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Abstract. A semiclassical lattice Boltzmann method is presented for axisymmet-
ric flows of gas of particles of arbitrary statistics. The method is first derived
by directly projecting the Uehling-Uhlenbeck Boltzmann-BGK equations in two-
dimensional rectangular coordinates onto the tensor Hermite polynomials using
moment expansion method and then the forcing strategy of Halliday et al. (Phys.
Rev. E., 64 (2001), 011208) is adopted and forcing term is added into the resulting
microdynamic evolution equation. The determination of the forcing terms is dic-
tated by yielding the emergent macroscopic equations toward a particular target
form. The correct macroscopic equations of the incompressible axisymmetric vis-
cous flows are recovered through the Chapman-Enskog expansion. Computations
of uniform flow over a sphere to verify the method are included. The results also
indicate distinct characteristics of the effects of quantum statistics.

AMS subject classifications: 76P05, 82B40
Key words: Semiclassical lattice Boltzmann method, axisymmetric flows, flow over a sphere,
Bose gas, Fermi gas.

1 Introduction

In the past two decades, significant advances have been accomplished in the develop-
ment of the lattice Boltzmann methods [1–4] based on classical Boltzmann equations
with the relaxation time approximation of Bhatnagar, Gross and Krook (BGK) [5]. The
lattice Boltzmann method (LBM) has illustrated its capability for simulating hydrody-
namic systems, magnetohydrodynamic systems, multi-phase and multi-component
fluids, multi-component flow through porous media and complex fluid systems,
see [6]. The lattice Boltzmann equations (LBE) can also be directly derived in a pri-
ori manner from the continuous Boltzmann-BGK equation [7, 8]. Most of the classical
LBMs are accurate up to the second order, i.e., Navier-Stokes hydrodynamics and have
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not been extended beyond the level of the Navier-Stokes hydrodynamics. A systemat-
ical method [9,10] was proposed for kinetic representation of hydrodynamics beyond
the Navier-Stokes equations using Grad’s moment expansion method [11].

It is also observed that most of the existing lattice Boltzmann methods are focused
on hydrodynamics of classical particles. However, modern development in nanoscale
transport requires carriers of particles of arbitrary statistics [12]. The extension and
generalization of the successful classical LBM to treat particles of arbitrary statistics is
thus desirable. Analogous to the classical Boltzmann equation, a semiclassical Boltz-
mann equation which taking into account the effect of quantum statistics has been
developed by Uehling and Uhlenbeck (UUB) [13]. To circumvent the mathematical
difficulty of the the collision term, BGK-type relaxation time models to capture the
essential properties of carrier scattering mechanisms can be similarly devised for the
Uehling-Uhlenbeck Boltzmann equation for various carriers and have been widely
used in carrier transport [14]. Recently, a semiclassical gas-kinetic scheme [15] has
been developed for the hydrodynamic transport based on the Uehling-Uhlenbeck
Boltzmann-BGK (UUB-BGK) equation. Also, a two-dimensional semiclassical lattice
Boltzmann method for the UUB-BGK equation based on D2Q9 lattice model [2] and
Grad’s moment expansion method has been presented [16]. Hydrodynamics based
on moments up to second and third order expansions are presented. Simulations of
flow over a circular cylinder at low Reynolds numbers have been tested and have been
found in good agreement with previous available results.

One of the most common and important classes of fluid dynamical problems is
the axisymmetric flow in which flow symmetry with respect to an axis can be iden-
tified. Classical axisymmetric lattice Boltzmann method was first proposed by Halli-
day et al. [17] using a forcing strategy. By introducing source terms, the macroscopic
equations for the axisymmetric flows can be recovered. The method of Halliday et al.
has been successfully applied to a number of axisymmetric flow problems [18–26].
Recently, an interesting lattice Boltzmann model for axisymmetric flows based on
Boltzmann-BGK equation in cylindrical coordinates has been proposed [27].

The main objective of this work is to present the semiclassical axisymmetric lattice
Boltzmann method for axisymmetric flow of gases of arbitrary statistics. The method
of Halliday et al. [17] is adopted and forcing terms are added into the two-dimensional
semiclassical Boltzmann-BGK equation which are consistent in dimension with the lat-
tice Boltzmann equation. The forcing terms are determined by demanding the emer-
gent macroscopic equations toward a particular target form. The set of correct macro-
scopic equations for incompressible axisymmetric flows can be recovered through the
Chapman-Enskog multiscale analysis of the semiclassical LBM.

This paper is organized as follows. Section 2 gives a brief description of element of
semiclassical kinetic theory. The basic two-dimensional semiclassical lattice Uehling-
Uhlenbeck Boltzmann-BGK method is described in Section 3. The derivation of the
axisymmetric semiclassical LBM is given in Section 4. Simulations of uniform flow
over a sphere using the present method are given in Section 5. Concluding remarks
are given in Section 6.
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2 Semiclassical kinetic theory

The Uehling-Uhlenbeck Boltzmann-BGK equation can be written as

∂ f
∂t

+
~p
m
· ∇~x f = −

(
f − f (eq))

τ∗
, (2.1)

where f (~p,~x, t) is the distribution function which represents the average density of
particles with momentum ~p at the space-time point (~x, t), m is the particle mass, τ∗
the relaxation time which is in general dependent on the macroscopic variables and
f (eq) is the local equilibrium distribution given by

f (eq) =
{

exp
[ (~p−m~u)2

2mkBT
− µ̄

kBT

]
− θ

}−1
, (2.2)

here ~u is the mean macroscopic velocity, T is the temperature, µ̄ is the chemical poten-
tial, kB is the Boltzmann constant and θ=−1 denotes the Fermi-Dirac (FD) statistics,
θ=+1 the Bose-Einstein (BE) statistics and θ=0, the Maxwell-Boltzmann (MB) statis-
tics. Once the distribution function is known, the macroscopic quantities, the number
density n, number density flux n~u, energy density ε, pressure tensor Pαβ and heat flux
vector Qα are defined, respectively, by

Φ(~x, t) =
∫ d~p

h3 φ f , (2.3)

where

Φ = (n, n~u, ε, Pαβ, Qα)T, and φ =
(

1,~ξ,
m
2

c2, cαcβ,
m
2

c2cα

)T
.

Here, ~ξ = ~p/m is the particle velocity and ~c = ~ξ − ~u is the thermal velocity. The gas
pressure is defined by P(~x, t) = Pαα/3 = 2ε/3. Multiplying Eq. (2.1) by 1,~p, or ~p2/2m
and integrating the resulting equations over all ~p, then one can obtain the semiclas-
sical hydrodynamical equations. In this work, we consider the semiclassical incom-
pressible viscous flows with rotational symmetry around the z axis. The cylindrical
polar coordinates ~x = (r, φ, z) system is adopted where r denoting the radial distance
from axis, φ the azimuthal angle about axis and z the distance along axis, respectively.
The mean velocity is ~u = (ur, 0, uz). The governing hydrodynamic equations for the
incompressible (constant n or ρ) axisymmetric viscous flows in a cylindrical polar co-
ordinates system can be expressed as

∂uj

∂xj
= −ur

r
, (2.4a)

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂P
∂xi

+ η
∂2ui

∂x2
j

+
η

r
∂ui

∂r
− ηui

r2 δir. (2.4b)
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Inserting the continuity equation into the momentum equation, we have

∂ui

∂t
+

∂(uiuj)
∂xj

= −1
ρ

∂P
∂xi

+ η
∂2ui

∂x2
j
− uiur

r
+

η

r
∂ui

∂r
− ηui

r2 δir. (2.5)

The viscosity η for the semiclassical Boltzmann BGK model have been derived in [15]
based on the Chapman-Enskog solution [28] in terms of the relaxation time as

η = τ∗kBT
g 5

2
(z)

g 3
2
(z)

. (2.6)

Here
z(~x, t) = eµ̄(~x,t)/kBT,

is the fugacity, the function gν represents for either the Bose-Einstein or Fermi-Dirac
function of order ν which is defined as

gν(z) ≡ 1
Γ(ν)

∫ ∞

0

xν−1

z−1ex + θ
dx =

∞

∑
l=1

(−θ)l−1 zl

lν
, (2.7)

where Γ(ν) is the Gamma function. The relaxation times for various scattering mech-
anisms of different carrier transport in semiconductor devices including electrons,
holes, phonons and others have been proposed [12].

The aim of this work in the following is to derive a semiclassical lattice Boltzmann
equation which shall render the macroscopic continuity and momentum equations,
Eqs. (2.4a) and (2.5), self-consistently.

3 Semiclassical lattice Boltzmann-BGK method

In [16], a semiclassical lattice Boltzmann method based on D2Q9 lattices in rectangu-
lar coordinates for gases of particles of arbitrary statistics has been developed. Here,
for self-contained purposes, we briefly describe the essential elements of the method
and use it as the basis to extend to the axisymmetric case. The Grad’s moment ap-
proach was adopted to find solutions to Eq. (2.1) by expanding f (~x,~ζ, t) in terms of
Hermite polynomials and the N-th finite order truncated distribution function f N was
considered. Since the axisymmetric equations have the two-dimensional equations
embedded, here we list the essential elements of the two-dimensional semiclassical
lattice Boltzmann method developed in [16]. A lattice UUB-BGK method for solving
Eq. (2.1) using D2Q9 lattice model can be expressed as

fa(~x +~ζaδt, t + δt)− fa(~x, t) = − 1
τ

[
fa − f (eq)

a
]
, (3.1)
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where τ = τ∗/δt is the dimensionless LBE relaxation time and f (eq)
a is the lattice equi-

librium distribution function at the discrete velocity ~ζa and for N=3, it is given by

f (eq)
a (~x, t) =wan

{
1 +~ζa · ~u(~x, t) +

1
2

[(
~u(~x, t) ·~ζa

)2 − u2(~x, t)

+
(

T̂(~x, t)
g5/2(z)
g3/2(z)

− 1
)
(ζ2

a − D)
]
+

~ζa · ~u
6

[
(~u ·~ζa)2

− 3u2 + 3
(

T̂
g5/2(z)
g3/2(z)

− 1
)
(ζ2

a − D− 2)
]}

, (3.2)

where D = δii and T̂ is the non-dimensional temperature.
The standard square D2Q9 lattice model is specified by

~ζ0 = (0, 0), (3.3a)

~ζa =
(

cos
( a− 1

4

)
π, sin

( a− 1
4

))
c, a = 1, · · · , 8, (3.3b)

where c = δx/δt is the particle streaming speed and δx is the lattice size and δt is the
time step. When c is taken as 1, the lattice velocity ~ζa = (ζax, ζay) has unit magnitude
for directions of a = 1, 3, 5 and 7 and magnitude

√
2 for directions of a = 2, 4, 6 and 8.

Now we are ready to generalize the above two-dimensional semiclassical LBM in
rectangular coordinates to axisymmetric case.

4 Semiclassical axisymmetric lattice Boltzmann method

To derive the semiclassical axisymmetric lattice Boltzmann method, we adopt the ap-
proach of Halliday et al. by incorporating a position and time dependent source or
sink term into the microdynamic evolution equation as follows:

fa(~x +~ζaδt, t + δt)− fa(~x, t) = − 1
τ

[
fa − f (eq)

a
]
+ ha(~x, t), (4.1)

where f (eq)
a is given by Eq. (3.2) and ha(~x, t) is an added source or sink term that will

be defined later. Following the analysis of [17], we assume

ha = εh(1)
a + ε2h(2)

a + · · · , (4.2)

and take h(1)
a to be zeroth order in gradient quantities and h(2)

a to contain any first order
gradients in macroscopic dynamic quantities n,~u; that is h(n)

a contains (n− 1)th order
gradients in n and ~u. The issue now is to determine the h(n)

a that will render Eqs. (2.4a)
and (2.5) in a self-consistent manner. To extract the dynamics represented by this
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modifying scheme, we perform the Chapman-Enskog multiscale analysis. According
to the Chapman-Enskog expansion, fa can be expressed in a series of ε

fa(~x +~ζaδt, t + δt) =
∞

∑
0

εn

n!
(∂t +~ζa · ∇)n fa, (4.3a)

fa w f (0)
a + ε f (1)

a + ε2 f (2)
a + · · · , (4.3b)

∂t = ε∂t1 + ε2∂t2 , (4.3c)
∂β = ε∂β1 . (4.3d)

The above expressions, Eqs. (4.3a)-(4.3d) are substituted into Eq. (4.1) and terms in-
volving different orders of ε are separated as

f (0)
a = f (eq)

a , (4.4a)

(∂t1 + ζaβ · ∂β1) f (0)
a = − 1

τδt
f (1)
a +

h(1)
a

δt
, (4.4b)

∂t2 f (0)
a +

(
1− 1

2τ

)
(∂t1 + ζaβ∂β1) f (1)

a +
1
2
(∂t1 + ζaβ∂β1)h(1)

a

= − 1
τδt

f (2)
a +

h(2)
a

δt
. (4.4c)

We have the usual conditions

∑
a

fa = ∑
a

f (eq)
a = n, (4.5a)

∑
a

faζa = ∑
a

f (eq)
a ζa = n~u, (4.5b)

∑
a

faζaiζaj = ∑
a

f (eq)
a ζaiζaj = n(uiuj + Θδij), (4.5c)

∑
a

faζaiζajζaj = nΘ(uiδjk + ujδki + ukδij), (4.5d)

where Θ = T̂g5/2/g3/2. For l ≥ 1, we have

∑
a

f (l)
a = 0, (4.6a)

∑
a

f (l)
a ζa = 0. (4.6b)

4.1 Lattice continuity equation and h(1)
a

We take the moment of Eqs. (4.4b) and (4.4c), the different order mass conservation
equations are recovered below:

∂t1 ∑
a

f (0)
a + ∂β1 ∑

a
f (0)
a ζaβ = − 1

τ ∑
a

f (1)
a + ∑

a
h(1)

a , (4.7a)
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∂t2 ∑
a

f (0)
a + ∑

a

[1
2
(∂t1 + ζaβ∂β1)h(1)

a − 1
δt

h(2)
a

]
= 0. (4.7b)

If we set the following constraint

∑
a

[1
2
(∂t1 + ζaβ∂β1)h(1)

a − 1
δt

h(2)
a

]
= 0, (4.8)

we have

∂t2 ∑
a

f (0)
a = 0. (4.9)

We have the conservation of mass, i.e., the continuity equation

∂tn + δt∂β(nuβ) = ∑
a

h(1)
a . (4.10)

In view of matching the target dynamics Eqs. (2.4a) and (2.5), the selection of h(1)
a

becomes obvious

h(1)
a = −wanur

r
δt. (4.11)

With this choice of h(1)
a , the RHS of Eq. (4.10) takes the desired form

∑
a

h(1)
a = −nur

r
. (4.12)

4.2 Lattice momentum equation and h(2)
a

Next we will determine h(2)
a with h(1)

a specified. After multiplication with ζai and sum-
mation with respect to a, the different order momentum conservation equations are
recovered below:

∑
a

ζaih
(2)
a = δt

(
1− 1

2τ

)
∂xj ∑

a
ζaiζaj f (1)

a + δt∂t2 nui +
δt

2
∂xj

(
− nurδt

r

)
δij. (4.13)

We first examine the term ∑a ζaiζaj f (1)
a and with Eq. (4.5c). Observe

∑
a

ζaiζaj f (1)
a =− τδt∂t1

(
∑

a
ζaiζaj f (0)

a

)
− τδt∂xk

[
nΘ(uiδjk

+ ujδki + ukδij)− τδt
nur

r

]
δij. (4.14)
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Assume the characteristic velocity, length and time of the flow problem are Uc, Lc and
tc, respectively. Then ∂t1(∑a ζaiζaj f (0)

a ) is of order U2
c /tc and ∂xk

(
nΘ(uiδjk + ujδki +

ukδij)
)

is of order Uc/Lc, and we have

∂t1 ∑a ζaiζaj f (0)
a

∂xk nΘ(uiδjk + ujδki + ukδij)
= O(M2). (4.15)

Under the assumption M ¿ 1, one can neglect the term ∂t1 ∑a ζaiζaj f (0)
a to obtain

∑
a

ζaiζaj f (1)
a = −τδtnΘ(∂xj ui + ∂xi uj) + τδt

nur

r
(Θ− 1)δij. (4.16)

Substituting the above equation into Eq. (4.13), we obtain

∑
a

ζaih
(2)
a =− δ2

t τnΘ
(

1− 1
2τ

)(∂2ui

∂x2
j

+
∂2uj

∂xi∂xj

)

+ δ2
t

(
1− 1

2τ

) ∂

∂xj

τnur

r
(Θ− 1)δij + δt

∂

∂t2

nui − δ2
t

2
∂

∂xi

nur

r
. (4.17)

Using the relationship

∂

∂t1
nui = − ∂

∂xj
n(Θδij + uiuj), (4.18)

and after some algebra, we have

nδt

(∂ui

∂t
+

∂(uiuj)
∂xj

+
1
n

∂P
∂xi

− µ
∂2ui

∂x2
j

)

=− nδtµ
∂

∂xi

ur

r
− δ2

t

(nµ

δt
− nτ

) ∂

∂xi

ur

r
+ ∑

a
ζaih

(2)
a , (4.19)

where
µ = δt

(
τ − 1

2

)
Θ.

We have h(2)
a

h(2)
a = n

[
δt

(
− uruj

r
+

ν

r
∂uj

∂r
− νur

r2 δir

)
ζajwa + (2δtµ− δ2

t τ)waζaj
∂

∂xj

ur

r

]
, (4.20)

and we also have

h(2)
a =

δ2
t

2
nwa

(∂Θ
∂r

+
∂

∂xj
uruj

)
. (4.21)
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Finally, we obtain

h(2)
a =

δ2
t

2
nwa

( ∂

∂r
Θ +

∂

∂xj
uruj

)
+ nδt

(
− uruj

r
+

µ

r
∂uj

∂r
− µur

r2 δir

)
ζajwa

+ n(2δtµ− δ2
t τ)waζaj

∂

∂xj

ur

r
. (4.22)

Regroup the term h(2)
a , we finally have

h(2)
a =

∂ur

∂r

[
δtnwaur +

nwaζar

r
+

nwaζar(2µ− δtτ)
r

]
δt +

∂uz

∂r

[nwaµζaz

r

]
δt

+
∂ur

∂z

[1
2

nwauzδt +
nwaζaz(2µ− δtτ)

r

]
δt +

∂uz

∂z
1
2

δ2
t nwaur

− nwaδt

[u2
r ζar

r
+

uruzζaz

r
+

µurζar

r2 +
urζar(2µ− δtτ)

r2

]
. (4.23)

The derivative terms in the above equation can be evaluated using the following

∂ur

∂r
=

1
2

[
− 1

τnΘ ∑
a

ζarζar f (1)
a +

ur

r
(1− 1

Θ
)
]
, (4.24a)

∂uz

∂z
=

1
2

[
− 1

τnΘ ∑
a

ζazζaz f (1)
a +

ur

r
(1− 1

Θ
)
]
, (4.24b)

∂uz

∂r
=

1
2

[
− 1

τnΘ ∑
a

ζazζar f (1)
a +

ur

r
(1− 1

Θ
)
]
, (4.24c)

(∂ur

∂z

)
r,z

=
(ur)r,z+1 − (ur)r,z−1

2δz
. (4.24d)

It is noted that only one derivative term has to be computed using finite (central)
difference method and the rest of derivative terms can be analytically expressed and
directly computed. To complete the derivation, we set

ha = δth
(1)
a + δ2

t h(2)
a ,

in Eq. (4.1) to achieve the final semiclassical axisymmetric lattice Boltzmann method.
In summary, Eqs. (4.1), (4.11) and (4.23) form a closed set of differential equa-

tions governing the set of variables fa(~x, t) in the physical configuration space. Once
we have solved the new time values of fa(~x, t), the macroscopic variables such as
n(~x, t),~u(~x, t) and T̂(~x, t), can be calculated by

n(~x, t) =
l

∑
a=1

fa(~x, t), (4.25a)

n~u =
l

∑
a=1

fa~ζa, (4.25b)

n
(

DT̂
g 5

2
(z)

g 3
2
(z)

+ u2
)

=
l

∑
a=1

faζ2
a = E. (4.25c)
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The above three equations provide a way to determine the fugacity z through an iter-
ation method

E− 3
( n

g 3
2

) 5
3
g 5

2
− nu2 = 0. (4.26)

After obtaining z, we can get the temperature T̂.
To apply Eq. (4.1), one has to determine either τ or τ∗. For continuum flows, one

can perform Chapman-Enskog multiscale analysis to Eq. (4.1) and τ is determined in
such a way that the Navier-Stokes equations are recovered. As a result, we have the
relaxation time τ related to the fluid viscosity ν as

ν =
(

τ − 1
2

)
T̂

g 5
2

g 3
2

, (4.27)

where ν is the non-dimensional kinematic viscosity. The term−1/2 in the above equa-
tion is a correction to make the LBE technique a second-order method for solving in-
compressible flows.

5 Results and discussion

To illustrate the present method, we consider a standard uniform disturbance-free
flow with velocity ~U∞ over a sphere in a quantum gas. The diameter of the sphere is
D and Reynolds number is defined as

Re∞ =
∣∣∣~U∞

∣∣∣ D
ν

.

We consider two cases with Re∞=20 and Re∞=40, respectively. The state of flow
is fully laminar with steady separation and enclosed near wake structure and the
flow pattern is symmetric. The kinematic viscosity ν can be obtained from the given
Reynolds number and the relaxation time τ, which is calculated according to Eq. (4.27).
The computational domain is (−1, 1)× (−1, 1) and is divided into 201× 201 uniform
lattices and the sphere is set at the center of the domain and with diameter D=0.1.
The equilibrium distribution function with the given uniform free stream conditions
is used to implement the boundary conditions at the far fields and at the sphere sur-
face. A boundary treatment using immersed boundary velocity correction method
proposed in [29–33], which enforce the physical boundary condition, is also adopted
here. We used the N=3 expansion equations set for all the cases computed.

The steady streamline patterns for the three statistics, BE, MB and FD gases for the
case of z=0.2 and Re∞=20 are shown in Fig. 1, respectively. For this low Reynolds
number, the flow pattern is steady, laminar, symmetric and closed near-wake is
formed. The weak recirculating flow in the near-wake contains vigorous twin vor-
tices and the size of the twin vortices or eddies is larger for the FD gas and smaller for
the BE gas as compared with that of the MB gas.
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Figure 1: Streamlines of uniform flow over a sphere in a quantum gas with z = 0.2 and Re∞ = 20. (a) BE
gas, (b) MB gas, (c) FD gas.

Similarly, the corresponding results for the case Re∞=40 are shown in Fig. 2.
The flow patterns are symmetric and the enclosed near-wake becomes elongated and
larger and may become unstable when Re∞ is getting higher. The size of wake vortices
becomes much larger as compared with that of Re∞=20 case. Again, the recirculation
region is larger for the FD gas, smaller for the BE gas while that for the MB gas al-
ways lies in between. This reflects the fact that the Maxwell-Boltzmann distribution
always lies in between the Bose-Einstein and Fermi-Dirac distributions as delineated
by the θ value in Eq. (2.2). According to quantum statistics, the effects of quantum
statistics at finite temperatures (non-degenerate case) are approximately equivalent to
introducing an interaction between particles [34]. This interaction is attractive in na-
ture for bosons and repulsive for femions and operates over distances of order of the
thermal de Broglie wavelength Λ. The present results seem to be able to illustrate and
explore the manifestation of the effect of quantum statistics macroscopically. Finally,
it is noted that as compared with the flow over 2-D circular cylinder presented in [16],
the size of the near-wake recirculation zone of 2-D cylinder case is always larger than
the corresponding axisymmetric sphere case due to the three-dimensional relieving
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Figure 2: Streamlines of uniform flow over a sphere in a quantum gas with z = 0.2 and Re∞ = 40. (a) BE
gas, (b) MB gas, (c) FD gas.

effect for the axisymmetric sphere case. In quantitative comparisons of these three
statistics, we found the drag coefficients of the sphere in the Bose-Einstein, Maxwell-
Boltzmann and Fermi-Dirac statistics are 1.804, 1.739 and 1.685, respectively. Also, the
corresponding wake lengths are found to be equal to 0.492, 0.497 and 0.5, respectively.

6 Conclusions

The flows of gases of particles of arbitrary statistics in an axisymmetric flow are inves-
tigated using a newly developed semiclassical lattice Uehling-Uhlenbeck Boltzmann-
BGK method. The method is derived based on a previous two-dimensional nine-
velocity D2Q9 semiclassical lattice Boltzmann method and the forcing strategy of Hal-
liday et al. [17] by adding forcing terms to modify the the emergent macroscopic equa-
tions toward axisymmetric governing equations. The detailed derivation of the forc-
ing terms is presented. The equilibrium distribution of lattice Boltzmann equations is
derived through expanding Bose-Einstein (or Fermi-Dirac) distribution function onto
Hermite polynomial basis which is done in a priori manner and is free of usual ad hoc
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parameter-matching. Moreover, our development recovers previous classical results
when the classical limit is taken. Computations of uniform flow over a sphere in both
Bose-Einstein and Fermi-Dirac gases have been simulated to illustrate the method.
From the streamline patterns and recirculation zones, the effect of quantum statistics
on the hydrodynamics is clearly delineated. The experimental results for quantum hy-
drodynamics are rare and we only validate our results with the corresponding classi-
cal counterpart. Our results are obtained based on a systematic and parallel treatment
of all statistics, hence it can be self checked with the theory consistently among the
three statistics.
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