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Abstract. In this paper we describe new B-spline Gaussian collocation software for
solving two-dimensional parabolic partial differential equations (PDEs) defined over
a rectangular region. The numerical solution is represented as a bi-variate piecewise
polynomial (using a tensor product B-spline basis) with time-dependent unknown co-
efficients. These coefficients are determined by imposing collocation conditions: the
numerical solution is required to satisfy the PDE and boundary conditions at images
of the Gauss points mapped onto certain subregions of the spatial domain. This leads
to a large system of time-dependent differential algebraic equations (DAEs) which is
solved using the DAE solver, DASPK. We provide numerical results in which we use
the new software, called BACOL2D, to solve three test problems.
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1 Introduction

In this paper, we discuss a numerical algorithm that uses high order methods in time and
space to solve a system of n parabolic partial differential equations (PDEs) in two space
dimensions. We assume a problem class having the form

ut(x,y,t)= f
(

x,y,t,u(x,y,t),ux(x,y,t),uy(x,y,t),uxx(x,y,t),uxy(x,y,t),uyy(x,y,t)
)

, (1.1)

for (x,y,t)∈ Ω×(t0,tout], where Ω = {(x,y)|a < x < b, c< y < d} and u(x,y,t) is a vector
function with n components. The boundary conditions at x= a and x=b are

ga(y,t,u(a,y,t),ux(a,y,t),uy(a,y,t))=0, gb(y,t,u(b,y,t),ux(b,y,t),uy(b,y,t))=0,
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for t∈ (t0,tout], while the boundary conditions at y= c and y=d are

gc(x,t,u(x,c,t),ux(x,c,t),uy(x,c,t))=0, gd(x,t,u(x,d,t),ux(x,d,t),uy(x,d,t))=0,

for t∈ (t0,tout]. The initial conditions at t= t0 are given by

u(x,y,t0)=u0(x,y), (x,y)∈Ω∪∂Ω.

In the above, f , ga, gb, gc, gd and u0 are given vector function with n components.

The numerical approach we employ uses two-dimensional (2D) B-spline Gaussian
collocation to simultaneously discretize the x and y directions. The approximate solu-
tion is represented as a bi-variate piecewise polynomial (of degree p in x and degree q
in y where 3 ≤ p,q ≤ 11) implemented in terms of a tensor product B-spline basis [3],
with time-dependent unknown coefficients. We require the approximate solution to sat-
isfy the PDE and boundary conditions at images of the Gauss points mapped onto certain
subregions of the spatial domain, and this leads to a system of differential algebraic equa-
tions (DAEs). Since this DAE system is usually somewhat large, we use the DAE solver,
DASPK [5], which is designed to efficiently solve large scale DAEs. DASPK uses a family
of Backward Differentiation Formulas (BDFs) of orders 1 to 5 for the time integration.
Our implementation of this approach is called BACOL2D. The BACOL2D software is a
generalization of the software package, BACOL [30–32], designed for the numerical so-
lution of systems of one-dimensional (1D) parabolic PDEs.

In Section 2, we provide a brief review of the related literature, focusing on work that
features the use of collocation methods for 2D PDEs. We also review, in detail, the BA-
COL package since the 1D B-spline Gaussian collocation algorithm it employs is the basis
for the 2D B-spline Gaussian collocation algorithm we consider in this paper. Section 3
discusses the BACOL2D implementation; this involves a description of the 2D B-spline
Gaussian collocation algorithm, a discussion of the use of the DASPK package to solve
the large DAE system arising from the collocation spatial discretization, and a descrip-
tion of a fast block LU algorithm for the treatment of certain structured matrices that
arise during the computation. In Section 4 we present numerical results obtained by us-
ing BACOL2D to solve several test problems; these results allow us to experimentally
demonstrate the order of convergence of the 2D collocation solutions. Section 5 provides
our summary and identifies some areas for future work.

2 Background

2.1 Collocation methods for 2D PDEs

There is of course a very large body of literature on the numerical solution of PDEs–see,
e.g., the recently published research texts [11, 18–20, 22] and references within. Here we
focus on literature that considers collocation methods for 2D PDEs.
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One of the papers most relevant to our work is [25] in which the authors considered
the use of Hermite cubic spline collocation combined with a tensor product spatial basis
to solve 2D elliptic PDEs. Another important paper in this area is [28] in which the au-
thor discussed the use of tensor product B-spline collocation for (non-time-dependent)
2D elasticity problems. The Ph.D. thesis [33] described the use of a parallel B-spline col-
location method for 2D linear parabolic, separable PDEs. The paper [34] described the
use of a 2D B-spline finite element method for the numerical solution of 2D PDEs.

The collocation methods mentioned above usually represent the numerical solution
in terms of a spline basis and apply collocation at the Gaussian points on each element
of the spatial domain; such methods are known as orthogonal spline collocation meth-
ods. A different class of collocation methods for 2D PDEs are the optimal spline collo-
cation methods; these include the Quadratic Spline Collocation (QSC) and Cubic Spline
Collocation (CSC) methods. These methods were used to solve 2D elliptic problems on
rectangular domains in the papers [8, 12]. The advantage of these methods is that since
they use only one collocation point per subinterval, the linear systems that arise are the
smallest among all types of piecewise polynomial collocation methods for this problem
class. Other related work has involved the development of special collocation software
(GENCOL [13], HERMCOL/INTCOL [14]) for elliptic problems on rectangular domains.

For a 2D PDE whose solution exhibits rapid spatial variation, a useful approach for
determining an adaptive spatial mesh is the moving mesh method (MMM). A MMM
typically controls the mesh movement using a moving mesh PDE (MMPDE) [18]. The
papers [6, 15–17] discussed the MMM for 2D problems. Other work in this area is the
Ph.D. thesis [23] in which the CSC method is used together with the MMM approach.

2.2 Overview of BACOL

BACOL is designed to handle a system of n 1D PDEs of the form

ut(x,t)= f (x,t,u(x,t),ux(x,t),uxx(x,t)), (2.1)

for x∈(a,b), t∈(t0,tout), where u(x,t) is a vector function with n components. The initial
conditions and separated boundary conditions are given by

u(x,t0)=u0(x), bL(t,u(a,t),ux(a,t))=0, bR(t,u(b,t),ux(b,t))=0,

where x∈[a,b], t∈(t0,tout). The functions f , u0, bL and bR are given vector functions with
n components.

In BACOL, it is assumed that [a,b] is partitioned by a spatial mesh, a = x0 < x1 <

···< xN = b. The approximate solution is expressed in terms of piecewise polynomials,
of a given degree p (3≤ p≤11), associated with this mesh, with C1−continuity imposed
at the internal mesh points. The dimension of this piecewise polynomial subspace is
NC=N(p−1)+2. To represent these piecewise polynomials, BACOL employs a B-spline
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basis which is implemented using a collection of Fortran subroutines called the B-spline
package [3]. The approximate vector solution, U(x,t), is expressed in the form

U(x,t)=
NC

∑
j=1

wj(t)Bj(x), (2.2)

where wj(t) is the vector of time-dependent B-spline coefficients multiplying the j-th B-
spline basis function, Bj(x). An important property of the B-spline basis is that on any

subinterval [xi−1,xi), i=1,··· ,N, at most p+1 basis functions, {Bm(x)}
i(p−1)+2

m=(i−1)(p−1)+1
, are

non-zero. This implies that, for x∈ [xi−1,xi), the collocation solution can be expressed in
the form

U(x,t)=
i(p−1)+2

∑
m=(i−1)(p−1)+1

wm(t)Bm(x). (2.3)

Let hi = xi−xi−1 and let {ρj}
p−1
j=1 be the images of the Gaussian points on [0,1] with

0<ρ0 <ρ1< ···<ρp−1<1. Let the collocation points in the x direction be

ξ1= x0= a, ξl = xi−1+hiρj, ξNC = xN =b,

where l = 1+(i−1)·(p−1)+ j, for i = 1,··· ,N, j = 1,··· ,p−1. The spatial discretization
scheme employed by BACOL requires the approximate solution to satisfy the PDEs at the

collocation point sequence, {ξl}
NC−1
l=2 (ξ1, ξNC correspond to requiring U(x,t) to satisfy

the boundary conditions–see below). Substituting the approximate solution (2.3) and its
derivatives, evaluated at ξl , l = 1+(i−1)·(p−1)+ j, i = 1,···N, j = 1,··· ,p−1, into (2.1)
gives the collocation conditions

i(p−1)+2

∑
m=(i−1)(p−1)+1

w
′

m(t)Bm(ξl)

= f

(

ξl ,t,
i(p−1)+2

∑
m=(i−1)(p−1)+1

wm(t)Bm(ξl),
i(p−1)+2

∑
m=(i−1)(p−1)+1

wm(t)B
′

m(ξl)
i(p−1)+2

∑
m=(i−1)(p−1)+1

wm(t)B
′′

m(ξl)

)

. (2.4)

An important feature of the BACOL code is that the boundary conditions are treated in
their original form. Substituting the approximate solution (2.3) and its first derivative
into the boundary conditions gives the algebraic equations

0=bL

(

t,
p+1

∑
m=1

wm(t)Bm(a),
p+1

∑
m=1

wm(t)B
′

m(a)

)

, (2.5a)

0=bR

(

t,
N(p−1)+2

∑
m=(N−1)(p−1)+1

wm(t)Bm(b),
N(p−1)+2

∑
m=(N−1)(p−1)+1

wm(t)B
′

m(b)

)

. (2.5b)

Considering the boundary conditions and collocation conditions together (in the order
(2.5a), (2.4), (2.5b)), gives a DAE system of the form

AxWt(t)=F(t,W(t)). (2.6)



532 Z. Li and P. Muir / Adv. Appl. Math. Mech., 5 (2013), pp. 528-547

The vector W(t) is

W(t)=











w1(t)
w2(t)

...
wNC(t)











,

and the right hand side vector F(t,W(t)) is

F(t,W(t))=



























bL

(

t,∑
p+1
m=1 wm(t)Bm(a),∑

p+1
m=1 wm(t)B

′

m(a)
)

...

f
(

ξl ,t,∑
i(p−1)+2

m=(i−1)(p−1)+1
wm(t)Bm(ξl),∑

i(p−1)+2

m=(i−1)(p−1)+1
wm(t)B

′

m(ξl),

∑
i(p−1)+2

m=(i−1)(p−1)+1
wm(t)B

′′

m(ξl)
)

...

bR

(

t,∑
N(p−1)+2

m=(N−1)(p−1)+1
wm(t)Bm(b),∑

N(p−1)+2

m=(N−1)(p−1)+1
wm(t)B

′

m(b)
)



























,

where ξl∈[xi−1,xi). The top and bottom blocks of rows of Ax correspond to the boundary
conditions and are zero. The other block rows of Ax are associated with the left hand side
of (2.4) and involve the evaluation of the B-spline basis functions at the collocation points.
This matrix Ax, shown in Fig. 1, has a structure known as almost block diagonal (ABD)–
see, e.g., [10]. The ith subblock, Si, appearing in Fig. 1, is an n(p−1)×n(p+1) matrix
given by

Si=











Bk(ξk+1)In Bk+1(ξk+1)In ··· Bk+p(ξk+1)In

Bk(ξk+2)In Bk+1(ξk+2)In ··· Bk+p(ξk+2)In
...

...
. . .

...
Bk(ξk+p−1)In Bk+1(ξk+p−1)In ··· Bk+p(ξk+p−1)In











, (2.7)

where k= 1+(i−1)(p−1) and In is the n×n identity matrix. The block rows of Si cor-
respond to the p−1 collocation points contained in [xi−1,xi). The block columns of Si

correspond to the p+1 B-spline basis functions that can be non-zero when evaluated at
points contained in [xi−1,xi), as mentioned above.

BACOL employs a modification of DASSL [4], which uses a family of BDFs (of or-
ders 1 to 5) for the time integration of the DAE system. An estimate of the local temporal
error for each time step is controlled by DASSL so that it is less than a given user tol-
erance. Since the matrices that arise during the computation of the solution of the DAE
systems have an ABD structure, DASSL was modified to use the software package, COL-
ROW [10], which is appropriate for the efficient treatment of such matrices. Once the
B-spline coefficients are obtained from the solution of the DAE system, the collocation
solution is then computable from (2.2).

In addition to computing U(x,t), BACOL also computes a high order estimate of the
spatial error associated with U(x,t). BACOL obtains this high order spatial error estimate
by comparing U(x,t) with U(x,t), a second global collocation solution it also computes,
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Figure 1: The structure of the matrix Ax that appears in (2.6). The zeros appearing in the top and bottom
rows represent n×n blocks of zeros, where n is the number of PDEs. Each block, Si (2.7), is an n(p−1) by
n(p+1) matrix, where p is the degree of the piecewise polynomials representing the collocation solution. The
overlap between the Si blocks is 2n. N is the number of subintervals of the spatial mesh.

using degree p+1 piecewise polynomials on the same spatial mesh that was used to
obtain U(x,t). If the estimated error does not satisfy the user provided tolerance, BA-
COL will generate a new spatial mesh by approximately equidistributing the estimated
spatial error over each subinterval of the new mesh. The total number of mesh points
may also be changed during this mesh adaptation process in order to improve the accu-
racy/efficiency of the next collocation solution computed on the new mesh.

3 The BACOL2D implementation

In this section we discuss the main algorithms employed by BACOL2D. First we describe
the tensor product B-spline Gaussian collocation algorithm used to simultaneously dis-
cretize the x and y directions of (1.1). This collocation process yields a large system of
DAEs for the B-spline coefficients. Next we describe how DASPK is used to solve this
DAE system. Then we describe a fast block LU algorithm for the treatment of certain
structured matrix systems that arise during the computation.

3.1 2D B-spline Gaussian collocation

We consider the case of a single PDE (n=1); however, the algorithm easily generalizes to
arbitrary n. We assume a rectangular grid based on a mesh of N+1 points in [a,b] and
a mesh of M+1 points in [c,d] such that a= x0 < x1 < ···< xN = b and c= y0 < y1 < ···<
yM = d. In the x direction, we employ C1-continuous piecewise polynomials of degree
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p (3 ≤ p ≤ 11), i.e., we have a polynomial of degree p on the ith subinterval, [xi−1,xi],
i= 1,··· ,N, with C1−continuity imposed at the internal mesh points. The dimension of
this piecewise polynomial subspace is NC=N(p−1)+2. Similarly, in the y direction, we
use C1-continuous piecewise polynomials of degree q (3≤q≤11). The dimension of this
piecewise polynomial subspace is MC=M(q−1)+2.

To represent the piecewise polynomials, we employ B-spline bases. Let {Bi(x)}NC
i=1

and {Di(y)}
MC
i=1 be the B-splines bases in the x and y directions. We then write the nu-

merical solution, U(x,y,t), as a linear combination of the tensor product of the B-spline
basis functions with time-dependent coefficients, wij(t):

U(x,y,t)=
NC

∑
i=1

MC

∑
j=1

wij(t)Bi(x)Dj(y). (3.1)

As in the 1D case, the B-spline basis for the x direction has the property that on the

subinterval [xi−1,xi), at most p+1 basis functions, {Br(x)}
i(p−1)+2

r=(i−1)(p−1)+1
, are non-zero.

Similarly, the B-spline basis for the y direction has the property that on any subinterval

[yj−1,yj), at most q+1 basis functions, {Ds(x)}
j(q−1)+2

s=(j−1)(q−1)+1
, are non-zero. This implies

that, for x∈ [xi−1,xi) and y∈ [yj−1,yj), (3.1) can be rewritten as

U(x,y,t)=
i(p−1)+2

∑
r=(i−1)(p−1)+1

j(q−1)+2

∑
s=(j−1)(q−1)+1

wrs(t)Br(x)Ds(y). (3.2)

Let hi = xi−xi−1, ki =yi−yi−1 and {ρi}
p−1
i=1 and {ηi}

q−1
i=1 be the images of the Gaussian

points on [0,1], with 0<ρ1<···<ρp−1<1, and 0<η1<···<ηq−1<1. The collocation points
in the x direction are defined to be ξ1 = x0 = a, ξl = xi−1+hiρj, l = 1+(i−1)·(p−1)+ j,
i= 1,··· ,N, j= 1,··· ,p−1, ξNC = xN = b, and the collocation points in the y direction are
defined to be γ1=y0= c, γl =yi−1+kiηj, l=1+(i−1)·(q−1)+ j, i=1,··· ,M, j=1,··· ,q−1,
γMC=yM =d.

The PDE is discretized in the x and y directions by collocating at the points {ξi}
NC−1
i=2

in x and the points {γj}
MC−1
j=2 in y. This gives the following ODEs in time:

Ut(ξi,γj,t)= f
(

ξi,γj,t,U(ξi,γj,t),Ux(ξi,γj,t),Uy(ξi,γj,t),

Uxx(ξi,γj,t),Uxy(ξi,γj,t),Uyy(ξi,γj,t)
)

, (3.3)

where i = 2,··· ,NC−1, and j = 2,··· ,MC−1. The collocation conditions involving ξ1,
ξNC, γ1, γMC are associated with applying collocation to the boundary conditions. These
conditions are

0= ga(γj,t,U(ξ1,γj,t),Ux(ξ1,γj,t),Uy(ξ1,γj,t)), j=1,··· ,MC, (3.4a)

0= gb(γj,t,U(ξNC,γj,t),Ux(ξNC,γj,t),Uy(ξNC,γj,t)), j=1,··· ,MC, (3.4b)

0= gc(ξi,t,U(ξi,γ1,t),Ux(ξi,γ1,t),Uy(ξi,γ1,t)), i=1,··· ,NC, (3.4c)

0= gd(ξi,t,U(ξi,γMC,t),Ux(ξi,γMC,t),Uy(ξi,γMC,t)), i=1,··· ,NC. (3.4d)
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The above collocation conditions (3.3)-(3.4d) are collected together to form a DAE
system. They are shown, in the order they appear within the DAE system, in (3.5)

















































































































0= ga(γ1,t,U(ξ1,γ1,t),Ux(ξ1,γ1,t),Uy(ξ1,γ1,t))
...

0= ga(γMC,t,U(ξ1,γMC,t),Ux(ξ1,γMC,t),Uy(ξ1,γMC,t))
−−−−−−−−−−−−−−−−−−−−−−−−−−−

0= gc(ξ2,t,U(ξ2,γ1,t),Ux(ξ2,γ1,t),Uy(ξ2,γ1,t))
Ut(ξ2,γ2,t)= f

(

ξ2,γ2,t,U(ξ2,γ2,t),Ux(ξ2,γ2,t),Uy(ξ2,γ2,t),
Uxx(ξ2,γ2,t),Uxy(ξ2,γ2,t),Uyy(ξ2,γ2,t)

)

...
Ut(ξ2,γMC−1,t)= f

(

ξ2,γMC−1,t,U(ξ2,γMC−1,t),Ux(ξ2,γMC−1,t),
Uy(ξ2,γMC−1,t),Uxx(ξ2,γMC−1,t),
Uxy(ξ2,γMC−1,t),Uyy(ξ2,γMC−1,t)

)

0= gd(ξ2,t,U(ξ2,γMC,t),Ux(ξ2,γMC,t),Uy(ξ2,γMC,t))
−−−−−−−−−−−−−−−−−−−−−−−−−−−

...
−−−−−−−−−−−−−−−−−−−−−−−−−−−

0= gc(ξNC−1,t,U(ξNC−1,γ1,t),Ux(ξNC−1,γ1,t),Uy(ξNC−1,γ1,t))
Ut(ξNC−1,γ2,t)= f

(

ξNC−1,γ2,t,U(ξNC−1,γ2,t),Ux(ξNC−1,γ2,t),Uy(ξNC−1,γ2,t),
Uxx(ξNC−1,γ2,t),Uxy(ξNC−1,γ2,t),Uyy(ξNC−1,γ2,t)

)

...
Ut(ξNC−1,γMC−1,t)= f

(

ξNC−1,γMC−1,t,U(ξNC−1,γMC−1,t),Ux(ξNC−1,γMC−1,t),
Uy(ξNC−1,γMC−1,t),Uxx(ξNC−1,γMC−1,t),
Uxy(ξNC−1,γMC−1,t),Uyy(ξNC−1,γMC−1,t)

)

0= gd(ξNC−1,t,U(ξNC−1,γMC,t),Ux(ξNC−1,γMC,t),Uy(ξNC−1,γMC,t))
−−−−−−−−−−−−−−−−−−−−−−−−−−−
0= gb(γ1,t,U(ξNC,γ1,t),Ux(ξNC,γ1,t),Uy(ξNC,γ1,t))

...
0= gb(γMC,t,U(ξNC,γMC,t),Ux(ξNC,γMC,t),Uy(ξNC,γMC,t))

















































































































. (3.5)

The DAE system begins with MC algebraic equations (3.4a) involving collocation of the
boundary condition ga, followed by NC−2 groups of equations. The lth group consists of
collocation conditions involving ξl and includes MC equations: one algebraic equation
from the set of Eqs. (3.4c) involving collocation of the boundary condition gc at x = ξl ,
MC−2 ODEs (3.3) associated with collocation of the PDE at x = ξl , and one algebraic
equation from the set of Eqs. (3.4d) involving collocation of the boundary condition gd

at x = ξl . The last set of MC equations appearing in the DAE system are the algebraic
equations (3.4b) involving collocation of the boundary condition gb.

By substituting (3.2) into (3.5), we can rewrite the DAE system in the terms of the
unknowns wij(t). The DAE system (3.5), in matrix form, becomes

AWt(t)=F(t,W(t)). (3.6)
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In (3.6), W(t) and F(t,W(t)) are each of size NC ·MC and have the form,

W(t)=











w1(t)
w2(t)

...
wNC(t)











, where wi(t)=











wi1(t)
wi2(t)

...
wiMC(t)











, F(t,W(t))=







F1(t,W(t))
...

FNC(t,W(t))






,

where each Fl(t,W(t)), l=1,··· ,NC, has MC components. The vector F1(t,W(t)) has the
form





















































ga

(

γ1,t,∑
p+1
r=1 ∑

q+1
s=1 wrs(t)Br(ξ1)Ds(γ1),

∑
p+1
r=1 ∑

q+1
s=1 wrs(t)B

′

r(ξ1)Ds(γ1),

∑
p+1
r=1 ∑

q+1
s=1 wrs(t)Br(ξ1)D

′

s(γ1)
)

...

ga

(

γl,t,∑
p+1
r=1 ∑

j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξ1)Ds(γl),

∑
p+1
r=1 ∑

j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)B

′

r(ξ1)Ds(γl),

∑
p+1
r=1 ∑

j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξ1)D

′

s(γl)
)

...

ga

(

γMC,t,∑
p+1
r=1 ∑

M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξ1)Ds(γMC),

∑
p+1
r=1 ∑

M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)B

′

r(ξ1)Ds(γMC),

∑
p+1
r=1 ∑

M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξ1)D

′

s(γMC)
)





















































,

where l=2,··· ,MC−1 and γl ∈ [yj−1,yj) for some j. The vector FNC(t,W(t)) has the form























































gb

(

γ1,t,∑
N(p−1)+2

r=(N−1)(p−1)+1∑
q+1
s=1 wrs(t)Br(ξNC)Ds(γ1),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
q+1
s=1 wrs(t)B

′

r(ξNC)Ds(γ1),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
q+1
s=1 wrs(t)Br(ξNC)D

′

s(γ1)
)

...

gb

(

γl,t,∑
N(p−1)+2

r=(N−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξNC)Ds(γl),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)B

′

r(ξNC)Ds(γl),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξNC)D

′

s(γl)
)

...

gb

(

γMC,t,∑
N(p−1)+2

r=(N−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξNC)Ds(γMC),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)B

′

r(ξNC)Ds(γMC),

∑
N(p−1)+2

r=(N−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξNC)D

′

s(γMC)
)
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where l = 2,··· ,MC−1 and γl ∈ [yj−1,yj) for some j. For k= 2,··· ,NC−1, and assuming
ξk ∈ [xi,xi+1), we have

Fk(t,W(t))=









































































gc

(

ξk,t,∑
i(p−1)+2

r=(i−1)(p−1)+1∑
q+1
s=1 wrs(t)Br(ξk)Ds(γ1),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
q+1
s=1 wrs(t)B

′

r(ξk)Ds(γ1),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
q+1
s=1 wrs(t)Br(ξk)D

′

s(γ1)
)

...

f
(

ξk,γl,t,∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξk)Ds(γl),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)B

′

r(ξk)Ds(γl),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξk)D

′

s(γl),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)B

′′

r (ξk)Ds(γl),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)B

′

r(ξk)D
′

s(γl),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
j(q−1)+2

s=(j−1)(q−1)+1
wrs(t)Br(ξk)D

′′

s (γl)
)

...

gd

(

ξk,t,∑
i(p−1)+2

r=(i−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξk)Ds(γMC),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)B

′

r(ξk)Ds(γMC),

∑
i(p−1)+2

r=(i−1)(p−1)+1∑
M(q−1)+2

s=(M−1)(q−1)+1
wrs(t)Br(ξk)D

′

s(γMC)
)









































































,

where l=2,··· ,MC−1, and γl ∈ [yj ,yj+1) for some j. The matrix A appearing in (3.6) has
the form

A=Ax⊗Ay, (3.7)

where ⊗ is the Kronecker product, Ax is a matrix, associated with B-spline collocation in
the x direction, similar to that given in Fig. 1, but with the following differences. Since we
are assuming n=1, the top and bottom rows of zeros of Ax are simply rows of zeros rather
than block rows of zeros, and each matrix, Si, is a (p−1)×(p+1) matrix (thus in (2.7), In

is replaced by 1). The matrix Ay appearing in (3.7) is the corresponding matrix associated
with B-spline collocation in the y direction–see Fig. 2. In Fig. 2, the ith subblock, Ri,
i=1,··· ,M, is a (q−1)×(q+1) matrix given by

Ri=











Dk(γk+1) Dk+1(γk+1) ··· Dk+q(γk+1)
Dk(γk+2) Dk+1(γk+2) ··· Dk+q(γk+2)

...
...

. . .
...

Dk(γk+q−1) Dk+1(γk+q−1) ··· Dk+q(γk+q−1)











, (3.8)

where k=1+(i−1)(q−1). The rows of Ri correspond to the q−1 collocation points con-
tained in [yi−1,yi) and the columns of Ri correspond to the q+1 B-spline basis functions
that can be non-zero when evaluated at collocation points contained in [yi−1,yi).
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Figure 2: The structure of the matrix Ay associated with B-spine collocation in the y direction. Here we assume
the case n=1 (where n is the number of PDEs). The matrix has a row of zeros along the top and the bottom.
Each block, Rj (3.8), is of size (q−1)×(q+1), where q is the degree of the piecewise polynomials used in the
y direction. The overlap between the Rj blocks is 2. M is the number of subintervals in the y direction.

Figure 3: The structure of the matrix A appearing in (3.6). Each submatrix, Di (3.9), is a block matrix having
(p−1) block rows and (p+1) block columns where each internal block of Di is a matrix of size MC×MC.
Thus Di is a matrix of size MC(p−1)×MC(p+1). The overlap between the Di blocks is 2MC, p is the degree
of the piecewise polynomials used in the x direction, N is the number of subintervals in the x direction, MC is
the dimension of the piecewise polynomial subspace in the y direction.
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The structure of the matrix A, appearing in (3.6), is shown in Fig. 3. Each matrix, Di,
is a block matrix having (p−1) block rows and (p+1) block columns where each internal
block of Di is a matrix of size MC×MC. The matrix Di has the form

Di=











Bk(ξk+1)Ay Bk+1(ξk+1)Ay ··· Bk+p(ξk+1)Ay

Bk(ξk+2)Ay Bk+1(ξk+2)Ay ··· Bk+p(ξk+2)Ay
...

...
. . .

...
Bk(ξk+p−1)Ay Bk+1(ξk+p−1)Ay ··· Bk+p(ξk+p−1)Ay











, (3.9)

where k=1+(i−1)(p−1).
The DAE system (3.6) must be solved by DASPK in order to obtain the B-spline coef-

ficients, W(t). During the computation of the solution of the DAE system, it is obviously
very important to take advantage of the matrix structure present in the DAE system. We
discuss this further in Subsection 3.3

3.2 The numerical solution of the DAE system using DASPK

A major task in the development of the BACOL2D software involved interfacing the 2D
B-spline collocation algorithm that generates the large DAE system (3.6) with the DAE
solver, DASPK, that is used to solve the DAE system. DASPK was obtained from a mod-
ification of DASSL. DASPK also uses a family of BDFs of orders 1 to 5 to solve the DAE
system. This computation involves the solution of a nonlinear system; DASPK uses an
inexact Newton method [9] to treat the nonlinear system and a large linear system arises
during each Newton step. Since these linear systems are too large to be solved with a di-
rect method, an iterative method must be used; DASPK uses (a Krylov subspace method)
the scaled preconditioned incomplete GMRES method [26]. DASPK employs a banded
preconditioner matrix and tries to reuse this preconditioner for as many time steps as
possible, since the costs for building this preconditioner are high. The linear system in-
volving the preconditioner matrix is solved using an incomplete LU factorization [27]
based on routines from the SPARSKIT library–see [27] and references within.

3.3 A efficient block LU algorithm for the 2D B-spline projection matrix

From the discussion of Subsection 3.1, it is clear that the matrices that arise during the
computations have substantial structure. The efficient treatment of these matrices using
algorithms that take advantage of this structure is central to the efficiency of the BA-
COL2D software. Here we describe a block LU algorithm associated with computing
projections of the collocation solution onto the 2D B-spline basis. The M.SC. thesis [21]
provides further details on these computations.

At certain points in the BACOL2D algorithm we need to project the collocation so-
lution, evaluated at all combinations of the collocation points, U(ξi,γj,t), i = 1,··· ,NC,
j = 1,··· ,MC, onto the 2D B-spline basis. Let U(ξ,γ,t) be the vector representing the
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evaluation of the collocation solution at all combinations of the collocation points; the
lth components of the vectors ξ and γ are, respectively, ξl and γl. The determination of
the projection of these collocation solution values onto the 2D B-spline basis can then be
expressed as computing the solution of the linear system

(Mx⊗My)W(t)=U(ξ,γ,t), (3.10)

where My is the same as the matrix Ay appearing in Fig. 2 except that the zeros in the
upper left hand corner and lower right hand corner are replaced by ones, and Mx is the
corresponding matrix for the x direction. (Note that Mx and My are ABD matrices of
dimensions NC ·NC and MC ·MC, respectively.)

We assume that we have factored Mx = LxUx and My = LyUy (The factorization per-
formed by COLROW also includes permutation matrices associated with alternating row
and column pivoting and is based on row and column elimination but in order to simplify
the presentation we do not include these components of the factorization here. Slight
modifications to some of the COLROW routines were required in order to implement the
following algorithm). Eq. (3.10) can be rewritten as

((LxUx)⊗(LyUy))W(t)=U(ξ,γ,t), (3.11)

and, employing a property of the Kronecker product, we can rewrite (3.11) in the form

((Lx⊗Ly)(Ux⊗Uy))W(t)=U(ξ,γ,t). (3.12)

The linear system (3.12) can be solved using the following four step fast block LU algo-
rithm:

1. Solve (Lx⊗ IMC)V̄(t)=U(ξ,γ,t) for V̄(t)
(where IMC is the identity matrix of dimension MC×MC).

2. Then solve (INC⊗Ly)V(t)= V̄(t) for V(t)
(where INC is the identity matrix of dimension NC×NC).

3. Then solve (Ux⊗ IMC)W̄(t)=V(t) for W̄(t).

4. Then solve (INC⊗Uy)W(t)=W̄(t) for W(t).

Steps 1 and 2 solve the system (Lx⊗Ly)V(t)=U(ξ,γ,t) for V(t). Steps 3 and 4 solve the
system (Ux⊗Uy)W(t)=V(t) for W(t). This algorithm implies that instead of factoring
and solving a large (MC ·NC)×(MC ·NC) linear system (3.10), we only need to factor
one matrix of size NC×NC and one matrix of size MC×MC and then solve a sequence
of MC×MC and NC×NC triangular linear systems.

For the case where N= M and p= q (which implies NC= MC), it can be shown that
the direct treatment of (3.10) has a cost that is O(N4 p6). The fast block LU algorithm first
requires the factorization of the two ABD matrices, Mx and My, and these factorizations
have costs that are O(Np3). For each step of the fast block LU algorithm it can be shown
that the cost is O(N2 p3). Therefore the overall cost for the fast block LU algorithm is
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O(N2 p3). Thus, even for modestly sized values of N or p, this algorithm can provide
substantial efficiency improvements over the standard approach.

Similar algorithms have been discussed in a number of previous papers–see, e.g., [24,
25].

4 Numerical experiments

In this section, we will consider three 2D parabolic PDE test problems. We use GNU For-
tran77 (GCC) 4.4.3 under ubuntu (Kernel Linux 2.6.32-40-server) running on an 7 Intel(R)
Xeon(R) CPUs(E5420 @ 2.50GHz) system for which the accessible memory is 2GB.

The following notation will be used in representing the numerical results:

• KCOL: the number of collocation points per subinterval, KCOL= p−1=q−1;

• NINT: the number of subintervals, NINT=N=M;

• ATOL: the absolute tolerance (used by DASPK);

• RTOL: the relative tolerance (used by DASPK);

• TOL: the tolerance for the nonlinear solver in DASPK;

• tout: the output time;

• GE: the true error at a set of sample points equally distributed over the problem
domain at time tout.

In order to obtain the convergence results, we employed a number of different choices for
TOL, ATOL, and RTOL. These were chosen by experimentally so that the temporal error
was smaller than the observed spatial error for each collocation solution we computed.

4.1 Numerical solution of three test problems

Problem 4.1. The 2D Burgers’ equation [29],

∂u

∂t
=ǫ

∂2u

∂x2
+ǫ

∂2u

∂y2
−u

∂u

∂x
−u

∂u

∂y
. (4.1)

The problem domain is (x,y)∈(0,1)×(0,1), t>0; the boundary and initial conditions are
chosen so that the true solution is

u(x,y,t)=
(

1+e
x+y−t

2ǫ
)
−1

.

We set ǫ=0.01 and tout=1. The numerical solution is plotted in Fig. 4 for the case KCOL=
3, NINT = 64, RTOL = ATOL = 10−6, TOL = 10−7.
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Figure 4: Approximate solution for Problem 4.1, ǫ=0.01.

Problem 4.2. (see [33])

∂u

∂t
=(L1+L2)u+ f (x,y,t), L1=(x2+1)

∂2

∂x2
+x, L2=(y2+1)

∂2

∂y2
+y

∂

∂y
+y,

on the spatial domain, (0,1)×(0,1), with the boundary and initial conditions (at t = 0)
and f (x,y,t) chosen so that the true solution is

u=(e−t+1)sin(πx)sin(πy).

We choose tout=1. The numerical solution is plotted in Fig. 5 for the case KCOL=3, NINT
= 16, RTOL = ATOL = 2×10−13, TOL = 10−14.

Figure 5: Approximate solution for Problem 4.2.
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Problem 4.3. (see [33])

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f (x,y,t),

on the spatial domain (0,1)×(0,1). The function f (x,y,t) and the boundary and initial
conditions (at t=0) are chosen so that the true solution is

u(x,y,t)=(e−t+1)(xm+ym+xym−1+1).

We set m=6 and tout=1. The numerical solution is plotted in Fig. 6 for the case KCOL=5,
NINT = 20, RTOL = ATOL = 5×10−13, TOL = 5×10−14.

Figure 6: Approximate solution for Problem 4.3, m=6.

4.2 Order of convergence of the 2D collocation solution

Since each of the three test problems has a known solution, it is possible to estimate
the maximum GE of a given numerical solution. In this subsection, we compute an esti-
mate of the maximum GE for the collocation solutions computed by BACOL2D. By fixing
KCOL and considering a sequence of meshes obtained by doubling the NINT value we
can compare the observed GE. By considering the ratio of the GE of the collocation so-
lutions obtained using this sequence of meshes, we can experimentally determine the
spatial order of convergence of the collocation solution.

The convergence results for the corresponding 1D case are known from the literature–
see, e.g., [7]. The rate of convergence is KCOL+2, i.e., the spatial error is O(hKCOL+2)
where h is the maximum spatial mesh spacing. Since we are using a tensor product
framework, we anticipate that the corresponding result will hold for the 2D case.

In Tables 1-3, we present the observed GE, GE ratios, and corresponding approximate
convergence rates for Problems 4.1-4.3, for several KCOL and NINT values.
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Table 1: Observed GE, GE ratios, and corresponding approximate convergence rates for Problem 4.1.

KCOL NINT GE ratio rate

3 8 9.95×10−2 - -

3 16 3.69×10−3 26.96 4.75

3 32 1.16×10−4 31.81 4.99

3 64 4.22×10−6 27.49 4.78

4 16 5.56×10−4 - -

4 32 1.05×10−5 52.95 5.73

4 64 1.90×10−7 55.33 5.79

5 10 2.40×10−3 - -

5 20 2.06×10−5 116.50 6.86

5 40 1.61×10−6 130.38 7.03

Table 2: Observed GE, GE ratios, and corresponding approximate convergence rates for Problem 4.2.

KCOL NINT GE ratio rate

3 4 1.50×10−5 - -

3 8 4.51×10−7 33.22 5.05

3 16 1.36×10−8 33.23 5.05

3 32 4.14×10−10 32.78 5.03

4 4 5.23×10−7 - -

4 8 8.58×10−9 60.88 5.93

4 16 1.36×10−10 63.26 5.98

4 32 2.13×10−12 63.63 5.99

5 10 3.06×10−11 - -

5 20 1.97×10−13 155.33 7.28

Table 3: Observed GE, GE ratios, and corresponding approximate convergence rates for Problem 4.3.

KCOL NINT GE ratio rate

3 32 1.99×10−9 - -

3 64 6.38×10−11 31.19 4.96

4 20 1.67×10−10 - -

4 40 2.98×10−12 56.04 5.81

5 15 1.71×10−11 - -

5 30 1.33×10−13 128.57 7.01

From the three tables, we observe that the expected rates of convergence (based on
the known results for the 1D case) are indeed observed in the 2D case. The GE is order
KCOL+2; i.e., the rate of convergence is O(hKCOL+2) where KCOL is the (equal) number
of collection points per subinterval in the x and y directions and h is the (uniform and
equal) mesh subinterval size in the x and y directions.
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5 Summary and future work

In this paper, we have described an extension of the 1D B-spline Gaussian collocation
algorithm employed within the 1D PDE solver BACOL to a 2D B-spline Gaussian collo-
cation algorithm for use in the 2D PDE solver, BACOL2D. The 2D collocation algorithm
employs a tensor product B-spline basis, based on the corresponding 1D B-spline bases
in x and y. The application of this collocation algorithm leads to a large DAE system. A
major component of our work involved applying the DAE solver DASPK so that it could
efficiently solve this large DAE system. It was necessary to take advantage of the struc-
ture present in the DAE system, arising from the use of a tensor product basis, in order to
obtain an efficient implementation. Numerical results were provided to demonstrate the
use of BACOL2D on three test problems. We also provided experimental convergence
results that showed that the 2D collocation solution had the same convergence rate as is
observed in the 1D case.

There are two important extensions of BACOL2D that are required. The first is that
an efficient error estimate for the 2D collocation solution must be developed. Because of
the use of the tensor product basis, it appears likely that the efficient interpolation based
spatial error estimation schemes recently developed for BACOL in the 1D case [1, 2] can
be extended to the 2D case. The second important extension of BACOL2D will involve
the introduction of an adaptive mesh refinement algorithm applied after each successful
time step, so that the spatial error estimate is less than the user tolerance. We plan to
investigate an approach employed in the area of MMM methods; spatial adaptivity is
based on a transformation (via a MMPDE) between the physical domain on which the
PDE is defined and a computational domain where the collocation and time integration
computations are performed [18].
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