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Abstract. In this paper, we present a finite difference method to track a network of
curves whose motion is determined by mean curvature. To study the effect of inho-
mogeneous surface tension on the evolution of the network of curves, we include
surfactant which can diffuse along the curves. The governing equations consist of
one parabolic equation for the curve motion coupled with a convection-diffusion
equation for the surfactant concentration along each curve. Our numerical method
is based on a direct discretization of the governing equations which conserves the
total surfactant mass in the curve network. Numerical experiments are carried out
to examine the effects of inhomogeneous surface tension on the motion of the net-
work, including the von Neumann law for cell growth in two space dimensions.
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1 Problem description

Interface phenomena have been studied extensively not only due to their importance
in applications but also for the computational challenges they impose. Motion by
mean curvature has been used as a model for various physical problems including
multiphase flows and growth of grain boundary in poly-crystals [3]. Level-set method
is a popular choice for these type of problems [9]. In [1], a direct finite difference
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method was used to study the evolution of a network of curves due to its simplicity
and efficiency.

In this paper, we generalize the grain growth problem discussed in [1] by including
the effect of an inhomogeneous surface tension. For practical problems, it is difficult
to maintain constant surface tension as insoluble surface active agents (surfactant) are
common and their presence could significantly affect the value of the surface tension,
therefore the dynamics of interface motion [2]. To account for the effect of the surface
tension on the interfacial dynamics of a complex network of interfaces, we consider
a network of curves in a two dimensional setting and assume that there is a surfac-
tant distributed along the curve and the surface tension varies according to the sur-
factant concentration. As in [1], we consider the situation with triplejunctions, i.e.,
three phase boundaries, described by parametric curves X' (s, t),s€[0, 1] fori=1,2,3 as
shown in Fig. 1. Throughout this paper, we define T/(s, t)=X. /|X{| as the unit tangent
vector of the curve i. The motion of equations are defined as

i
Xss

X; =/¢' X2

(1.1)

where ¢ (s, ) is the surface tension along the curve X' and is determined by the surfac-

tant concentration I'(s, t). By taking inner product with normal vector n'=X.+/|X|,

Eq. (1.1) becomes

) ) X XiL

Xi-n=0 2 =
t X2 X

=cdx, (1.2)

where «' is the local mean curvature of the curve X'. Thus the normal velocity of curve
motion is proportional to the local mean curvature and the surface tension coefficient.

s=0

Q

s=0

Fig. 1: A three-curve network.

The presence of surfactant reduces the surface tension, and in this paper we use the
simplified nonlinear Langmuir equation of state [10]

o' =0 (1+In(1—p'TH). (1.3)
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Along the curve, the surfactant concentration is governed by the transport equation
[4,12]
L (Vs -UNT = u V2T, (1.4)

where V; is the surface gradient operator and V2=V, - V; is the surface Laplacian.
U'=X! is the velocity of the curve. In this paper , the diffusion coefficient of the sur-
factant concentration y is assumed to be a constant for all curves. Note that the above
time derivative is taken by fixing the tracking parameter s. Therefore, our equation is
different from the one derived by Stone [11] where the time derivative is taken with
respect to the fixed Eulerian position. For clarity, the above surface divergence and
surface Laplacian can be written explicitly as

V. .11 z;ui i au /‘ax

V2T = <BF’/‘8X’ >/‘8X’

We assume that each curve meets the domain boundary with a right angle at s=0.
More precisely, let b(a) be the given parametric representation of the domain with
a€[0,27]. The conditions at the domain boundary are given by

(1.5)

(1.6)

X'(0,1) = b(w:), (1.7)
for some «; such that ‘
(0,t) - b'(a;) = 0. (1.8)

We further assume that there is no surfactant flux across the domain boundary

V. Ii(0,t) - (0, t) = aarsi(o,t) = 0. (1.9)

At the triple-junction (s=1), three curves meet and we have geometric constraints
X1(1,t) = X2(1,t) = X3(1,t). (1.10)

Since the above conditions only provide two equations for three curves, one more con-
dition is required, which comes from the Young-Laplace equation (balance of surface
tension)

3
Y (1,1 T(1,t) =0, (1.11)
i=1
where the tangent vectors join at and point away from the triple-junction. When p' are
identical, the surface tensions take the same value at the junction. Thus, the Young-
Laplace condition implies that the angles between these curves are 120 degree which
results in the famous law of Plateau.
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We also need to impose the boundary conditions for surfactant concentration at
the triple-junction

rl(1,t) =T%(1,t) =1, t) (1.12)
ivsri(l,t)-ri(l,t) arl (1,t) /‘ax (1,t) ‘ (1.13)
i=1

Eq. (1.12) represents the continuity of the surfactant concentration, while Eq. (1.13) im-
plies zero net tangential flux at the triple-junction. From the surfactant equation (1.4)
and boundary conditions Egs. (1.9)-(1.13), we can easily verify that the total surfactant
mass along the three curves is conserved, i.e.,

dt (;/ ' ‘d5> =0. (1.14)

2 Numerical method

For each parametric curve i, we set up a mesh sy=(k — 1/ 2)As, k=1,2,... M where
As=1/M, and use a collection of discrete points (Lagrangian markers) Xi=X" (s, nAt)
to represent the curve at time t=nAt. The surfactant concentrations and surface ten-
sions on each curve are also defined on these Lagrangian markers and denoted by
It =T (s, nAt) and o =0 (s, nAt), respectively. For clarity, we use the variables with

tilde as the values at the next time step; that s, Xk X' (s, (n+1)At) and F}c—l“l (sk, (n+
1)At). The motion of the curves is computed by advancing the values X}, T} at time
step nAt to X!, I'' at time step (n + 1)At. The numerical time integration cons1sts of
the following steps:

1. Compute the surface tension on each curve i

op=0.(1+In(1-p'T})), k=12...M. 2.1)
2. Solve the equation of motion (1.1) by an explicit scheme as in [1]
X - X (X —2X+ X, )/ A8
= ak : : R (2.2)
At (XL, — X]_,)/(209)]

Here, we use the central difference schemes to approximate the first and second deriva-
tives. Note that the above discretization is valid at the interior points k=1,2... M.
Next we provide the details on how to find the boundary points X} and X}, 41 Which
are associated with the domain boundary s=0 and the triple-junction s=1, respec-
tively:

(a) At the domain boundary, we discretize Egs. (1.7) and (1.8) by central difference
approximation as

— —_ , .

b(), S ()



292 M.-C. Lai, C.-W. Hsu, H. Huang / Adv. Appl. Math. Mech., 2 (2009), pp. 288-300

from which we obtain _ ‘ ‘

(X7 —b(a')) - b'(a') =0. (2.4)
Since the boundary curve b(«) and its tangent b’(«) is known analytically, the above
scalar algebraic equation can be solved very easily. Once a' is found, the domain
boundary point can be extrapolated by

X, =2b(a') — XI. (2.5)
(b) At the triple-junction, we discretize Egs. (1.10) and (1.11) as

Koo+ X Xowor + Xt Xy + X _ % (2.6)
2 B 2 B 2 o '
X, - X, X, - X} X, - X}
ISP T IM 2 Sp M 3 Mo
Px,-Xul o TIX - Xl X, - X
The details of marker location at the triple-junction can be found in Fig. 2.

2.7)

Fig. 2: Details of marker location at the triple-junction.

3. Update surfactant concentration I'% as follows. Firstly, we rewrite the surfactant

concentration in a form as
or! X!
v (5 /1) @)

ar (o
ot | ds

by multiplying (1.4) with the stretching factor }E)XZ /9s| and using the following equa-

tion [4]

0 |oX!
ot | ds

a |ox! i | oX
RS = (V.- u) . (2.9)
Denoting the discrete stretching factor by
‘ i — X,
‘DsX5<+1/z| = 7“25 k , (2.10)

1 ‘ .
|Ds X} | = E(’sz;ﬁ-l/Z’ + [DsX}_1,2l), (2.11)
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we can now discretize (2.8) by an explicit and symmetric scheme as

T~ Tf |DXi| + |DXi| |, |D:Xi| — [D.Xj| Tj + T}

At 2 At 2
1 ,(Ti , —Ti)/As (TL—Ti )/As
_ ”K( k+1 : k Yk Ilc 1 ), (2.12)
5 |Ds X1l |Ds X315l

on the interior points k=1,2... M. For the values on the boundary points I and
f’lM +1» we will use the conditions at domain boundary s=0 and the triple-junction
s=1, respectively:

(a) At the domain boundary s=0, we use central difference to discretize Eq. (1.9)
and obtain szfll.
(b) At the triple-junction s=1, we approximate Egs. (1.12) and (1.13) by

F1 F 2 P o £3
Tvnn tT0 _ Ty 1% Ty + T

=T 2.1
2 2 2 pr (2.13)
(r}le - T]l\/l)/As I (r%\/Hl — F%A)/AS (r?\/f-s-l — F%)/As —0 (2.14)
o1 ) < = '
|Ds X pr41/2] |DsXv11/2] |Ds X p141/2]

Substituting Eq. (2.13) into Eq. (2.14) yields an single equation for surfactant concen-
tration at the triple-junction I',. Once T is found, T, ; can be easily obtained from
Eq. (2.13).

Note that, by taking the summation of both sides of Eq. (2.12) and using the nu-
merical boundary condition at the triple-junction (2.14), one can easily verify that

3 M . 3 M .
Y Y T} IDXiAs = Y Y Ti DX | As. (2.15)
i=1k=1 i=1k=1

This is the discrete version of the conservation of total surfactant mass along all the
curves, corresponding to the mid-point rule discretization for the integral in Eq. (1.14).

It is interesting to note that the numerical scheme (2.2) for Eq. (1.1) is independent
of the mesh width As. Since the scheme is explicit, the time step size must be chosen
similarly in [1] by

(2.16)

Under this constraint, the time step becomes smaller if the length of any curve short-
ens in which the marker spacing becomes smaller. One way to maintain the marker
resolution is to delete the markers in an appropriate way so that the time step size
can be maintained. One the other hand, if the curve stretches and the marker spac-
ing is too coarse, then we need to add more markers along the curve. The details of
marker redistribution technique can be found in [1,4]. One important thing during
the marker redistribution process is to keep the mass conservation of the surfactant.



294 M.-C. Lai, C.-W. Hsu, H. Huang / Adv. Appl. Math. Mech., 2 (2009), pp. 288-300

This can be done in a local way. For instance, in the segment of adding more marker
points, we simply distribute the surfactant mass into those points uniformly. On the
other hand, in the segment of removing marker points, we add up those surfactant
mass to be a new surfactant concentration in the new combining segment. Thus, the
overall surfactant mass is conserved exactly without any scaling.

3 Numerical results

Asin [1], we consider the network of curves inside the unit disk such that b(a)=(sin«,
cos u), where a€[0,27t]. For comparison purposes, we will present results for the cases
without surfactant (clean) and with surfactant (contaminated). Using the equation of
state given by Eq. (2.1), B'=0 implies no surfactant exists on the curves, in which we do
not need to solve the surfactant equation (1.4). Thus, the clean network of curves has
a uniform surface tension c=c.=1. For the following test, we choose the mesh width
on each curve As=1/16 and the time step At=0.0001.

3.1 Three-curve network

As the first example, we consider the evolution of three curves in the unit disk with
initial configuration as in [1]

X'(s,0) = (1 —5)(—=1/2,—V3/2), (3.1)
X?(s,0) = (1—15)(—1/2,v/3/2), (3.2)
X3(s,0) = (1 —s,sin?(7s)/4). (3.3)

The above initial configuration is shown in Fig. 1. To examine the effect of the surfac-
tant on the curves motion, we compare the cases with (ﬁi:0.25, i=1,2,3) and without
surfactant (,Bi:O, i=1,2,3). For the case with surfactant, the diffusion coefficient is cho-
sen as y = 0.1. The initial surfactant concentration is uniformly distributed only along
the curve 3 so that

I'l(s,0) =T2%(s5,0) =0, T3(s,0) = 1.

Fig. 3 shows the time evolution of these three curve networks. We denote the clean
curve network (without surfactant) by solid line, while the contaminated curve net-
work (with surfactant) by dotted line. As demonstrated in [1], the curve 3 will be
flattered out to make the shape between curves 2 and 3 convex. Thus, the area be-
tween between curves 2 and 3 decrease as time evolves. Since the existence of the
surfactant along the curve 3 reduces the surface tension, the curve motion becomes
slower than the clean curve network. Fig. 4 shows the surfactant distribution along
each curves. One can easily see that due to the effect of diffusion, the surfactant on
curves 1 and 2 are no longer zero.
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Fig. 3: The time evolution of curve networks:

solid lines for ﬁi = 0 and dotted lines for ﬁi = 0.25.
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Fig. 4: Distribution of the surfactant concentration on curve 1 (left), curve 2 (center), curve 3 (right).

3.2 Von Neumann law

In 1952, von Neumann [7] showed that the rate of the change of the area of a given
bubble (a curved polygon) in two-dimensional dry foam is independent of bubble
size and solely dependent on the number of walls (or edges). The original derivation
is based on the rate of gas diffuses through a permeable wall. In our case, the rate of
area change of the domain is given by

dA

— = Ui-nids:/axds,
dt Zl:/ by

(3.4)
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where U’ - n' represents the normal velocity of the curve i per unit length, as discussed
earlier. Note that, the above integral of mean curvature is over all the curves that
enclose the area. When ¢ is a constant, the enclosed area is polyhedral-shaped with
arcs edged, the above integral can be simplified as

dA 1 T
= i;ai—mr :§U(n—6), (3.5)

where a;=71/3 is the exterior (turning) angle at the vertex, and n is the number of
walls. A similar derivation can be found in [5-7].
When surface tension varies, however, (3.5) is no longer valid. For example, «;

T=000 T=027 T=054

Fig. 5. The time evolution of six nodes cell. Solid line: without surfactant; Dotted line: with surfactant.
T'l(s,0)=I?(5,0)=0,T3(s,0)=1 and the rest of T (s,0)=0; B1=0.75, >=0.5, B3=0.25, the rest of fi=0.25.
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Fig. 6: The time evolution of five nodes cell. Solid line: without surfactant; Dotted line: with surfactant.
T'l(s,0)=I?(5,0)=0,T3(s,0)=1 and the rest of T (s,0)=0; B1=0.75, >=0.5, B3=0.25, the rest of fi=0.25.
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Fig. 7: The time evolution of seven nodes cell. Solid line: without surfactant; Dotted line: with surfactant.
I'l(s,0)=I?(5,0)=0,T3(s,0)=1 and the rest of I (s,0)=0; B1=0.75, >=0.5, B3=0.25, the rest of §i=0.25.
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Fig. 8: The time evolution of seven nodes cell. Solid line: without surfactant; Dotted line: with surfactant.
B'=0.25.

does not always take the value of 71/3. It will be interesting to examine how the
area changes under a similar setup. We start with a single n-vertices inner cell with
circular arcs and connect those vertices with n straight lines to the domain boundary:.
In particular, the cell boundary is a circle of radius 0.5. Note that, the number of lines
is the same as the number of vertices on the inner cell. Along each line or circular arc,
we lay out a parametrization on those curves. So a cell network with n vertices should
have 2n curves and n triple-junction.

From the von Neumann law, one can easily see that the cell with more than six
walls will grow while the one less than six walls will shrink when the surface tension
is constant. More specifically, the area of a cell with #=6 remains unchanged while the
cells with n=5 and n=7 should have the same growth (decay) rate. Fig. 5 shows the
time evolution of a six vertices cell with (dotted line) or without surfactant (solid line).
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Fig. 9: The cell area versus time, for the cases with and without surfactant. Without surfactant (solid lines),
the area evolves as predicted by the von Neumann law while for the case with surfactant (dotted lines), the
rate of growth is increased for n=7 while the rate of decay for n=5 is decreased. The area for n=6 also
increases.
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Fig. 10: The cell area versus time, for the cases with and without surfactant for n=7. Without surfactant
(solid lines), the area evolves as predicted by the von Neumann law while for the case with surfactant (dotted
lines), the area decreases in the beginning but increases later on as the surfactant diffuses into the center
network.

One can easily see that in the absence of surfactant, the cell area does not change. How-
ever, with surfactant, the system behaves differently. For illustrative purposes, we add
surfactant only along one line segment I'(s,0)=1 initially, and choose 51 =0.75, [32:0.5,
B3=0.25 in Langmuir equation along the rightmost three curves network (same set up
as in Fig. 1) and keep other f'=0.25, then the symmetry is broken due to unbalanced
surface tension, as shown in Fig. 5. Figs. 6 and 7 are the corresponding motions for
the cells with n=5 and n=7, respectively. It is interesting to see that the unbalanced
surface tension slows down the decay rate for the 5 vertices cell area and speeds up
the area growth for 7 vertices cell. This is due to the fact with different g and sur-
factant concentration, thus, different surface tension along the rightmost three curves
network. Fig. 9 shows the plot of cell area versus time for the cell with and with-
out surfactant for different nodes n=5, 6, and 7. One can see the result confirms the
prediction by the von Nuemann law when there is no surfactant.

As our final example, we present the results when surfactant is added initially
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I(s,0)=1 to all the outside line segments connecting the center network (cell) to the
boundary. The inner cell boundaries are thus kept clean (without surfactant) initially.
In this case, the initial exterior turning angles of the center network are all less than
7t/3, which reduces the value of Y_7_; &; — 27t in the von Neumann law. Therefore,
we expect that the center network grows much less than the case without surfactant.
Furthermore, the cell area should increase again as the surfactant diffuses into the
center network, as shown in Figs. 8 and 10.

4 Conclusions

In this paper, we propose a finite difference method to track curves motion whose
normal velocity is determined by surface tension times the local mean curvature. We
introduce the surfactant into the curves network and the surface tension varies fol-
lowing surface diffusion of the surfactant. The equations of motion are governed by
a parabolic equation for the curve motion as well as a convection-diffusion equation
for the surfactant concentration along each curve. Our numerical method is based
on direct discretization of the governing equations and the associated boundary con-
ditions, which conserves the total surfactant mass in the curve network. Numerical
examples are presented to illustrate how the inhomogeneous surface tension affects
the the motion of the curves and the evolution of the curve network.
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