

K ‖u‖2
s+1,K

) 1
2
(

∑
K∈ζh

αK ‖κh∇qh‖2
0,K

) 1
2

,

which gives

|(∇ · (ũh−u), qh)| 6 Chs
K ‖u‖s+1,K ‖(vh, qh)‖ . (3.21)

The stability term is estimated using the L2−stability of the fluctuation operator κh,
the approximation properties of ih and αK = Ch2

K, hence we obtain

S( p̃h − p; qh) = ∑
K∈ζh

αK
(
κh∇( p̃h − p), κh∇qh

)

6
(

∑
K∈ζh

αK ‖κh∇( p̃h − p)‖2
0,K

) 1
2
(

∑
K∈ζh

αK ‖κh∇qh‖2
0,K

) 1
2

6 C1

(
∑

K∈ζh

C2h2
K h2l−2

K ‖p‖2
l,w(K)

) 1
2

‖(vh, qh)‖ ,

which yields

S( p̃h − p; qh) 6 Chl
K ‖p‖l,Ω ‖(vh, qh)‖ . (3.22)

Thus, using (3.19)-(3.22) we obtain the desired estimate (3.16). ¤

Remark 3.4. We note that because of the compatibility of the Qk
h/Pk−1,disc

h approxima-
tion (see, e.g., [9]) the stability of (3.7) and the above optimal error estimates hold also
for such approximation.

4 Numerical results

In this section, numerical results for two-dimensional generalized Stokes flows are
presented. The performance of the Q1

h − Q1
h velocity-pressure approximation is as-

sessed for αK = σh2/ν.
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4.1 Test 1 problem

The first problem consists in solving generalized Stokes problem in the unit square
[0, 1]× [0, 1], with exact solution:

u(x, y) = (u1(x, y), u2(x, y))T, p(x, y) = (x− 0.5)(y− 0.5),
with

u1 = 2x2(1− x)2y(1− y)(1− 2y), u2 = −2x(1− x)(1− 2x)y2(1− y)2.

Numerical results obtained for

σ = 1, ν = 1, and ν = 0.1,

respectively, are displayed in Fig. 1. These results indicate that the error norms
‖u− uh‖0,Ω and ‖u− uh‖1,Ω converge at the predicted rates, while ‖p− ph‖0,Ω seems
to converge one degree higher than predicted. Further, it appears that for ν ≤ 0.1,
the velocity converges at a higher rate than expected for both L2 and H1 norms. This
behaviour is beleived to be due to the symmetry of the problem.
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Figure 1: Rates of convergence for σ = 1, ν = 1 (left) and ν = 0.1 (right) for Test 1.

4.2 Lid-driven cavity flow

Next, we address the lid-driven cavity problem, with domain Ω as before, f = 0. Our
aim here is to assess the performance of the method using a graded mesh near x = 0,
x = 1, y = 0, and y = 1. We impose a leaky boundary condition, that is

u1(0, y) = u1(1, y) = u1(x, 0) = 0, and u1(x, 1) = 1, for 0 ≤ x ≤ 1.

Numerical results are obtained for ν = 1 and ν = 10−4, both using σ = 1. Elevations
for the pressure field and the horizontal velocity are displayed in Figs. 2 and 3. We
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Figure 2: Elevation of the pressure field for σ = 1, ν = 1 (left) and ν = 10−4 (right) for the lid-driven cavity
problem.
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Figure 3: Elevation of the horizontal velocity for σ = 1, ν = 1 (left) and ν = 10−4 (right) for the lid-driven
cavity problem.

observe that there are no oscillations for the pressure for both cases, which shows that
the method treats well the inf-sup condition and the boundary layer for the reaction
dominated regime. Further, the horizontal velocity solution is comparable to the one
reported in [3].
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