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Abstract. In this paper, we propose a fully drift-implicit splitting numeri-

cal scheme for the stochastic differential equations driven by the standard d-

dimensional Brownian motion. We prove that its strong convergence rate is of

the same order as the standard Euler-Maruyama method. Some numerical ex-

periments are also carried out to demonstrate this property. This scheme allows

us to use the latest information inside each iteration in the Euler-Maruyama

method so that better approximate solutions could be obtained than the stan-

dard approach.
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1. Introduction

Let us consider the following stochastic differential equations (SDEs)

(1)
{

dy(t) = f(y(t))dt + g(y(t))dW (t), 0 ≤ t ≤ T
y(0) = y0

where T > 0 is the terminal time, y(t) : [0, T ]× Ω → Rm, f(y) : Rm → Rm, g(y) :
Rm → Rm×d, and W (t) = (W1(t), · · · ,Wd(t))∗ is a standard d-dimensional Brown-
ian motion defined on a complete, filtered probability space (Ω,F , P, {Ft}0≤t≤T ).
Stochastic differential equations are used in many fields, such as stock market, finan-
cial mathematics, stochastic controls, dynamic system, biological science, chemical
reactive kinetics and hydrology, and so on. Thus, it is of importance to study the
solution of SDEs. However, it is often very difficult or impossible to find the analytic
solutions of SDEs, as a consequence, numerical methods for finding approximate
solutions of SDEs have attracted much attentions.

There have been a lot of publications in which numerical methods for stochas-
tic differential equations and their applications were studied and discussed. For
instance, the Itô-Taylor type method proposed in [11] that makes use of the so-
called Itô Taylor expansion to discretize the SDEs; the linearization type methods
suggested in [3, 12, 17], that first linearize the drift and diffusion coefficients of the
SDEs and then solve the pruned linear SDEs instead; the Runge-Kutta type meth-
ods [4,5,16,20], in which the Runge-Kutta methods for solving ordinary differential
equations are extended to solve the SDEs. Concerning the stability of the methods,
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some implicit discretization schemes were proposed in [6, 7] to stablize the numer-
ical discretization. In order to improve the accuracy of the approximate solution,
some high-order numerical methods for solving SDEs were studied in [1,4,5,10,11]
and some splitting methods were also studied in [2].

The Euler-Maruyama (E-M) method is so far the most studied numerical method
for solving SDEs and its strong convergence rate is 1/2 for general cases. Due to
its easy implementation, the E-M method and its modified versions have been very
commonly used for applied stochastic problems, such as stochastic optimal control
and stochastic partial differential equations. Since SDEs are often driven by a high-
dimensional Brownian motion and coupled with other type stochastic problems [9],
more efficient and accurate solvers for high-dimensional SDEs are urgently needed.
In the past decades, the operator splitting scheme has been extensively studied and
becomes one of the most popular and efficient ways to deal with multi-dimensional
problems which are modeled by the deterministic ordinary or partial differential
equations. In fact, the same idea also can be applied to the SDEs. In this paper,
we will propose a new splitting scheme for numerical solutions of the SDEs (1), and
show that the resulted approximate solution converges to the analytic solution of the
SDEs with the same convergence rate as the one the E-M method has. Furthermore,
this scheme allows us to use the latest information inside each iteration in the E-M
method so that better approximate solutions could be obtained than the standard
approach especially when d is large.

We organize this paper as follows. In Section 2, we first propose a fully drift-
implicit splitting scheme for the discretization of the SDEs (1), then we prove the
strong convergence of this scheme in Section 3. After presenting some computa-
tional experiments in Section 4, conclusions are given in Section 5.

2. A fully drift-implicit splitting scheme of SDEs

Let us rewrite the stochastic differential equations (1) in the following form:

(2)
{

dy(t) = f(y(t))dt +
∑d

i=1 gi(y(t))dWi(t) , 0 < t ≤ T
y(0) = y0,

where Wi(t), i = 1, 2, · · · , d are independent one-dimensional Brownian motions
and gi : Rm → Rm, i = 1, 2, · · · , d.

It is well-known that the problem (2) is equivalent to the following Itô integral
equation

(3) y(t) = y0 +
∫ t

0

f(y(s))ds +
d∑

i=1

∫ t

0

gi(y(s))dWi(s).

To discretize the equation (2), we first partition the time interval [0, T ] by

(4) 0 = t0 < t1 < · · · < tN−1 < tN = T.

Let ∆tn = tn+1 − tn denote the discrete time step at the time tn, and set ∆t =
maxN−1

n=0 ∆tn. For the simplicity of description, we only discuss the case of uniform
time partition, but all results obtained in this paper still remain valid for general
partition (4).

From the equation (3), we have exactly

(5) y(tn+1) = y(tn) +
∫ tn+1

tn

f(y(s))ds +
d∑

i=1

∫ tn+1

tn

gi(y(s))dWi(s).
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Suppose that ∆t is sufficiently small. If we use f(y(tn))∆t to approximate the
integral

∫ tn+1

tn
f(y(s))ds and use gi(y(tn))∆Wi(tn) with ∆Wi(tn) = Wi(tn+1) −

Wi(tn) to approximate the Itô integral
∫ tn+1

tn
gi(y(s))dWi(s), then we obtain the

following standard explicit E-M scheme:

(6) y(tn+1) = y(tn) + f(y(tn))∆t +
d∑

i=1

gi(y(tn))∆Wi(tn).

for n = 0, 1, · · · , N − 1. Again, if we use f(y(tn+1))∆t to approximate the integral∫ tn+1

tn
f(y(s))ds, we obtain the following drift-implicit E-M scheme:

(7) y(tn+1) = y(tn) + f(y(tn+1))∆t +
d∑

i=1

gi(y(tn))∆Wi(tn).

for n = 0, 1, · · · , N − 1. In [6,7], the following implicit backward Euler method was
proposed and discussed for discretizing the SDEs (2):

(8)
{

Y ∗
n = Yn + f(Y ∗

n )∆t,

Yn+1 = Y ∗
n +

∑d
i=1 gi(Y ∗

n )∆Wi(tn)

with Y0 = y0. In this approach, a partial operator splitting has been used to
separate the drift term of dt and the diffusion term of dW (t) so that an intermediate
variable Y ∗

n can be first found implicitly and only involves f and then used to
compute Yn+1 by an explicit Euler scheme only involving g = (g1, g2, · · · , gd).

In this paper, we propose a fully drift-implicit splitting approximation scheme
for the SDEs (2) that can be described in the following:

(9)





Y 0
n = Yn + f(Y 0)∆t

Y 1
n = Y 0 + g1(Y 0

n )∆W1(tn)
Y 2

n = Y 1 + g2(Y 1
n )∆W2(tn)

...
Yn+1 = Y d−1

n + gd(Y d−1
n )∆Wd(tn).

for n = 0, 1, · · · , N − 1 with Y0 = y0. Notice that in this scheme g(y(t))dW (t) is
furtherly splitted into d sub-terms.

We now introduce some notations used in the following sections. We use < ·, · >
to denote the inner product in the Euclidean space Rm, use |X| to denote both the
Euclidean vector norm for the vector X or the Frobenius (or trace) matrix norm
for the matrix X, use a ∨ b to denote the bigger one of the two real number a and
b, and use E[·] to denote the mathematical expectation.

3. Convergence analysis

For simple presentations, in the following sections, we only consider the SDEs
(2) with d = 2. All results obtained later hold true for the general d. Now we
rewrite the SDEs (2) with d = 2 by

(10)
{

dy(t) = f(y(t))dt + g1(y(t))dW1(t) + g2(y(t))dW2(t), 0 < t ≤ T,
y(0) = y0,

where W1 and W2 are two independent standard one-dimensional Brownian mo-
tions, f : Rm → Rm and gi : Rm → Rm with i = 1, 2 are vector functions. Then
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the splitting scheme (9) for the equations (10) becomes

(11)





Y ∗
n = Yn + ∆tf(Y ∗

n )
Y ∗∗

n = Y ∗
n + ∆W1(tn)g1(Y ∗

n )
Yn+1 = Y ∗∗

n + ∆W2(tn)g2(Y ∗∗
n ),

with Y0 = y0 .

3.1. Existence and uniqueness of the discrete solution. In order to derive
the error estimate, we first need to make some assumption about the regularity of
the functions f and g.

Assumption 3.1. We assume that f and gi (i = 1, 2) are global Lipschitz vector
functions, that is, for any a and b in Rm, there exists a constant K > 0 such that

(12) |f(a)− f(b)|2 ∨ |g1(a)− g1(b)|2 ∨ |g2(a)− g2(b)|2 ≤ K|a− b|2.
From the Lipschitz condition (12), it is easy to deduce that there are two positive
constants α0 and β0 such that

(13) |f(a)|2 ∨ |g1(a)|2 ∨ |g2(a)|2 ≤ α0 + β0|a|2, ∀ a ∈ Rm.

Now we give the first lemma.

Lemma 3.1. Suppose Assumption 3.1 hold and let ∆t ∈ (0, ∆tc) with ∆tc ≤
1/(2

√
K) where the constant K is defined in (12). Then for a given constant

d ∈ Rm, the implicit equation

(14) c = d + ∆tf(c)

has a unique solution c. Define F∆t(d), f∆t(d), and g∆t
1 (d) by

(15) F∆t(d) = c, f∆t(d) = f(F∆t(d)), and g∆t
1 (d) = g1(F∆t(d)),

respectively where c is the unique solution of the equations (14). Then F∆t, f∆t

and g∆t
1 are C1 vector functions, and

f∆t(·) → f(·), g∆t
1 (·) → g1(·)

uniformly in C1 as ∆t → 0. Furthermore, there exist three positive constants L, α
and β such that the functions f∆t and g∆t

1 satisfy

(16) |f∆t(a)− f∆t(b)|2 ∨ |g∆t
1 (a)− g∆t

1 (b)|2 ≤ L|a− b|2,
and

(17) |f∆t(a)|2 ∨ |g∆t
1 (a)|2 ≤ α + β|a|2

for any a and b in Rm.

Proof: The original proof can be found in [6]. For the completeness of the
paper, we give the proof here with some modifications. The existence and the
uniqueness of the solution for the equation (14) can be proved via a contraction
mapping theorem, which also establishes the C1 smoothness of the functions f∆t(·)
and F∆t(·), and the convergence of the function f∆t(·) to the function f(·). Then
the smoothness and the convergence of the function g∆t

1 (·) follow from the fact
g∆t
1 (·) = g1(F∆t(·)).

Let c(1) = d(1) + ∆tf(c(1)) and c(2) = d(2) + ∆tf(c(2)). Then we have

|c(1) − c(2)|2 −∆t < f(c(1))− f(c(2)), c(1) − c(2) > = < d(1) − d(2), c(1) − c(2) > .

From the Lipschitz condition (12), we obtain

(1−
√

K∆t)|c(1) − c(2)|2 ≤ 1
2
|d(1) − d(2)|2 +

1
2
|c(1) − c(2)|2,
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which implies

(18) |c(1) − c(2)|2 ≤ 1
1− 2

√
K∆t

|d(1) − d(2)|2.

The inequality (18) and the definition of the vector function F∆t(·) lead to

(19) |F∆t(d1)− F∆t(d2)|2 ≤ 1
1− 2

√
K∆t

|d1 − d2|2.

From the inequality (19), the definitions of the vector functions f∆t and g∆t
1 in

(15), and the Lipschitz condition (12), we deduce that the functions f∆t and g∆t
1

are two global Lipschitz functions with the Lipschitz L = K
1−2

√
K∆t

. The inequality
(17) holds with the constants α = 2|f∆t(0)|2∨2|g∆t

1 (0)|2 and β = 2L from the facts

|f∆t(a)|2 ≤ 2|f∆t(a)− f∆t(0)|2 + 2|f∆t(0)|2 ≤ 2L|a|2 + 2|f∆t(0)|2

and |g∆t
1 (a)|2 ≤ 2L|a|2 + 2|g∆t

1 (0)|2. ¤

Lemma 3.2. Suppose ∆t ∈ (0,∆tc) with ∆tc ≤ 1/(2
√

K) where the K is the
Lipschitz constant defined in (12). Then the splitting scheme (11) is equivalent to
the E-M scheme for solving the modified SDEs

(20)
{

dy∆t = f∆t(y∆t)dt + g∆t
1 (y∆t)dW1(t) + g∆t

2 (y∆t)dW2(t)
y∆t(0) = y0,

for 0 < t ≤ T , where the functions f∆t(·) and g∆t
1 (·) are defined in Lemma 3.1,

and the function g∆t
2 is defined by

g∆t
2 (y∆t(t)) = g2(y∆t(t)) + ∆tf∆t(y∆t(t)) + ∆W1(tn)g∆t

1 (y∆t(t))

for t ∈ [ tn, tn+1) for n = 0, 1, · · · , N − 1.

Proof: Using the Lemma 3.1 and the definition of the scheme (11), we obtain

F∆t(Yn) = Y ∗
n ,

F∆t(Yn) = Yn + ∆tf∆t(Yk),

g1(Y ∗
n ) = g∆t

1 (Yn),

g2(Y ∗
n ) = g2(Yn + ∆tf∆t(Yn) + ∆W1(tn)g∆t

1 (Yn)) = g∆t
2 (Yn).

Then the splitting scheme (11) can be rewritten as

Yn+1 = Yn + ∆tf∆t(Yn) + ∆W1(tn)g∆t
1 (Yn) + ∆W2(tn)g∆t

2 (Yn),

which is exactly the E-M scheme for the SDEs (20). ¤
From the Lemma 3.2, we directly obtain the existence and uniqueness of the

discrete solution of the splitting scheme (11). So does the the splitting scheme (9)
for general d-dimensional case. We also would like to remark on Assumption 3.1
and Euler discretizations that complete implicit schemes are specially useful when
one needs to run long time simulations, e.g., to approximate invariant measures
or Lyapunov exponents, and when the drift coefficients are not globally Lipschitz,
see [13,19].
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3.2. Error Estimates. Let us introduce two time-continuous random vector processes
Y (t) and Ȳ (t), which are, respectively, defined by

(21) Y (t) := Yn, for t ∈ [ tn, tn+1),

(22)

Ȳ (t) := Y0 +
∫ t

0

f∆t(Y (s))ds +
∫ t

0

g∆t
1 (Y (s))dW1(s) +

∫ t

0

g∆t
2 (Y (s))dW2(s),

where the vector functions f∆t(·) and g∆t
1 (·) are defined in Lemma 3.1, and the

vector function g∆t
2 (Y (s)) is defined by

g∆t
2 (Y (s)) = g2(Y (s)) + ∆tf∆t(Y (s)) + ∆Ŵ1(s)g∆t

1 (Y (s))

where ∆Ŵ1(s) = ∆W1(tn) for s ∈ [tn, tn+1).
From the definitions (21) and (22) and the definition of ∆Ŵ1(s), we know that

∆Ŵ1(s) and Y (s) (∀s ∈ [0, T ]) are independent, and that Ȳ (tn) = Y (tn) = Yn. So
we call the two random processes Ȳ (t) and Y (t) the two time continuous extensions
of the discontinuous random variables {Yn}N

n=0.
Now we present our main result of this paper about the strong convergence and

error estimates for the splitting scheme (11).

Theorem 3.1. Let y(t) and Ȳ (t) be the solutions of (10) and (22), respectively.
Then under the Assumption 3.1, if ∆t < ∆tc < 1/(2

√
K) with the Lipschitz

constant K in (12), we have the estimate

(23) E
[|Ȳ (t)− y(t)|2] ≤ C∆t

where the constant C does not depend on y(t), Ȳ (t), and the time partition.

The proof of the Theorem 3.1 will be postponed to the end of this section, let
us first prove some preliminary lemmas and propositions.

Lemma 3.3. Let Yn (0 ≤ n ≤ N) be the solution of the splitting scheme (11). Then
under the conditions of the Theorem 3.1, there exists a constant A = A(T ) > 0
independent of ∆t such that

E
[|Yn|2

] ≤ A

for n = 0, 1, 2, · · · , N .

Proof: Using Itô’s formula to the process |Ȳ (t)|2 with Ȳ (t) defined by (22), we
obtain

|Ȳ (t)|2 = |Y0|2 + 2
∫ t

0

< Ȳ (s), f∆t(Y (s)) > ds

+2
∫ t

0

< Ȳ (s), g∆t
1 (Y (s)) > dW1(s) +

∫ t

0

|g∆t
1 (Y (s))|2ds

+2
∫ t

0

< Ȳ (s), g∆t
2 (Y (s)) > dW2(s) +

∫ t

0

|g∆t
2 (Y (s))|2ds.(24)

Take the mathematical expectation on the two sides of the equation (24), then
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E[|Ȳ (t)|2] = |Y0|2 + 2
∫ t

0

E[< Ȳ (s), f∆t(Y (s)) >]ds

+
∫ t

0

E[|g∆t
1 (Y (s))|2]ds +

∫ t

0

E[|g∆t
2 (Y (s))|2]ds

≤ |Y0|2 +
∫ t

0

E[|Ȳ (s)|2]ds +
∫ t

0

E[|f∆t(Y (s))|]2ds

+
∫ t

0

E[|g∆t
1 (Y (s))|2]ds +

∫ t

0

E[|g∆t
2 (Y (s))|2]ds.(25)

Let t = tn in the inequality (25) with n satisfying n∆t ∈ [0, T ], then we get

E[|Yn|2] ≤ |Y0|2 +
∫ tn

0

E[|Ȳ (s)|2]ds +
∫ tn

0

E[|f∆t(Y (s))|2]ds

+
∫ tn

0

E[|g∆t
1 (Y (s))|2]ds +

∫ tn

0

E[|g∆t
2 (Y (s))|2]ds

≤ |Y0|2 +
∫ tn

0

E[|Ȳ (s)|2]ds +
n∑

i=1

E[|f∆t(Yi)|2]∆t

+
n∑

i=1

E[|g∆t
1 (Yi)|2]∆t +

n∑

i=1

E[|g∆t
2 (Yi)|2]∆t.(26)

Now we estimate the second term on the right hand side of the inequality (26).
From the definitions of the random processes Ȳ (t) and Y (t), we have

∫ tn

0

E
[|Ȳ (s)|2] ds ≤ 2

∫ tn

0

E
[|Ȳ (s)− Y (s)|2] ds + 2

∫ tn

0

E
[|Y (s)|2] ds

= 2
n−1∑

i=0

∫ ti+1

ti

E
[|Ȳ (s)− Yi|2

]
ds + 2

n−1∑

i=0

E
[|Yi|2

]
∆t

= 2
n−1∑

i=0

∫ ti+1

ti

E
[
|
∫ s

ti

f∆t(Y (r))dr +
∫ s

ti

g∆t
1 (Y (r))dW1(r)

+
∫ s

ti

g∆t
2 (Y (r))dW2(r)|2

]
ds + 2

n−1∑

i=0

E
[|Yi|2

]
∆t

≤ 6
n−1∑

i=0

∫ ti+1

ti

E
[
|
∫ s

ti

f∆t(Y (r))dr|2
]

ds

+6
n−1∑

i=0

∫ ti+1

ti

E
[
|
∫ s

ti

g∆t
1 (Y (r))dW1(r)|2

]
ds

+6
n−1∑

i=0

∫ ti+1

ti

E
[
|
∫ s

ti

g∆t
2 (Y (r))dW2(r)|2

]
ds + 2

n−1∑

i=0

E
[|Yi|2

]
∆t

≤ 6
n−1∑

i=0

E
[|f∆t(Yi)|2

]
(∆t)3 + 6

n−1∑

i=0

E
[|g∆t

1 (Yi)|2
]
(∆t)2

+6
n−1∑

i=0

E
[|g∆t

2 (Yi)|2
]
(∆t)2 + 2

n−1∑

i=0

E
[|Yi|2

]
∆t.(27)
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From Lemma 3.1, we have the estimates

E
[|f∆t(Yi)|2

] ≤ α + βE
[|Yi|2

]
,(28)

E
[|g∆t

1 (Yi)|2
] ≤ α + βE

[|Yi|2
]
,(29)

and

E
[|g∆t

2 (Yi)|2
]

= E
[
|g2(Yi + ∆tf∆t(Yi) + ∆Ŵ1(ti)g∆t

1 (Yi))|2
]

≤ α + βE
[
|Yi + ∆tf∆t(Yi) + ∆Ŵ1(ti)g∆t

1 (Yi)|2
]

≤ α + 3β
(
E

[|Yi|2
]
+ (∆t)2E

[|f∆t(Yi)|2
]
+ ∆tE

[|g∆t
1 (Yi)|2

])

≤ C1

(
1 + E

[|Yi|2
])

,(30)

where C1 > 0 is a constant independent on Yn and ∆t. Inserting the estimates
(28), (29) and (30) into the estimate (27), we get

∫ tn

0

E
[|Ȳ (s)|2] ds ≤ C2(1 +

n−1∑

i=0

E
[|Yi|2

]
)∆t

≤ C2

[(
1 + |Y0|2 +

n∑

i=1

E
[|Yi|2

]
)]

∆t(31)

where C2 > 0 is a constant independent of Yn and ∆t. From the inequalities (26),
(28), (29), (30) and(31), we deduce

(32) E
[|Yn|2

] ≤ C3

(
1 +

n∑

i=1

E
[|Yi|2

]
∆t

)
.

where the constant C3 > 0 depends on α, β, C1, and C2. Finally applying Gronwall
inequality to (32) leads to the conclusion of the lemma. ¤

Lemma 3.4. Let Ȳ (t) be defined by the equation (22). Then under the conditions
of the Theorem 3.1, there exists a constant B = B(T ) independent of ∆t and Ȳ (t),
such that

E
[|Ȳ (t)|2] ≤ B, ∀ t ∈ [0, T ].

Proof: The proof of this lemma is almost the same as the proof of the Lemma
3.3. So we omit it here. ¤

In the next lemma, we will show that y∆t(t), the solution of the modified SDEs
(20), has a bounded second moment.

Lemma 3.5. Let y∆t be the solution of the SDEs (20). Then under the conditions
of the Theorem 3.1, there exists a constant M = M(T ) > 0 independent of ∆t such
that

(33) E
[|y∆t(t)|2] ≤ M, ∀ t ∈ [0, T ].
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Proof: From the SDEs (20) and using Itô’s formula to |y∆t(t)|2, we deduce

|y∆t(t)|2 = |Y0|2 + 2
∫ t

0

< y∆t(s), f∆t(y∆t(s)) > ds

+2
∫ t

0

< y∆t(s), g∆t
1 (y∆t(s)) > dW1(s)

+2
∫ t

0

< y∆t(s), g∆t
2 (y∆t(s)) > dW2(s)

+
∫ t

0

|g∆t
1 (y∆t(s))|2ds +

∫ t

0

|g∆t
2 (y∆t(s))|2ds.

Take mathematical expectation on the two sides of the above equation, we have

E
[|y∆t(t)|2] ≤ |Y0|2 +

∫ t

0

E
[|y∆t(s)|2] ds +

∫ t

0

E
[|f∆t(y∆t(s))|2] ds

+
∫ t

0

E
[|g∆t

1 (y∆t(s))|2] ds +
∫ t

0

E
[|g∆t

2 (y∆t(s))|2] ds.(34)

Using Assumption 3.1 and Lemma 3.1, we obtain

∫ t

0

E
[|f∆t(y∆t(s))|2] ds ≤ αT + β

∫ t

0

E
[|y∆t(s)|2] ds,(35)

∫ t

0

E
[|g∆t

1 (y∆t(s))|2] ds ≤ αT + β

∫ t

0

E
[|y∆t(s)|2] ds.(36)

Combine (34), (35) and (36), and use the Cauchy-Schwartz inequality, then we get

∫ t

0

E
[|g∆t

2 (y∆t(s))|2] ds

=
∫ t

0

E
[
|g2(y∆t(s) + ∆tf∆t(y∆t(s)) + ∆Ŵ1(s)g∆t

1 (y∆t(s)))|2
]
ds

≤ α0T + β0

∫ t

0

E
[
|y∆t(s) + ∆tf∆t(y∆t(s)) + ∆Ŵ1(s)g∆t

1 (y∆t(s))|2
]
ds

≤ α0T + 3β0

∫ t

0

E
[|y∆t(s)|2] ds + 3β0∆t2

∫ t

0

E
[|f∆t(y∆t(s))|2] ds

+3β0

∫ t

0

E
[
|∆Ŵ1(s)g∆t

1 (y∆t(s))|2
]
ds

≤ C1

(
1 +

∫ t

0

E
[|y∆t(s)|2] ds

)
+ C2

∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds(37)
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where the constants C1 > 0 and C2 > 0 are independent of y∆t and ∆t. From the
independence of ∆Ŵ1(s) and y∆t(s−∆t), we deduce

∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds

=
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds +

∫ t

∆t

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds

≤ 2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(0)|2

]
ds

+2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)− y∆t(0)|2

]
ds

+2
∫ t

∆t

E
[
|∆Ŵ1(s)|2|y∆t(s−∆t)|2

]
ds

+2
∫ t

∆t

E
[
|∆Ŵ1(s)|2|y∆t(s)− y∆t(s−∆t)|2

]
ds

and then
∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds

≤ 2(∆t)2|Y0|2 +
∫ ∆t

0

E
[
|∆Ŵ1(s)|4

]
ds +

∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds

+4∆t

∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|2] ds + 4∆t

∫ t

∆t

E
[|y∆t(s)|2] ds

+
∫ t

∆t

E
[
|∆Ŵ1(s)|4

]
ds +

∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|4] ds

≤ 2(∆t)2|Y0|2 + (∆t)3 +
∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds

+4∆t

∫ t

0

E
[|y∆t(s)− y∆t(s−∆t)|2] ds + 4∆t

∫ t

0

E
[|y∆t(s)|2] ds

+(∆t)2T +
∫ t

0

E
[|y∆t(s)− y∆t(s−∆t)|4] ds.(38)

Using Assumption 3.1 and the standard arguments in [1,15] about the estimates of
the solution of SDEs, we obtain the estimate

(39) E
[|y∆t(s)− y∆t(t)|p] ≤ Cp,T |s− t|p/2, p ≥ 2, 0 ≤ s, t ≤ T

where the constant Cp,T depends only on p and T .
From the estimates (38) and (39), we get

(40)
∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds ≤ C3(1 +

∫ t

0

E
[|y∆t(s)|2] ds),

where the constant C3 > 0 does not depend on y∆t and the time partition. Insert
the inequality (40) into the inequality (37), we get

(41)
∫ t

0

E
[|g∆t

2 (y∆t(s))|2] ds ≤ C4(1 +
∫ t

0

E
[|y∆t(s)|2] ds),
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where constant C4 > 0 is also independent of y∆t and time partition. From the
inequalities (34), (35), (36) and (41), we deduce that there is a constant C5 inde-
pendent of y∆t and the time partition such that the inequality

(42) E
[|y∆t(t)|2] ≤ C5(1 +

∫ t

0

E
[|y∆t(s)|2] ds).

holds true for t ∈ [0, T ]. Finally applying Gronwall lemma to (42) leads to the
inequality (33). ¤

Now, using the above lemmas, we can obtain the following error estimate.

Proposition 3.1. Let y(t) and y∆t(t) be the solutions of the SDEs (10) and the
SDEs (20), respectively. Then under the conditions of the Theorem 3.1, we have
the error estimate

(43) E
[|y∆t(t)− y(t)|2] ≤ C∆t

where the constant C does not depend on y(t), y∆t(t), and the time partition.

Proof: From Lemma 3.1, we conclude that there is a function φ : (0,∞) →
(0,∞) and φ(∆t) → 0 as ∆t → 0, such that

(44) φ(∆t) = O(∆t),

and

(45) |f∆t(u)− f(u)|2 ∨ |g∆t
1 (u)− g1(u)|2 ≤ φ(∆t), ∀u ∈ Rm,

provided that ∆t is small enough. Using the SDEs (20) and the SDEs (10), the
Cauchy-Schwartz inequality, and the Itô isometry formula, we obtain

E
[|y∆t(t)− y(t)|2] = E

[
|
∫ t

0

(f∆t(y∆t(s))− f(y(s)))ds

+
∫ t

0

(g∆t
1 (y∆t(s))− g1(y(s)))dW1(s)

+
∫ t

0

(g∆t
2 (y∆t(s))− g2(y(s)))dW2(s)|2

]

≤ T1 + T2 + T3.(46)

where

T1 = 3TE
[∫ t

0

|f∆t(y∆t(s))− f(y(s))|2ds

]
,

T2 = 3E
[∫ t

0

|g∆t
1 (y∆t(s))− g1(y(s))|2ds

]
,

T3 = 3E
[∫ t

0

|g∆t
2 (y∆t(s))− g2(y(s))|2ds

]
.

Using the Cauchy-Schwartz inequality, Lemma 3.1 and the inequality (45), we
obtain

T1 ≤ 6TE
[∫ t

0

|f∆t(y∆t(s))− f(y∆t(s))|2ds

]

+6TE
[∫ t

0

|f(y∆t(s))− f(y(s))|2ds

]

≤ 6TE
[∫ t

0

φ(∆t)ds

]
+ 6TK

∫ t

0

E
[|y∆t(s)− y(s)|2] ds,
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T2 ≤ 6E
[∫ t

0

|g∆t
1 (y∆t(s))− g1(y∆t(s))|2ds

]

+6E
[∫ t

0

|g1(y∆t(s))− g1(y(s))|2ds

]

≤ 6E
[∫ t

0

φ(∆t)ds

]
+ 6K

∫ t

0

E
[|y∆t(s)− y(s)|2] ds.

For the term T3, we have

T3 ≤ 6E
[∫ t

0

|g∆t
2 (y∆t(s))− g2(y∆t(s))|2ds

]

+6E
[∫ t

0

|g2(y∆t(s))− g2(y(s))|2ds

]
.

By using Lemma 3.1 and Assumption 3.1, we have

T3 ≤ 6E
[ ∫ t

0

|g2(y∆t(s) + ∆tf∆t(y∆t(s))

+∆Ŵ1(s)g∆t
1 (y∆t(s)))− g2(y∆t(s))|2ds

]

+6K

∫ t

0

E
[|y∆t(s)− y(s)|2] ds

≤ 12K(∆t)2
∫ t

0

E
[|f∆t(y∆t(s))|2] ds

+12K

∫ t

0

E
[
|∆Ŵ1(s)|2|g∆t

1 (y∆t(s))|2
]
ds + 6K

∫ t

0

E
[|y∆t(s)− y(s)|2] ds

≤ 12K(∆t)2
∫ t

0

(α + βE
[|y∆t(s)|2])ds

+12K

∫ t

0

E
[
|∆Ŵ1(s)|2(α + β|y∆t(s)|2)

]
ds

+6K

∫ t

0

E
[|y∆t(s)− y(s)|2] ds

≤ 12K(∆t)2
∫ t

0

(α + βE
[|y∆t(s)|2])ds + 12Kα∆t

∫ t

0

ds

+12Kβ

∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds + 6K

∫ t

0

E
[|y∆t(s)− y(s)|2] ds.(47)

From the Lemma 3.5, we know that the first two terms on the right-hand side
of the above inequality (47) is bounded by C1∆t with a constant C1 independent
of y(t), y∆t(t) and ∆t. Let us rewrite the third term on the right-hand side of the
inequality (47) as

∫ t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds = T4 + T5(48)

where

T4 =
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds, T5 =

∫ t

∆t

E
[
|∆Ŵ1(s)|2|y∆t(s)|2

]
ds.
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About the term T4, we have the estimate

T4 ≤ 2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)− y∆t(0)|2

]
ds

+2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(0)|2

]
ds

≤
∫ ∆t

0

E
[
|∆Ŵ1(s)|4

]
ds +

∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds

+2∆t

∫ ∆t

0

E
[|Y0|2

]
ds

≤ (∆t)3 +
∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds + 2(∆t)2|Y0|2,

About the term T5, we have the estimate

T5 ≤
∫ t

∆t

{
E

[
|∆Ŵ1(s)|4

]

+E
[|y∆t(s)− y∆t(s−∆t)|4] + 2∆tE

[|y∆t(s−∆t)|2]
}

ds

≤ T (∆t)2 +
∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|4] ds

+2∆t

∫ t

∆t

E
[|y∆t(s−∆t)|2] ds

From the inequality (39), we deduce that there is a positive constant C2 inde-
pendent of y(t), y∆t(t) and ∆t such that

∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds ≤ C2

∫ ∆t

0

|s|2ds ≤ C2(∆t)3,(49)
∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|4] ds ≤ C2

∫ t

∆t

∆t2ds ≤ C2T (∆t)2.(50)

Together with Lemma 3.5, we have

(51)
∫ t

∆t

E
[|y∆t(s−∆t)|2] ds ≤ C3

where the constant C3 is independent of y(t), y∆t(t) and ∆t.
Now by the estimates of T3, T4, T5 and the inequalities (48), (49), (50) and (51),

we deduce

T3 ≤ C4

(
∆t +

∫ t

0

E
[|y∆t(s)− y(s)|2] ds

)
,(52)

where C4 > 0 is a constant independent of y(t), y∆t(t) and ∆t. Inserting the
estimates of T1, T2, T3 into the inequality (46), we get

(53) E
[|y∆t(t)− y(t)|2] ≤ C5

(
φ(∆t) + ∆t +

∫ t

0

E
[|y∆t(s)− y(s)|2] ds

)

with the constant C5 independent of y(t), y∆t(t) and ∆t. Finally using Gronwall
lemma again, we obtain

(54) E
[|y∆t(t)− y(t)|2] ≤ C6(φ(∆t) + ∆t)
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for t ∈ [0, T ], where the constant C6 is independent of y(t), y∆t(t) and ∆t. Com-
bining (44) and (54), we complete the proof. ¤

Proposition 3.2. Let y∆t(t) and Ȳ (t) be the solutions of the equations (20) and
(22), respectively. Then under the conditions of the Theorem 3.1, we have the
estimate

(55) E
[|Ȳ (t)− y∆t(t)|2] ≤ C∆t,

where the constant C does not depend on y∆t(t), Ȳ (t), and the time partition.

Proof: Similar to the proof of Proposition 3.1, using the Cauchy-Schwartz in-
equality, Itô isometry formula, Assumption 3.1 and Lemma 3.5, we obtain

E
[|Ȳ (t)− y∆t(t)|2]

= E
[∣∣

∫ t

0

(f∆t(Y (s))− f∆t(y∆t(s)))ds

+
∫ t

0

(g∆t
1 (Y (s))− g∆t

1 (y∆t(s)))dW1(s)

+
∫ t

0

(g∆t
2 (Y (s))− g∆t

2 (y∆t(s)))dW2(s)
∣∣2

]

≤ 3TE
[∫ t

0

|f∆t(Y (s))− f∆t(y∆t(s))|2ds

]

+3E
[∫ t

0

|g∆t
1 (Y (s))− g∆t

1 (y∆t(s))|2ds

]

+3E
[∫ t

0

|g∆t
2 (Y (s))− g∆t

2 (y∆t(s))|2ds

]

≤ 3L(T + 1)
∫ t

0

E
[|Y (s)− y∆t(s)|2] ds

+9K

∫ t

0

E
[|Y (s)− y∆t(s)|2] ds + 9KL(∆t)2

∫ t

0

E
[|Y (s)− y∆t(s)|2] ds

+9KL

∫ t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

= 3[L(T + 1) + 3K(L∆t2 + 1)]
∫ t

0

E
[|Y (s)− y∆t(s)|2] ds

+9KL

∫ t

0

E
[
|∆Ŵ1|2|Y (s)− y∆t(s)|2

]
ds.(56)
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About the last term on the right hand side of the inequality (56), we easily get
∫ t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

≤
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

+
∫ t

∆t

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

≤ 2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(0)|2

]
ds

+2
∫ ∆t

0

E
[
|∆Ŵ1(s)|2|y∆t(s)− y∆t(0)|2

]
ds

+2
∫ t

∆t

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s−∆t)|2

]
ds

+2
∫ t

∆t

E
[
|∆Ŵ1(s)|2|y∆t(s)− y∆t(s−∆t)|2

]
ds.

and so we have
∫ t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

≤
∫ ∆t

0

E
[
|∆Ŵ1(s)|4

]
ds +

∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds

+2∆t

∫ t

∆t

E
[|Y (s)− y∆t(s−∆t)|2] ds

+
∫ t

∆t

E
[
|∆Ŵ1(s)|4

]
ds +

∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|4] ds

≤ T (∆t)2 +
∫ ∆t

0

E
[|y∆t(s)− y∆t(0)|4] ds

+2∆t

∫ t

∆t

E
[|Y (s)− y∆t(s−∆t)|2] ds

+
∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|4] ds.(57)

In the above estimation (57), we used the facts that Y (s) = y∆t(0) for s ∈ [0,∆t)
from the definitions of Y (t) and y∆t(t), and the two random processes Ŵ1(s) and
Y (s)− y∆t(s−∆t) are independent. Now we estimate the third term on the right
hand side of the inequality (57). From (39), we get

∫ t

∆t

E
[|Y (s)− y∆t(s−∆t)|2] ds

≤ 2
∫ t

∆t

E
[|Y (s)− y∆t(s)|2] ds

+2
∫ t

∆t

E
[|y∆t(s)− y∆t(s−∆t)|2] ds

≤ 2
∫ t

0

E
[|Y (s)− y∆t(s)|2] ds + 2C2,T T∆t(58)
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Inserting the estimates (49), (50) and (58) into the estimate (57), we get
∫ t

0

E
[
|∆Ŵ1(s)|2|Y (s)− y∆t(s)|2

]
ds

≤ [T + C2(T + ∆t) + 4C2,T T ](∆t)2

+4∆t

∫ t

0

E
[|Y (s)− y∆t(s)|2] ds.(59)

Combining the two estimates (56) and (59) leads to

E
[|Ȳ (t)− y∆t(t)|2] ≤ C7(∆t)2 + C8

∫ t

0

E
[|Y (s)− y∆t(s)|2] ds

≤ C7(∆t)2 + 2C8

∫ t

0

E
[|Ȳ (s)− Y (s)|2] ds

+2C8

∫ t

0

E
[|Ȳ (s)− y∆t(s)|2] ds,(60)

where

C7 = 9KL [T + C2(T + ∆t) + 4C2,T T ]

C8 = 3
[
L(T + 1) + 3K(L∆t2 + 1) + 12KL∆t

]
.

Now let us estimate the third term on the right-hand side of the inequality (60).
For each s ∈ [0, T ), let ks be the integer such that s ∈ [tks , tks+1). Then by using
the Lemma 3.3 and the estimates (28), (29) and (30) for the vector functions f∆t,
g∆t
1 and g∆t

2 , we obtain

E
[|Ȳ (s)− Y (s)|2]

= E
[|f∆t(Yks)(s− tks)− g∆t

1 (Yks)(W1(s)−W1(tks))

−g∆t
2 (Yks)(W2(s)−W2(tks))|2

]

≤ 3E
[|f∆t(Yks)|2|s− tks |2

]
+ 3E

[|g∆t
1 (Yks)|2|W1(s)−W1(tks)|2

]

+3E
[|g∆t

2 (Yks)|2|W2(s)−W2(tks)|2
]

≤ 3(∆t)2E
[|f∆t(Yks)|2

]
+ 3∆tE

[|g∆t
1 (Yks)|2

]
+ 3∆tE

[|g∆t
2 (Yks)|2

]

≤ C9∆t(61)

where the constant C9 depends on the constant A in the Lemma 3.3, and the
constants α and β in the inequalities (28) and (29). From the estimate (61), we
easily get

(62)
∫ t

0

E
[|Ȳ (s)− Y (s)|2] ds ≤ C9T∆t.

With the use of the estimates (60) and (62) we obtain

E
[|Ȳ (t)− y∆t(t)|2] ≤ C10∆t + C11

∫ t

0

E
[|Ȳ (s)− y∆t(s)|2] ds,(63)

where C10 = C7∆t + 2C8C9T and C11 = 2C8. Finally the use of Gronwall lemma
to the inequality (63) leads the conclusion of this proposition. ¤

Now let us turn to the proof of the Theorem 3.1.
Proof: (Proof of Theorem 3.1) Noting the fact

Ȳ (t)− y(t) = [Ȳ (t)− y∆t(t)] + [y∆t(t))− y(t)],
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Table 1: The average sample errors of the E-M method and the splitting method
for the linear problem (64).

N 25 26 27 28 29

E −M 0.0488 0.0284 0.0174 0.0120 0.0081
Splitting 0.0206 0.0146 0.0093 0.0069 0.0045

and using the triangle inequality, Proposition 3.1 and Proposition 3.2, we obtain
the estimate (23). ¤

4. Numerical Experiments

To see how well the splitting scheme (9) works, we compare its performance
with the standard E-M scheme (5) by solving two sample stochastic differential
equations.

The first example that we are going to test is the following linear SDEs:

(64)
{

dy(t) = y(t) [λ + σdW (t)] , 0 < t ≤ T
y(0) = y0,

where λ is a parameter, σ = (σ1, · · · , σd) is a vector, and W (t) is a standard d-
dimensional Brownian motion. It is easy to find that the exact solution of the
equations (64) is given by

(65) y(t) = y0 exp
(
((λ− 1

2σσT )t + σW (t)
)
.

The second example to test is the following nonlinear SDEs:

(66)





dy(t) = [(2λ + σσT )y(t)− 2(λ + σσT )
√

y(t) + 1 + 2(λ + σσT )]dt

+2(y(t) + 1−
√

y(t) + 1)σdW (t), 0 < t ≤ T
y(0) = y0

where λ, σ and W (t) are defined as before. It is also easy to verify that the analytic
solution of the equations (66) is given by

(67)
y(t) = (y0 − 2

√
y0 + 1 + 2) exp((2λ− σσT )t + 2σW (t))

+2(
√

y0 + 1− 1) exp((λ− 1
2σσT )t + σW (t)).

In our numerical simulations, we set T = 1, λ = −2, and σ = (1, 1, 1) for
both examples. To compute the expectations of the approximate solution Yn, we
repeat the solution process 1000 times for each method so that the errors caused
by sampling is much smaller than that by time discretization.

The initial condition for the linear SDE (64) was set to be y0 = 1. In Figure 1, we
plot the analytic solution of the SDEs (64), the approximate solutions of the linear
problem (64) by the splitting scheme (9) and the E-M scheme (6) respectively with
the time step ∆t = 1

25 . In order to clearly demonstrate the convergence rate of the
splitting method, we also present the average sample errors at the terminal time T
(i.e., [|y(T ) − YN |]) for the E-M scheme (6) and the splitting scheme (9) with ∆t
= 1

25 , 1
26 , 1

27 , 1
28 and 1

29 in Table 1, and plot the corresponding convergence curve
for each method in Figure 2. The initial condition for the nonlinear SDE (66) was
set to be y0 = 3. We then repeated same simulations for this nonlinear problem as
the first example and corresponding figures and table are given in Figure 3, Table
2 and Figure 4.
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Figure 1: The plots of the exact solution (65), the approximate solutions for the
linear problem (64) by the E-M method and the splitting method respectively with
∆t = 1

25 .
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Figure 2: The convergence rates of the E-M method and the splitting method for
the linear problem (64).

Table 2: The average sample errors of the E-M method and the splitting method
for the nonlinear problem (65).

N 25 26 27 28 29

E −M 0.3837 0.1730 0.0989 0.0703 0.0461
Splitting 0.1289 0.0898 0.0517 0.0388 0.0229

From the above figures and tables, it is easy to see that both the E-M scheme
and the splitting scheme have the half order convergence, but the splitting scheme
obtains better approximate solutions for both problems.
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Figure 3: The plots of the exact solution (67), the approximate solutions for the
nonlinear problem (65) by the E-M method and the splitting method respectively
with ∆t = 1

25 .
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Figure 4: The convergence rates of the E-M method and the splitting method for
the nonlinear problem (65).

5. Conclusions

In this paper, we proposed and discussed a fully drift-implicit splitting method
for numerical solution of the stochastic differential equations driven by the d-
dimensional Brownian motion. We proved its strong convergence to be of half
order and compared its performance with the standard Euler-Maruyama method.
Although the strong convergence rate of our splitting method is of the same order
as that of the E-M method, this scheme allows us to use the latest information
inside each iteration in the E-M method and makes it possible to obtain better
approximate solutions than the standard approach.
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