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Abstract. To improve the performance of complex viscous engineering flows, the
focus should be on local dynamics (local processes and structures) measured by
the space-time derivatives of the primary-variable fields, rather than these fields
themselves. In the context of optimal flow management such as optimal configu-
ration design and flow control, the local fluid dynamics on solid wall is of most
direct relevance. For large Reynolds-number flows, we show that the on-wall lo-
cal dynamics is highlighted by the balance between tangential pressure gradient
and vorticity creation rate at the wall (boundary vorticity flux, BVF), namely the
on-wall coupling of the compressing and shearing processes. This basic concept is
demonstrated by previously unpublished and newly obtained numerical examples
for external and internal flows, including the role of BVF as a faithful marker of
the local appearance of boundary-layer separation and wall curvature discontinu-
ity, and the use of BVF-based formulas to optimize the integrated performance of
airfoil and compressor rotor blade.

AMS subject classifications: 76D17, 76D55, 76N25, 76G25
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1 Introduction

Any practical external or internal engineering flow has a set of global performances
as its design objectives, e.g., the lift and drag of a wing or the pressure ratio and ef-
ficiency of a compressor, as well as the operational stability of the flow. Ever since
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Helmholtz [3] realized for the first time the crucial importance of local vortical struc-
tures measured by the vorticity in practical flows, it has now been well recognized that
all global performances of engineering flows are dominated by various local dynamic
structures, such as boundary layers, free shear layers, vortices, turbulent coherent
structures, shock waves and other nonlinear waves. In a multi-dimensional, viscous
and compressible flow, the local structures as exemplified above come from three fun-
damental dynamic processes [1, 5]: the (transverse) shearing process, the (longitudinal)
compressing process and the thermal process. The first two processes are the fundamen-
tal bulk dynamic processes in fluid motion. They are measured by the vorticity field
and dilatation-pressure field (or other proper scalar field) and their characteristic be-
haviors are governed by the Reynolds number and Mach number, respectively. These
two fundamental processes are inherently coupled both in the interior of the flow field
via the nonlinear terms of the governing equations and on flow boundary via the ad-
herence condition. In addition, the thermal process is inevitably involved as long as
the flow is compressible. It can be conveniently measured by the entropy gradient
field which is inherently coupled with both compressing and shearing processes. This
is why modern physical theories, experiments and computations on complex flows
have been focusing on the nonlinear evolutions and interactions of these local struc-
tures. Naturally, a deep and quantitative physical understanding of these structures
and their role in global flow performance has become the very basis of optimal flow
management including configuration design and flow control.

As seen above, any of the local structures are measured not by primary vari-
ables themselves (e.g., velocity u, pressure p and entropy s) but their spatial-temporal
derivatives, which appear in the local balances of mass, momentum and energy, and
thereby interact each other to produce various dynamic effects, especially the aerody-
namic force. Indeed, a uniform (u, p) field produces no force at all; a wing experiences
a pressure force only if p varies over its surface. Dynamically, the pressure field itself
can only be related to the kinetic energy via the Bernoulli equation, which however
exists only when the flow is circulation-preserving, and merely reflects the dynamics
of longitudinal (compressing) process [11] †. Circulation is no longer preserving in
generic viscous shear flows.

There have been various theories on global flow performance in terms of local
structures in both external and internal aerodynamics, which are systematically pre-
sented by Wu, Ma & Zhou [11], Wu, Lu & Zhuang [10] and Yang et al. [18, 19]. While
all these theories may enhance our physical understanding of the flow structures in
their different evolution stages and their relevance to global performances, they are
not equally useful in flow management, which depends directly and critically on the
local dynamics right on the solid boundaries. A solid wall is the ultimate root of all flow
structures that in turn leave signature thereon. The management of these on-wall root
and signature, therefore, is of particular importance in the improvement of global flow

†In a circulation-preserving flow, the shearing process appears in a series of vorticity conservation the-
orems. It is coupled with the compressing process only through the vorticity-induced velocity that con-
tributes to the kinetic energy.
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performance. As just said, the on-wall distribution of primary variables‡ does not cap-
ture local dynamics; but their space-time variations do. This is what one should focus
in on-wall flow diagnosis and management. Then, as will be shown below, at least for
flows at large Reynolds numbers, the central concept of the on-wall local dynamics is
the boundary vorticity flux (BVF) pioneered by Lighthill [6].

The theory of BVF has also been extensively studied and reviewed (e.g., [11–15]).
In this paper we provide renewed insight to its central role in the on-wall local dynam-
ics, to the physics of how the BVF peaks are related locally to the sudden change of
wall conditions and globally to the pressure force and moment. We then report some
applications of BVF to the optimal design in practical external and internal flows. The
characteristic Reynolds number Re is assumed very large or even approaching infinity.

2 On-wall dynamics and boundary vorticity flux

Let a=Du/Dt be the material acceleration, ϑ=∇ · u be the dilatation, ω=∇ × u be
the vorticity, and µ and ζ be the shear and bulk viscosities, respectively, both being
assumed constant for simplicity. The Navier-Stokes (NS) equation for a viscous com-
pressible flow of unit volume can be written as a natural Helmholtz decomposition of the
inertial force ρa [8, 11]:

ρa = −∇Π−∇× (µω), (2.1)

where
−Π = −p + µθϑ, (2.2)

is the normal stress consisting of the pressure and a viscous-dilatation correction with

µθ ≡ ζ + 4µ/3, (2.3)

known as the longitudinal viscous coefficient (see, e.g., [4]). Eq. (2.1) indicates that locally
the inertial force ρa is balanced by the compressing process Π and shearing process
µω. The basis of the on-wall dynamics is nothing but the application of (2.1) on a
solid wall ∂B of normal n (pointing out of the fluid) and use of a corollary of the
adherence condition, a=aB, where aB is the known acceleration of the wall. This on-
wall equation can be split into a pair of normal-tangent (ω, Π) couplings:

−1
ρ

∂Π
∂n

= n · aB + ν(n×∇) ·ω, (2.4a)

ν
∂ω

∂n
= n× aB +

1
ρ

n×∇Π + ν(n×∇)×ω, (2.4b)

where ν=µ/ρ and a, Π, ω on the right-hand side all take their on-wall values.§

‡On a solid wall, roughly speaking, the velocity u is replaced by the shear stress τ.
§For two-dimensional flow the last term on the right-hand side of (2.4b) vanishes.
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Except for extremal conditions where the variation of µ and µθ as temperature is
significant, (2.4a) and (2.4b) are exact and sufficiently general for all viscous incom-
pressible and compressible flows, steady or unsteady. If a flow field is to be solved
from the NS equations, (2.4a) is the basis of formulating a Neumann condition for
Π or pressure, while (2.4b) is the basis of formulating a Neumann condition in the
vorticity-based schemes to exclude possible spurious solution caused by rising the or-
der of the equation [11]. On the other hand, in flow diagnosis and management, one’s
concern is usually focused on the most dominant mechanisms only, and hence it is
important to identify the relative importance of (2.4a) and (2.4b) which varies as the
Reynolds number. This paper considers Re=ρUL/µÀ1 only, where U and L are char-
acteristic velocity and length. Viewing (2.4) as having been nondimensionalized, then
generically there is |ω|=O(Re1/2). Along with the fact that n×∇ is an O(1) opera-
tor, the explicit viscous terms on the right-hand side of (2.4a) and (2.4b) are both of
O(Re−1/2)¿1. Thus, in (2.4a) the normal gradient of Π is dominated by the normal
wall acceleration; while in (2.4b) the viscous boundary vorticity flux (BVF) ν∂ω/∂n ≡ σ
is dominated by the tangent pressure gradient and wall acceleration. Note that on a
fluid surface element inside the flow, σ is merely a measure of how much vorticity is
diffused from one side of the surface to another; but on a solid boundary it measures
how much vorticity is newly created per unit area in unit time [6].

The wall acceleration aB in (2.4) is important mainly for unsteady flows with flexi-
ble boundaries, such as in nonlinear aeroelasticity, animal locomotion in air and water,
as well as flow controls by flexible walls. Of this kind of flow controls see, e.g., the tur-
bulent friction reduction by flexible wall which makes spanwise oscillation that forms
tangent traveling waves in n× aB to control the BVF [20], and wake-vortex elimina-
tion by flexible wall which makes up-down oscillation that forms a traveling wave in
n · aB to control the normal pressure gradient [9]. The theory for the fluid kinematics
at a generic deformable wall is given by Wu et al. [16].

Having made the above general remarks on the normal-tangent (ω, Π) coupling
on the wall, this paper will be confined to flow over a rigid surface, for which aB can
be made disappear by working in the frame of reference fixed to the body. To further
focus on the key physics at large Re and for the neatness of presentation, in what
follow we often neglect the O(Re−1/2) viscous terms. Thus the entire ∂Π/∂n in (2.4a)
and ν(n×∇)×ω in (2.4b) are negligible, but the BVF is always of O(1) even if Re→∞
¶. Consequently, we have

σ ≡ ν
∂ω

∂n
' σp ≡ 1

ρ
n×∇p, (2.5)

which highlights the on-wall dynamics at large Re where the BVF plays a dual role.
On the one hand, the tangent pressure gradient in (2.5) is a result or on-wall signature

¶Numerical examples (not shown here) have confirmed that the viscous term on the right-hand side of
(2.4b) is indeed as small as O(Re−1/2). On the other hand, on a stationary wall, Π 6= p only if the flow
is unsteady, where their difference µθϑ is generically still small, perhaps except inside some oscillating
shock layers.
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of the entire fluid motion, which measures the local dynamics of compressing process.
On the other hand, once that tangent pressure gradient is formed on the wall, it be-
comes a cause or on-wall root of new vorticity, which measures the local dynamics
of the shearing process. Therefore, in a generic viscous flow over a stationary wall
at large Re the local balance between the vorticity creation rate and tangent pressure
gradient stands at the center of the entire on-wall dynamics.

Note that the entropy gradient effect has been included implicitly in (2.1), (2.4),
and (2.5). This effect can be seen explicitly if we replace (2.1) by the Crocco-Vazsonyi
equation (per unit mass):

∂u
∂t

+ ω× u = −∇H + T∇s + νθ∇ϑ− ν∇×ω, (2.6)

where H=h + |u|2/2 is the total enthalpy and νθ=µθ/ρ. Thus, after dropping explicit
viscous terms except the BVF of O(1), there is the normal-tangent (ω, h) couplings

− ∂h
∂n

' n · aB − T
∂s
∂n

, (2.7a)

ν
∂ω

∂n
' n× (aB +∇h− T∇s). (2.7b)

This pair of on-wall dynamic equations can be used as alternative to (2.4), depending
on which is more convenient. In the rest of this paper we just work with (2.5).

3 BVF and boundary layer separation

One of the key issues in complex flow diagnosis is to predict when and where a bound-
ary layer will separate, a key process that may considerably alter global flow perfor-
mance. The BVF, especially its pressure-gradient constituent σp, is a good marker to
signify the separation is happening.

The physical reason for this important role of σp is explained by the triple-deck
theory (cf. [11], § 5.3). This theory reveals that in the boundary-layer separation zone
there must appear a local interactive pressure of O(Re−1/4) across the separation line,
which alters the parabolic nature of the boundary-layer approximation to a locally
elliptic nature of the triple-deck equations, and thereby eliminates the singularity of
the former. Although when ReÀ1 this interactive pressure is as small as O(Re−1/4)
and hard to be detected in numerical simulation, the width of the separation zone
is of only O(Re−3/8). This implies a strong peak of interactive pressure gradient of
O(Re1/8), and by (2.5) there is also a strong σp-peak of the same order.

Eq. (2.5) also indicates that the strong interactive σp-peak must be in a tangential
direction perpendicular to the interactive pressure gradient. Thus, in two-dimensional
or rotationally symmetric flow, the interactive σp-peak is simply along the ez or eθ (in
cylindrical coordinates) direction; but in a generic three-dimensional flow, as the sepa-
ration line becomes a skin-friction line (a τw-line‖, e.g., [11]), the interactive σp-peak of

‖τw = µω× n̂ is the skin-friction, with n̂ = −n being the unit normal out of the wall.
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Figure 1: The on-wall vector lines of
the skin-friction τw (red) and BVF σp
(black) on the suction side of the rotor
blade of a transonic compressor. No-
tice the strong peak of interactive BVF
in the separation zone makes the BVF-
lines turn to be basically aligned to the
skin-friction lines there.

O(Re1/8) turns to be basically aligned to the τw-line direction (plus anO(1) correction
due to the ambient pressure gradient which may have a component perpendicular to
τw). This (σp, τw) alignment occurs only in the narrow separation zone. Fig. 3 ex-
emplifies this situation on the suction surface of the rotor blade of a transonic axial
compressor. In the figure, the narrow positive BVF peak was found to be caused by
shock-boundary layer interaction, which confirms the dual role of σp for pinpointing

Figure 2: (Left) The hub curvature of a compressor rotor (Rotor A). (Right) Dashed line: The hub BVF of
Rotor A. Solid line: the hub BVF of Rotor B, which was reshaped from rotor A to ensure a milder curvature
variation.

Figure 3: Axial view of the distributions of pressure (left) and boundary vorticity flux (right) over the inducer
surface of a high-speed centrifugal pump. Only the latter can reveal the physical root of the cracks. Courtesy
of Z. H. Xu [17].
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both strong compressing process and strong shearing process on the wall. Note that
the τw-line convergence seen in the figure, which was the separation criterion pro-
posed by Lighthill [6], is insufficient to identify whether the entire boundary layer is
separating; but the above (σp, τw) alignment criterion does.

The two- and three-dimensional triple-deck structure can appear in much broader
situation than boundary layer separation. It also occurs at places where the wall curva-
ture has discontinuities, even if the flow remains attached [2, 7]. This causes O(Re1/8)
BVF peaks as well that are often unfavorable, and should be taken into the consider-
ation of flow diagnosis. Fig. 2 shows a correlation of strong BVF peaks identified by
RANS-simulation and wall curvature discontinuities along a compressor hub. A more
remarkable example is the inducer blade in a high-speed centrifugal pump, on which
the computed smooth pressure distribution predicts no trouble but the BVF does, see
Fig. 3. The three narrow radial BVF peaks correspond to the places of blade curvature
discontinuities, which caused cracks. Once the curvature was made continuous the
crack problem disappeared.

4 Force and moment in terms of BVF

We mentioned in § 1 that the pressure distribution (a “global” picture) does not reflect
local dynamics, but its gradient (a local picture) does. We now consider the lift on an
airfoil contour C in two-dimensional steady flow with u=Uex at x=−∞, to show how
physically the lift expression in the global picture is cast to that in the local picture. In-
troduce a coordinate system (n, t, ez) moving along C, where tds is the line element of
C in clockwise direction so that (n, t, ez) form a righthand orthonomal triad. Assume
the airfoil is sufficiently thin so that it can be represented by its centerline

y = η(x), 0 ≤ x ≤ c. (4.1)

Denote the upper and lower surfaces of the airfoil by the + and− signs (cf. Fig. 4), and
the jump of any function f across the centerline by [[ f ]]. Let l(x) be the arc-length along
the airfoil, such that dl=dx

√
1 + η′2(x), with dl=±ds on the ± sides. Moreover, let n̂

be the unit normal of the airfoil pointing out of the upper surface, i.e. n̂=−n+=n−.
When ReÀ1 the shear stress can be neglected. Thus by the thin-wing theory and the
Kutta-Joukowski lift theorem there is∗∗

L =
∮

pnyds = −
∫ c

0
[[p]]dx = −ρUΓc, Γc =

∫ c

0
γ(x)dx, (4.2)

where γez is the strength of the bound vortex sheet as in the classic circulation theory.

Introduce now the partial lift L(x) and partial circulation Γ(x) up to any x∈[0, c]:

L(x) ≡ −
∫ x

0
[[p]]dx = −ρU

∫ x

0
γ(ξ)dξ = −ρUΓ(x). (4.3)

∗∗By definition, on the (x, y) plane Γ>0 if the vorticity is along the ez direction, i.e., the circulation is
counterclockwise.
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Figure 4: Two-dimensional flow over a thin airfoil.

Then since for BVF we have σ=σp=∂p/∂s, it follows that

U
d2Γ(x)

dx2 = U
dγ(x)

dx
=

d[[p]]
dl

dl
dx

= 2σ
√

1 + η′2(x), (4.4)

where σp≡(σ+
p + σ−p )/2. This equation reveals the explicit dependence of the partial

lift and circulation of a thin airfoil on the sum of the BVF on both surfaces, which casts
(4.2) to a double integral of BVF moment:

L = −2ρ
∫ c

0
dx

∫ x

0
σp(ξ)

√
1 + η′2(ξ)dξ. (4.5)

However, since

d
dx

[xγ(x)] = γ(x) + x
dγ(x)

dx
, γ(0) = γ(c) = 0,

by the familiar integration-by-parts formula

∫ b

a
f (x)dx = [x f (x)]ba −

∫ b

a
x f ′(x)dx, (4.6)

and using (4.4), (4.5) is reduced to a single integral:

L = 2ρ
∫ c

0
xσp

√
1 + η′(x)dx = ρ

∮
xσpds, (4.7)

which is the desired BVF-based lift expression in terms of the x-moment of σp. Note
that since p+=p− or γ=0 at x=c, the σp distribution is constrained by

2
∫ c

0
σp

√
1 + η′2(x)dx =

∮
σpds = 0. (4.8)

The distributions of pressure and BVF over a helicopter rotor airfoil VR-12 at α=6◦
are compared in Fig. 5. The lift can be measured by either the area enclosed by the
pressure curve or the x-moment of BVF peaks. The latter is highly localized.

The general BVF-based force and moment expressions are derived from the con-
ventional ones in global picture by the so-called derivative-moment transformation (DMT),
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Figure 5: Distributions of p (left) and BVF (right) over airfoil VR12 at α=6◦, computed by both potential
flow theory and NS solvers. Courtesy of Dr. F. L. Zhu [21].

which are the extension of (4.6) to higher dimensions. There have now been a variety
of DMT-based alternative total force and moment formulas in terms of local struc-
tures (cf. [10, 11, 18]), but only the BVF-type formulas can cover the case with open
solid boundary, say S, which has a boundary loop ∂S. This property is important as
frequently encountered in practical applications, for example when one wishes to es-
timate the force on the wing part mounted to a fuselage or a rotor blade mounted on
a hub. In what follows we drop the small viscous force as we commonly do in flow
management. Then for an n-dimensional flow (n=2, 3) over an arbitrarily moving and
deforming open solid surface S, the BVF-based force formula reads

F = − ρ

n− 1

∫

S
x× σpdS +

1
n− 1

∮

∂S
x× pdx, (4.9)

of which (4.7) is the lateral component in two-dimensional flow. Similarly, for both
n=2 and 3, the total moment reads

M =
ρ

2

∫

S
x2σpdS− 1

2

∮

∂S
x2 pdx. (4.10)

5 BVF-embedded airfoil and rotor blade design

Eq. (4.7) for the airfoil lift may exemplify how to incorporate the local-dynamics in-
formation in optimal configuration design. It is convenient to locate the origin of the
x-coordinate at the mid-chord point; then whether a BVF peak has favorable or un-
favorable effect on L is simply determined by the sign of xσp. Moreover, an optimal
design would be to enhance positive xσp and suppress negative xσp as much as pos-
sible, under the condition (4.8) and other conventional constraints. For example, the
positive peak at front part of VR-12 airfoil (Fig. 5 (right)) should be suppressed, which
by (4.8) will likely lead to a favorable positive BVF on the rear part. This is in full
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consistency with keeping the boundary layer attached in as wide range of angles of
attack as possible. Therefore, as a general rule: The local-dynamics diagnosis can add
a local criterion to the common objective function of integral type in optimal design.

So far no general-purpose optimal design scheme has been developed with embed-
ded BVF constraint. The above rule has to be implemented case by case. For example,
to improve the stall performance of VR-12, Zhu [21] employed a simplified inverse
design approach using sequential quadratic programming (SQP) method, and set the
objective function as

f (ci) = σpkU + d0σpkL + d1Cl , (5.1)

where ci are the coefficients of the series expansion of airfoil geometry, σpkU and σpkL

are the peak-value BVF segments at upper and lower surfaces, respectively, Cl is the
lift coefficient, and d0 and d1 are weighting parameters. The result of optimization is
shown in Fig. 6. All the excellent performances of VR-12 airfoil for the angles of attack
before stall are retained, but the stall angle of attack αstall and maximum lift coefficient
Clmax are increased.

A significant improvement of the performance of the aforementioned axial com-
pressor rotor can be gained by applying BVF-based optimal design to fully three-
dimensional rotor blade in viscous flow. To enhance the power input to the fluid by
the rotor, we maximize the axial moment acting on the blade by the fluid, which is the
negative value of the axial component of (4.10) in cylindrical coordinates:

Mz|to fluid = −1
2

∫

S
ρr2σpzdS +

1
2

∮

∂S
pr2dz. (5.2)

The rotor blade surface S can be treated open at both its root and tip, where the line
integral is dominant. The integral of ρr2σp alone in (5.2) over the middle part of S
does not equal the common pressure moment integral. Thus, a simple (and yet par-
tial) implementation of embedding a BVF constraint in optimal-design code could be
maximizing this integral alone for a set of discrete sectional foils at different r in the
middle part of S, and maximizing both integrals in (5.2) only for the tip and root sec-
tional foils. This strategy was adopted by the second and third authors of the present
paper (H. and Q.S.) on a self-developed optimal design RANS code to enhance Mz.
The strategy establishes a direct link between the foil parameters and their objective
functions at every section, which accelerated the convergence of iteration. But this
strategy cannot optimize the leading-edge curve itself in the three-dimensional space.

This scheme has been applied to a transonic compressor, which resulted in an in-
crement of Mz by 6%. Fig. 7 compares the distributions of σpz on the suction side
of the blade before and after BVF-based optimization, indicating that an unfavorable
narrow peak σpz>0 caused by shock-induced separation is weakened and shrunk, and
shifted toward downstream. This implies that the shock and its induced separation
was significantly suppressed.

Fig. 8 compares the total-pressure ratios and adiabatic efficiencies before and after
optimization. At the peak-efficiency point, the total-pressure ratio and adiabatic effi-
ciency were increased by 5.73% and 1.11%, respectively. Fig. 9 compares the profiles
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Figure 6: The lift, drag and moment
of the FR-12 airfoil (blue) and its
redesigned version (red) by a simple
optimization program. Courtesy of
F. L. Zhu [21].

of these performances at the exit section, indicating that the main improvement occurs
at the mid portion of the blade.

Finally, we remark that for given angular velocity of the rotor, maximizing its work
rate acting to the fluid implies minimizing the dissipation and energy loss. Ideally, this
would be the case if the boundary layers of the shroud, hub and rotor blades could
be fully attached, leaving the core flow irrotational and hence effectively inviscid. In
particular, in an inviscid and axisymmetric flow model this requires minimizing the
azimuthal vorticity ωθ . This latter criterion has been used by Yang et al. [19] to perform
optimal preliminary design of compressor rotor blade. Now the above BVF-based
optimal design should also lead to the reduction of ωθ in the core flow. Our above

Figure 7: The σpz contours on the suction side of the original and optimized rotor blades.
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Figure 8: The performance comparison vs mass flux of original and optimized rotor blade.

Figure 9: The performance comparison of original and optimized rotor blade at the rotor exit.

3D RANS simulation indicates that the optimal design indeed drives ωθ toward the
shroud and hub (figure not shown), in consistency with the minimum-ωθ criterion.

6 Concluding remarks

In this paper we present a deeper physical understanding of the concept of the bound-
ary vorticity flux (BVF), demonstrated by a few unpublished or newly worked-out
examples. The major points are as follows:

1. The global integrated performance of complex engineering flows is dominated
by local dynamic processes and structures that cannot be identified from the primary-
variable fields. While quite a few theories have now been available to express global
performance in terms of those local structures at different evolution stages inside the
flow field, for the purpose of optimal solid-wall configuration design and flow con-
trol the on-wall and near-wall local dynamics bears the most direct relevance. The
desired on-wall local dynamics is based on the application of proper forms of the
Navier-Stokes equation to the solid wall, which for high-Reynolds-number flows is
highlighted by the BVF theory.

2. The BVF plays a dual role on the wall. On the one hand, it captures the signature
of the compressing process as the local tangent pressure gradient. On the other hand,
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it measures the vorticity creation rate and thereby serves as a root of shearing process.
This dual role makes the BVF able to pinpoint highly localized wall areas where both
processes have strong peaks.

3. Owing to the discovery by the triple-deck theory that whenever the wall bound-
ary conditions have sudden changes a strong but highly localized interactive pressure
gradient of O(Re1/8) will appear and be added to the ambient pressure field, the BVF
is a faithful marker of boundary-layer separation and the effect of wall-curvature dis-
continuity. Two examples were given to illustrate the great significance of this role of
BVF.

4. When ReÀ1, the total force and moment on a solid surface are commonly con-
sidered to be dominated by pressure distribution. By introducing the concept of par-
tial pressure force and circulation, we demonstrate how to transform the common
force formula to a double integral of the BVF and then to a single integral of the BVF
moment. This provides not only a clear physical interpretation of the general BVF-
based force and moment formulas, but also new clue to developing optimal design
method with the local dynamics built in as a new constraint. The application of this
optimization method was illustrated for the design of a helicopter rotor airfoil and a
transonic compressor rotor blade.
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