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Abstract. A numerical investigation of laminar natural double diffusive convec-
tion in an open ended vertical cylindrical annulus with unheated entry and un-
heated exit is performed. Both boundary conditions of uniform wall tempera-
ture/uniform wall concentration (UWT/UWC) and uniform heat flux/uniform
mass flux (UHF/UMF) are considered. Results of dimensionless induced volume
rate Q, average Nusselt number Nu and Sherwood number Sh are obtained for air
flow under various buoyancy ratio N, Grashof numbers due to heat and mass trans-
fer GrT and GrM, Schmidt number Sc and combinations of unheated entry, heated
section and unheated exit length. Since the flow under consideration is a boundary
layer type, the governing partial differential equations was discretized to a linear
system of equations by the use of an implicit finite difference method. The non-
linear convective terms are approximated by second upwind difference method
for the numerical stability. The numerical results reveal that the presence of un-
heated entry and unheated exit severely affects the heat and mass transfer rates.
The numerical solutions are found to approach asymptotically the closed form so-
lutions for fully developed flow. Further, the present numerical results are vali-
dated with the existing solutions for pure thermal convection and are found to be
in good agreement.

AMS subject classifications: 65L12, 76D05, 80A20

Key words: Discrete heating, cylindrical annulus, upwind difference, doubles diffusive con-
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1 Introduction

Many practical systems involve convective heat and mass transfer in fluids in heated,
vertical, open-ended channels like circular tubes, parallel plates and annular cavities.
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Noticeable examples include the chemical distillatory processes, design of heat ex-
changers, channel type solar energy collectors and thermo-protection systems. Hence,
the characteristics of natural convection heat and mass transfer are relatively impor-
tant in the above mentioned applications. Among the above geometries, vertical open-
ended cylindrical annulus whose side walls are at different temperatures and con-
centrations is the most general cavity since it includes the circular tubes and parallel
plates as its limiting geometries. Such systems are of practical importance in the field
of double pipe arrangements, particularly the fuel elements of nuclear reactors during
the shut-off periods. Also the present day technological and engineering environment
and style of living in metropolis are demanding hazard-free and safe electrical power
supply equipments. In addition, to provide a cleaner and risk-free environment, con-
siderable emphasis has been given on the pollution free equipments.

The natural convection heat transfer in vertical open annular duct flows induced
by the thermal buoyancy alone has been investigated in great detail in the litera-
ture. El-Shaarawi and Sarhan [1] presented numerical results for the laminar natu-
ral convection heat transfer in an open ended vertical concentric annulus of radius
ratio 0.5 with one wall being isothermal and other wall being adiabatic. Coney and
El-Shaarawi [2] used the finite difference analysis for the incompressible laminar con-
vective flow in concentric annuli with simultaneous development of hydrodynamic
and thermal boundary layers and found that the rate of heat transfer for the case of
isothermal inner wall and adiabatic outer wall is higher than that of the case of isother-
mal outer wall and adiabatic inner wall. Later, El-Shaarawi and Sarhan [3] developed
a finite difference scheme for the laminar free convective flow in an open ended ver-
tical concentric annuli with rotating inner wall and concluded that heating the inner
cylinder has always stabilising effect while heating the outer cylinder has either desta-
bilising or stabilising effect, depending on the nature of the rotation. Numerical inves-
tigation of laminar mixed convection in a vertical annulus was studied by Hashimoto
et al. [4]. Al-Nimar [5] obtained an analytical solution for transient laminar fully de-
veloped free convection in vertical concentric annulus corresponding to four thermal
boundary conditions. Recently, natural convection heat and mass transfer in vertical
concentric annuli with film evaporation and condensation is performed numerically
by Yan and Lin [6].

Natural convection due to heat and/or mass transfer in vertical parallel plates is
also studied in detail. A numerical solution based on a finite difference scheme was
first obtained by Bodia and Osterle [7] for the development of free convection heat
transfer between heated vertical parallel plates. Their finite difference calculations
show that the development height is rather significant and for most situations the as-
sumption of fully developed flow is not valid. Yan and Lin [8] considered the effect
of the discrete heating on the vertical parallel channel flows driven by buoyancy force
and found that the rate of heat transfer is more for continuous heating. The effect of
unheated entry and unheated exit section on the natural convection of air flow in a
vertical parallel plate channel is numerically investigated by Lee [9]. He considered
the uniform heat flux (UHF) and uniform wall temperature (UWT) thermal bound-
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ary conditions at the aide walls and found that the heat transfer characteristics are
significantly altered with the unheated entry and unheated exit for the case of UHF
condition. Nelson and wood [10] analysed the combined heat and mass transfer in
vertical plates for both uniform wall temperature and uniform wall heat flux. A nu-
merical study for combined effects of thermal and species diffusion along a vertical
cylinder was proposed by Chen and Yeh [11]. Later, Lee [12] presented a combined
numerical and theoretical investigation of laminar natural convection heat and mass
transfer in open vertical parallel plates with discrete heating for both the boundary
conditions of UWT/UWC and UHF/UMF. Also, Lee [13] studied the fully developed
double-diffusive natural convection in a partially heated pipe. Cheng [14] examined
the fully developed natural convection heat and mass transfer in a vertical annular
cavity filled with porous media. He found that the volume flow rate can be increased
by increasing the Darcy number or inner radius-gap ratio or the buoyancy ratio. Re-
cently, natural convection from a uniformly heated vertical circular pipe is investi-
gated by Mohammed and Salman [15] for different entry restriction configurations of
the pipe.

The studies reviewed above deal with uniform or discrete heating of vertical par-
allel plates or uniform heating of vertical cylindrical annuli for single diffusive or dou-
ble diffusive convection. Regardless of its importance in engineering applications, the
natural convection heat and mass transfer in vertical open annular duct with discrete
heating conditions at the surface forming the annular duct has not been studied in
the literature. The effect of unheated portion at the entry and exit of an annular duct
will alter the flow behaviour and heat transfer characteristics, which is encountered
in many electronic cooling devices and other thermal systems. The purpose of the
present numerical study is to investigate the double diffusive convection through a
vertical annulus for different Grashof numbers and other dimensionless parameters
of the problem with the objective of understanding the effect of discrete heating. The
governing equations of the problem are simplified by Prandtl boundary layer approx-
imation. However, the difficulty in finding the analytical solution to these equations
comes from the non-linearity of convective terms and also due to their coupled na-
ture. Also, since the flow under consideration is a boundary layer type, a fully implicit
numerical scheme has been used to transform the governing equations into finite dif-
ference equations. The solution of these finite difference equations are marched in the
downstream direction using a Gauss Jordan method and Thomas algorithm.

2 Mathematical formulation

The geometry of the problem under consideration, which is a vertical annulus of finite
length l and width 2b open at both ends with the inner and outer radii ri and r0 respec-
tively, and the coordinate system used are as shown in Fig. 1. Let the inner and outer
wall of the annulus be insulated in the bottom and top, while the remaining portion
is subjected to uniform temperature (or heat flux) and uniform concentration (or mass
flux). Further, the heated portions at top (L1) and bottom (L3) are assumed be of same
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Figure 1: Physical domain, coordinate system and boundary conditions.

lengths. The effect of unheated entry or exit is studied through the non-dimensional
parameter, namely, the heater length ratio E. The heat added to the annulus bound-
aries produces an upward double diffusive natural convective flow in the annular
gap between the two cylindrical walls. It is assumed that the fluid enters the bottom
of the annulus with a flat velocity profile at a value equal to the mean axial velocity
(w0) in the annular gap and with a uniform temperature and concentration profile at
a value equal to the ambient temperature θ0 and concentration S0. The fluid is as-
sumed to have constant physical properties but obeys the Boussinesq approximation
and the surface normal velocity is ignored due to the small temperature and concen-
tration differences. Also we assume that the flow is steady, axisymmetric and without
internal heat generation and viscous dissipation. Under the above assumption the
equations of conservation of mass, momentum and energy are as follows (Coney and
El-Shaarawi [2]):

∂

∂r
(ur) +

∂

∂x
(wr) = 0, (2.1a)

1
r

∂

∂r
(ru2) +

∂

∂x
(wu) = − 1

ρ0

∂p
∂r

+ ν
[
∇2

1u − u
r2

]
, (2.1b)

1
r

∂

∂r
(ruw) +

∂

∂x
(w2) = − 1

ρ0

∂p
∂x

+ ν∇2
1w − gβT(θ − θc) + gβS(S − Sc), (2.1c)

1
r

∂

∂r
(ruθ) +

∂

∂x
(wθ) = α∇2

1θ, (2.1d)

1
r

∂

∂r
(ruS) +

∂

∂x
(wS) = D∇2

1S, (2.1e)

where βT and βS is the thermal and solutal expansion coefficient, θw is the isothermal
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wall temperature and (u, w) are the velocity components in (r, x) directions. Also

∇2
1 =

∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂x2 .

Here the effect of temperature on fluid is unstable and that of concentration is stable.
Further, if we apply the usual Prandtl boundary layer assumptions and check the

order of magnitude of each term of the Eqs. (2.1b) and (2.1c), the momentum equations
reduce to the following simplified equation:

1
r

∂

∂r
(ruw) +

∂

∂x
(w2)

=− 1
ρ0

∂p
∂x

+ ν
(∂2w

∂r2 +
1
r

∂w
∂r

)
+ gβT(θ − θc) + gβS(S − Sc). (2.2)

Also, if we neglect the axial diffusion term in the energy and species equations com-
pared to the radial diffusion term, then the Eqs. (2.1d) and (2.1e) reduces to

1
r

∂

∂r
(ruθ) +

∂

∂x
(wθ) = α

(∂2θ

∂r2 +
1
r

∂θ

∂r

)
, (2.3a)

1
r

∂

∂r
(ruS) +

∂

∂x
(wS) = α

(∂2S
∂r2 +

1
r

∂S
∂r

)
. (2.3b)

The principal of continuity can be expressed in the following integral form (Coney
and El-Shaarawi [2] and Lewis et al. [16])

q = π(r2
o − r2

i )w0 =
∫ ro

ri

2πrwdr. (2.4)

In the above integral continuity equation, it has been assumed that the flow enters the
annulus with a flat velocity profile at a value equal to the mean axial velocity in the
annular gap.

The boundary conditions, in dimensional form, are

x = 0 : u = 0, w = w0, S = θ = 0 and p∗ = −
ρ0w2

0
2

,

r = ri : u = w = 0, θ = θw and S = Sw, for UWT/UWC

r = ro :
∂θ

∂r
=

qw

k
and

∂S
∂r

=
mw

D
, for UHF/UMF

 for heated region

∂θ

∂r
=

∂S
∂r

= 0, for unheated region

x = l : p∗ = 0.

Applying Bernoulli’s equation at the entrance cross section and noting that the origin
of the coordinate system is located at the inlet shows that the pressure, p∗, at entry is
equal to −ρ0w2

0/2 (El-Shaarawi and Sarhan [3]). Assuming that the streamlines in the
emerging flow are parallel, the pressure at the channel exit could be specified as zero.
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This assumption is in good agreement with all the previous theoretical studies and is
equivalent to assuming that the flow from the outlet section is a free jet.

Introducing the following dimensionless variables,

U =
ur0

υ
, W =

wr2
0

lGrυ
, T =

θ − θ0

∆θ
, C =

S − S0

∆S
,

R =
r
r0

, X =
x

lGr
, P =

p ∗ r4
0

ρ0l2υ2Gr2 , λ =
ri
r0

,

E =
L1

L2
, N =

βC∆S
βT∆θ

, Q =
q

πlυGr
,

where
∆θ = θw − θ0, ∆S = Sw − S0,

for UWT/UWC, and

∆θ = qw
Dh

2k
, ∆S = mw

Dh

2k
,

for UHF/UMF,
Dh = r0 − ri,

L1 and L2 are lengths of heated and unheated regions. GrT=gβTD4
h∆θ/lυ2 and

GrM=gβCD4
h∆S/lυ2, Grashof numbers for heat and mass transfer, Pr=υ/α and

Sc=υ/D, Prandtl and Schmidt numbers.
Eqs. (2.1a), (2.2), (2.3a), (2.3b) and (2.4) can be written in the following dimension-

less form:

∂U
∂R

+
∂W
∂X

+
U
R

= 0, (2.5a)

U
∂W
∂R

+ W
∂W
∂X

= − ∂P
∂X

+
∂2W
∂R2 +

1
R

∂W
∂R

+
[ T + NC

16(λ − 1)4

]
, (2.5b)

U
∂T
∂R

+ W
∂T
∂X

=
1
Pr

[ ∂2T
∂R2 +

1
R

∂T
∂R

]
, (2.5c)

U
∂C
∂R

+ W
∂C
∂X

=
1
Sc

[ ∂2C
∂R2 +

1
R

∂C
∂R

]
, (2.5d)

Q = (λ − 1)
2
W0 = 2

∫ 1

λ
RW dR. (2.5e)

The dimensionless boundary conditions are

X = 0 : U = 0, W = W0, C = T = 0 and P = −
W2

0
2

,

R = λ : U = W = 0, T = 1 and C = 1 for UWT/UWC

R = 1 :
∂T
∂R

=
1

1 − λ
and

∂C
∂R

=
1

1 − λ
for UHF/UMF

 for heated regions

∂T
∂R

=
∂C
∂R

= 0, for unheated regions

X = L : P = 0.
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Thus the dimensionless parameters for the double-diffusive convection in an open-
ended cylindrical annular cavity are

Pr =
ν

α
, the Prandtl Number, GrT =

gβT∆θD4
h

lν2 , thermal Grashof Number,

Sc =
ν

D
, the Schmidt Number, GrM =

gβS∆SD4
h

lν2 , solutal Grashof Number,

N =
βC∆S
βT∆θ

, Buoyancy ratio, E =
L1

L2
, Length ratio,

λ =
ri
ro

, Radii ratio, Q =
q

πlGrν
, Dimensionless volumetric flow rate.

Knowing the temperature and concentration distribution from the numerical solution
of energy and species equations, the local Nusselt and Sherwood numbers, a major
parameter of practical interest in the study of convective heat and mass transfer at
any cross section may be calculated.

The dimensionless form of the heat transfer coefficient is the Nusselt number de-
noted by and is defined as, in dimensionless form,

Nu =
hDh

k
= − ∂T

∂R

∣∣∣
wall

.

The average Nusselt number Nu over the channel length is given by

Nu =

∫ L−L1

L−L1−L2

NudX∫ L−L1

L−L1−L2

dX
=

1
L2

∫ L−L1

L−L1−L2

NudX.

Similarly, the average Sherwood number Sh over the channel length is given by

Sh =
1
L2

∫ L−L1

L−L1−L2

ShdX,

where Sh is the local Sherwood number defined as

Sh = −∂C
∂R

∣∣∣
wall

.

3 Numerical procedure

Since the governing partial differential equations are non linear and coupled, a general
analytical solution is not possible. Hence the set of coupled governing equations,
subject to the boundary conditions, are numerically solved by a fully implicit finite
difference scheme. The implicit finite difference technique, used in this paper, has been
previously used by many authors for both parallel plates and annular geometries with
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great success (Coney and El-Shaarawi [2], El-Shaarawi and Sarhan [3], Yan and Lin [6]
and Bodia and Osterle [7]). Because of the flow under consideration is a boundary
layer type, the solution of the Eqs. (2.5a)-(2.5d) can be marched in the downstream
direction. In the implicit numerical scheme, used here, the derivatives in the axial
direction are approximated by backward difference, due to marching the solution in
downstream direction, and the derivatives in the radial direction are approximated
by central difference. The implementation of the scheme to the governing equations
is briefly given below.

3.1 Implementation to continuity equation

Replacing the derivatives in Eq. (2.5a) by the following finite difference approxima-
tions

∂U
∂R

∣∣∣
i+ 1

2 ,j+1
=

Ui+1,j+1 − Ui,j+1

∆R
(central difference),

∂W
∂X

∣∣∣
i+ 1

2 ,j+1
=

W
i+ 1

2 ,j+1
− W

i+ 1
2 ,j

∆X
(backward difference),

and putting

W
i+ 1

2 ,j+1
=

Wi+1,j+1 + Wi,j+1

2
, W

i+ 1
2 ,j

=
Wi+1,j + Wi,j

2
,

U
R

∣∣∣
i+ 1

2 ,j+1
=

Ui+1,j+1 + Ui,j+1

2
[
λ−1 +

(
i − 1

2

)
∆R

] .

Eq. (2.5a) in finite difference form read as:

Ui+1,j+1 + Ui,j+1 − Ui,j

2∆R
+

Wi+1,j+1 − Wi,j+1

∆X
+

Ui+1,j+1 + Ui,j+1

2
[
λ−1 +

(
i − 1

2

)
∆R

] = 0,

or
Ui+1,j+1 = A1Ui,j+1 − B1(Wi+1,j+1 + Wi,j+1 − Wi+1,j − Wi+1,j − Wi,j),

for i = 1, · · · , I max−2, for each j = 1, · · · , J max, where

A1 =
λ−1 + (i − 1)× ∆R

λ−1 + i × ∆R
,

B1 =
( ∆R

4∆X

)[2λ−1 + (2i − 1)× ∆R
λ−1 + i × ∆R

]
.
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3.2 Implementation to axial momentum equation

The derivatives in Eq. (2.5b) are replaced by the following finite difference approxi-
mations

∂W
∂R

∣∣∣
i,j+1

=
Wi+1,j+1 − Wi−1,j+1

2∆R
(backward difference),

∂W
∂X

∣∣∣
i,j+1

=
Wi,j+1 − Wi,j

∆X
(backward difference),

∂P
∂X

∣∣∣
i,j+1

=
Pi,j+1 − Pi,j

∆X
(backward difference),

∂2W
∂R2

∣∣∣
i,j+1

=
Wi+1,j+1 − 2Wi,j+1 + Wi−1,j+1

(∆R)2 ( central difference).

Using the above approximations, Eq. (2.5b) in finite difference form becomes

A2Wi−1,j+1 + B2Wi,j+1 + C2Wi+1,j+1 + E2Pi,j+1 = D2(i − 1),

for i = 2, · · · , I max−1, for each j = 1, 2, · · · , J max, where,

A2 =
1

λ−1 + (i − 1)× ∆R
−

Ui,j

2∆R
− 1

(∆R)2 , B2 =
Wi,j

∆X
+

2
(∆R)2 ,

C2 =
Ui,j

2∆R
− 1

λ−1 + (i − 1)× ∆R
+

1
(∆R)2 , E2 =

1
∆R

,

D2 =
W2

i,j

∆X
+

Pi,j

∆X
−

(Ti,j+1 + N × Ci,j+1)

16(1 − λ)4 .

3.3 Implementation to energy equation

Using the following finite difference approximations

∂T
∂R

∣∣∣
i,j+1

=
Ti+1,j+1 − Ti−1,j+1

2∆R
,

∂T
∂X

∣∣∣
i,j+1

=
Ti,j+1 − Ti,j

∆X
,

∂2T
∂R2

∣∣∣
i,j+1

=
Ti+1,j+1 − 2Ti,j+1 + Ti−1,j+1

(∆R)2 ,

the energy equation (2.5c) in finite difference form is

A3Ti−1,j+1 + B3Ti,j+1 + C3Ti+1,j+1 = D3(i − 1).

Here, for i = 2, · · · , I max−1, for each j = 1, 2, · · · , J max (for UWT) and for i = 1, 2,
· · · , I max, for each j = 1, 2, · · · , J max (for UHF), where

A3 =
1

2
[
λ−1 + (i − 1)× ∆R

]
Pr ∆R

−
Ui,j

2∆R
− 1

Pr(∆R)2 , B3 =
Wi,j

∆X
+

2
Pr(∆R)2 ,

C3 =
Ui,j

2∆R
− 1

2
[
λ−1 + (i − 1)× ∆R

]
Pr ∆R

− 1
Pr(∆R)2 , D3 =

Wi,jTi,j

∆X
.



772 M. Sankar / Adv. Appl. Math. Mech., 6 (2010), pp. 763-783

In a similar way, the concentration equation can also be written in terms of finite dif-
ference equation and is not repeated here for the brevity of the manuscript. Finally,
the integral continuity Eq. (2.5e) can be written, using Simpson’s rule, in the following
form:

Q =
2∆R

3
[
4(W2,j + W4,j + W6,j + · · ·) + 2(W3,j + W5,j + W7,j + · · ·)

]
.

It should be noted that the boundary condition

W1,j = WI max,j = 0,

is used in the above equation. Bodia and Osterle [7] has shown that the finite differ-
ence form of the governing equations are consistent and stable for all mesh ratios. The
application of the finite difference equations with appropriate boundary conditions to
the present problem is explained as follows.

Using a guess value of the volumetric flow rate or mass flux, Q, at the entrance and
applying Eq. (2.5e) we get the inlet velocity W0 and hence the inlet pressure P0. For
the given value of Q, we apply finite difference form of the energy equation to all the
points in the first column (at the channel inlet). The above system of finite difference
equations forms a tridiagonal matrix which can be efficiently solved by the Thomas
algorithm. After obtaining the values of T, we can compute W and P from the mo-
mentum equation. The simultaneous finite difference equations are solved by Gauss
elimination scheme. After calculating T, W and P, the values of U are calculated from
the finite difference form of the continuity equation. It is important to mention that in
the present finite difference technique, the finite difference equations are linearized by
assuming that wherever the product of two unknowns occurs, one of them is taken ap-
proximately by its value at the previous axial step. Thus the variables with subscript
j + 1 represent the unknowns and those with subscript j are known. Also it is clear
that decreasing the axial grid size implies the decrease in the effect of linearization in
the finite difference representation of the governing equations. In order to determine a
proper grid size for this study, a grid independence test was conducted with different
grid sizes. In the present study, 81 grids in the radial direction were used, while the
grids in the axial direction range from 501 to 801, depending on the Grashof number
and the length of unheated entry, heated section and unheated exit. The values of the
average Nusselt number and Sherwood number were used as a sensitivity measure of
the accuracy of the solution.

For each value of Q, the above calculation procedure begins at the bottom of the
annulus and continues upward until either the pressure becomes zero, which is neg-
ative at the inlet, or up to the annulus exit. It should be remembered that the inlet
velocity W0 is not known a priori. In fact, it depends in a complicated way upon the
thermal and hydrodynamic conditions imposed on the system and the same will be
determined by the iterative procedure in the solution process. Thus we take two guess
values of Q such that the product of pressure at the annulus exit is negative for these
values of Q. Then the bisection method is used to obtain the exact value of Q for which
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Figure 2: Comparison between the present results and the numerical results of El-Shaarawi and Sarhan [1]
for the natural convection (N = 0) in an open ended vertical annulus.

the pressure becomes zero at the annulus exit. Further, it is found that for this value of
Q, the overall mass fluxes at the top and bottom of the annulus are same and hence the
mass conservation principle is satisfied. Then the inlet velocity W0 is obtained from
the value of Q. After obtaining the correct value of Q using Bisection method at the
bottom, it is used to in the calculation to obtain the values of temperature, concentra-
tion, velocity and pressure at all the downstream locations of the annuli.

The fully developed flow occurs when the annulus height is sufficiently large or
when the Rayleigh number is small. The study of fully developed convective flow
provides an analytical check on the numerical solution as it yields the limiting condi-
tions for the developing flow. Prior to the calculations, as a partial verification of the
computational procedure for the present problem, the numerical results for the limit-
ing case of natural convection flows with uniform heating over the full channel length
are first obtained. Excellent agreement was found between the present predictions
and that of El-Shaarawi and Sarhan [1]. It was found that for small values of Rayleigh
number, at which fully developed flow assumption is valid, the present numerical
results are in excellent agreement with the results of El-Shaarawi and Sarhan [1].

4 Results and discussion

A numerical study of double diffusive natural convection heat transfer in an open-
ended vertical cylindrical annulus has been made to understand the effect of dis-
crete heating boundary condition. In this study both the thermal boundary conditions
namely, UWT/UWC and UHF/UMF have been considered. In the present study, there
are seven dimensionless groups namely, Prandtl number, Pr, Grashof numbers due to
temperature and concentration, GrT, GrM, Schmidt number, Sc, buoyancy ratio, N,
length ratio (the ratio between heated and unheated section) E, and the radii ratio λ,
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which is an important parameter in cylindrical annular geometry. The computations
were performed for the following range of physical parameters of the problem. The
thermal Grashof number, Prandtl number and Schmidt number are fixed respectively
at 104, 0.7 and 0.2. The buoyancy ratio is varied from 0.1 to 2, radii ratio from λ = 0.1-
0.9. The length ratio is chosen to have the values from 0.5-2. This set of values reveals
the effect of discrete heating when the heated length is less than, equal to and greater
than the unheated length (entry or exit). The results are presented in the form of ax-
ial and radial velocity profiles, temperature and concentration profiles and pressure
variation with height. The overall rate of heat and mass transfer from the side walls is
obtained by evaluating the average Nusselt and Sherwood numbers.

4.1 UWT/UWC

The effect of discrete heating length ratio E on the development of axial, radial veloc-
ity profiles and temperature, concentration profiles at different heights of the annulus
are shown in Fig. 3 for the values of N = 0.1 and λ = 0.1. From the figure, it can
be observed that, near the inlet, radial velocity component transfer the fluid from
the boundary to the core of the annulus with high magnitude. As the length ratio
increases, the radial velocity undergoes a drastic change. From the axial velocity pro-
files, it can be clearly seen that the velocity profiles develop gradually from uniform
distribution at the inlet to the parabolic one in the fully developed region. For large
length ratio (E = 2), the fluid moves with higher magnitude. The temperature profile
suggests the existence of more gradients for unit length ratio.

Since the heated and unheated lengths are same, for E = 1, more gradients are
expected near the exit. However, for E = 0.5 and E = 2, the concentration profiles are
nearly flat at the exit due to insulated or unheated exit length. The variation of concen-
tration profiles can be seen only near the heated region. The concentration at the wall
is unity due to boundary condition, which decreases with radial distance and then
increases near the middle of the annulus to wall concentration. The effect of buoyancy
ratio, an important parameter in double diffusive convection, on the velocity, temper-
ature and concentration profiles are depicted in Fig. 4 for λ = 0.9 and E = 2. From
the profiles, it is interesting to note that more gradients are found for N = 2 due to
the combined buoyancy effect. The pattern of velocity profiles remains same for all
the values of N. However, a significant variation can be found from the concentration
profiles. Also, it is interesting to observe that the temperature decreases faster from
the boundary to the core of the annulus as the buoyancy ratio increases.

The influence of radii ratio on the radial velocity and temperature profiles are il-
lustrated in Fig. 5 for N = 0.1 and E = 2. For λ = 0.1, the radial velocity component
transfers fluid from inner wall of the annulus to outer wall of the annulus, whereas
for λ = 0.9 it mainly transfers fluid from the regions close to the two boundaries
to the core fluid. The same phenomenon may also be observed from the develop-
ing temperature profiles. The variation of local Nusselt and Sherwood numbers with
the dimensionless axial distance X for different length ratios are shown in Fig. 8 for
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Figure 3: Effect of discrete heating on the development of velocity, temperature and concentration profiles
for N = 0.1 and λ = 0.1 for UWT/UWC.

N = 0.1 and λ = 0.1. The Nusselt or Sherwood number, which attains its maximum
value at the inlet decreases uniformly to reach a minimum and then reaches constant
value. It can also be seen that the rate of heat transfer is found to be more than the
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Figure 4: Effect of buoyancy ratio on the development of velocity, temperature and concentration profiles
for λ = 0.9 and E = 2 for UWT/UWC.

mass transfer. The effect of radii ratio on the local heat and mass transfer are obtained
and is given in Fig. 9 for N = 0 and E = 1. It is clear from this figure that local Nu and
Sh for smaller radii ratio are greater at the same dimensionless axial distance, except
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Figure 5: Effect of radii ratio on velocity and temperature profiles for UWT/UWC.

near the entrance, than for the other radii ratios. This phenomenon is further reflected
in the variation of pressure defect with the dimensionless axial distance in Fig. 10 for
two different values of λ.

4.2 UHF/UMF

The effect of discrete heating condition on velocity, temperature and concentration
profiles for N = 0.1 and λ = 0.1 is shown in Fig. 6. The radial velocity profiles had
undergone a drastic change when a heat/mass flux is imposed on the side walls of
the annulus. The radial velocity components are higher in magnitude compared to
UWT/UWC case and transfers the fluid from the boundary to the core. The axial
velocity is more pronounced towards outer wall as the fluid moves upwards. The
variation of temperature is more vigorous in the middle of the annulus for E = 1.
As expected, the concentration profiles near the exit are flat. The effect of buoyancy
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Figure 6: Effect of discrete heating on the development of velocity, temperature and concentration profiles
for λ = 0.1 and N = 0.1 for UWT/UWC.

ratio on the velocity, temperature and concentration profiles are shown in Fig. 7 for
λ = 0.9 and E = 2. For large buoyancy ratio, the velocity profile suggests that the
fluid is moving with larger magnitude than the UWT/UWC case. More temperature
and concentration gradients are found in the middle of the annulus. The variation
of local Nusselt and Sherwood numbers for different length ratios are given in Fig. 8.
Careful inspection discloses that the value of local Nu or Sh, at a given axial distance,
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Figure 7: Development of velocity, temperature and concentration profiles for different values of N for
UHF/UMF.

is less than the value of Nu or Sh for the UWT/UWC case. The variations of pressure
defect for different heating conditions are given in Fig. 10. Initially, the magnitude of
pressure defect increases and reaches the value zero to satisfy the boundary condition.
It can be observed from the figure that the pressure defect for E = 1 is more than that
of the other cases of discrete heating. This suggests that this kind of configuration is
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Figure 8: Variation of Nusselt and Sherwood numbers for different length ratios and N = 0.1, λ = 0.1.

Figure 9: Effect of radii ratio on Nusselt and Sherwood numbers.
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Figure 10: Variation of pressure for different values of λ and E.

Figure 11: Effect of length ratio on average Nusselt and Sherwood numbers.

more useful for inducing the flow. Fig. 11 illustrates the effect of length ratio on the
average heat and mass transfer rates in the annulus. It can be clearly seen from the
figure that the heat and mass transfer rates are enhanced with the length ratio.

5 Conclusions

Double diffusive natural convection heat and mass transfer in vertical open-ended
cylindrical annulus has been studied numerically. The effect of discrete boundary
conditions on the various aspects of heat and mass transfer characteristics have been
investigated in detail for a wide range of physical parameters of the problem. The
following is the major summary of results:

1. Average Nusselt and Sherwood numbers which describes the heat and mass
transfer from the wall to the air is found to be better for E = 2,

2. Local Nusselt and Sherwood number is increasing as the radii ratio is decreased,
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3. Local heat and mass transfer rates are found to be higher for the UWT/UWC
case than that of UHF/UMF,

4. The length ratio E = 1 is more useful for inducing the flow,
5. For larger buoyancy ratio, the flow is found to be stronger due to the dominant

effect of compositional buoyancy force.
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