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Abstract. We propose a new moving pseudo-boundary method of fundamental solu-
tions (MFS) for the determination of the boundary of a three-dimensional void (rigid
inclusion or cavity) within a conducting homogeneous host medium from overdeter-
mined Cauchy data on the accessible exterior boundary. The algorithm for imaging
the interior of the medium also makes use of radial spherical parametrization of the
unknown star-shaped void and its centre in three dimensions. We also include the con-
traction and dilation factors in selecting the fictitious surfaces where the MFS sources
are to be positioned in the set of unknowns in the resulting regularized nonlinear least-
squares minimization. The feasibility of this new method is illustrated in several nu-
merical examples.
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1 Introduction

An important subclass of inverse problems very often encountered in real life applica-
tions is represented by so-called inverse geometric problems. In such problems, the gov-
erning equation, material properties, boundary conditions and a portion of the geometry
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that is accessible are all known, whilst the portion of the geometry that is hidden from
view is to be characterized with the help of an over-specified (Cauchy) condition on the
exposed accessible surface. More precisely, in this paper we refer to applications in the
nondestructive evaluation of three-dimensional voids (rigid inclusions and cavities) as-
sociated with isotropic steady-state heat conduction (i.e., Laplace’s equation), for which
both the boundary temperature and the heat flux are measured on the accessible exposed
surface, the boundary condition on the void surface is known, while the geometry of the
void is to be determined. This situation also occurs in electrical impedance tomography
(EIT) where the boundary temperature and heat flux are replaced by the voltage and cur-
rent flux, respectively. This inverse geometric problem has been solved by a variety of
mesh dependent numerical methods, such as the finite difference (FDM), finite element
(FEM) and boundary element (BEM) methods, see e.g., [7,8,15,16,23–25], and its numer-
ical solution is, arguably, the most computationally intensive among problems belonging
to the general class of inverse problems. Its inherent nature requires a complete regenera-
tion of the mesh as the geometry evolves regardless of whether a numerical or analytical
approach is employed to solve the associated direct problem. Consequently, the solu-
tion of inverse geometric problems via these traditional numerical methods is seriously
dependent on the quality of the mesh since a simple topological mesh would cause the
solution to be distorted and fails to complete the inverse calculation. Moreover, obtaining
a high-quality mesh requires tedious (re)meshing in the inverse iterative process. There-
fore, it is of crucial importance to find a proper and efficient numerical method to solve
the inverse geometric problem under investigation in a stable and accurate manner.

The method of fundamental solutions (MFS) was first introduced as a numerical tech-
nique for direct problems in the late seventies in a paper by Mathon and Johnston [26] fol-
lowed by applications to potential problems in papers by Fairweather and Johnston [10,
17]. In recent years, it has been used extensively for the numerical solution of various
types of inverse problems, mainly because of the ease with which it can be implemented,
see the recent survey papers [21, 22]. There are two MFS approaches related to the loca-
tion of the MFS singularities (one of the most important issues concerning this meshless
method). In the static approach, the singularities are pre-assigned and kept fixed through-
out the solution process, whilst in the dynamic approach, the singularities and the un-
known MFS coefficients are determined simultaneously during the solution process [9].
Because the coordinates of the singularities appear non-linearly, this approach leads to a
non-linear least squares minimization problem. The obvious criticism of this approach is
that in the case of linear boundary value problems one is required to solve a non-linear
discrete problem at a high cost. On the other hand, the optimal placement of the singu-
larities in the static approach is a major issue, see e.g., [2].

The detection of two-dimensional cavities and inclusions was investigated using a
regularized MFS and the static approach in [3, 4, 18, 19]. Recently, the authors have
proposed a dynamic moving pseudo-boundary MFS for void detection in two dimen-
sions [20]. The purpose of this study is to extend and numerically implement this method
to three-dimensional void detection problems. The paper is organized as follows. In Sec-
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tion 2 we present the mathematical formulation of the problem. The MFS approximation
for this problem is described in Section 3, while the implementational details are given
in Section 4. Several numerical examples are investigated in Section 5. Finally, some
comments and conclusions are given in Section 6.

2 Mathematical formulation

In this section we formulate the direct and inverse problems related to a rigid inclusion
or a cavity. The direct problem given by the Laplace equation

∆u=0 in Ω, (2.1a)

subject to the Dirichlet boundary condition

u= f on ∂Ω2, (2.1b)

and the homogeneous boundary condition

αu+(1−α)∂νu=0 on ∂Ω1, where α∈{0,1}, (2.1c)

has a unique weak solution u∈H1(Ω) if f ∈H1/2(∂Ω2), and a unique classical solution
u ∈ C2(Ω)∩C(Ω̄), provided f is sufficiently smooth. In the above, Ω = Ω2\Ω1, where
Ω1 ⊂ Ω2, is a bounded annular domain with boundary ∂Ω = ∂Ω1∪∂Ω2. The void Ω1

may have many connected components, but Ω should be connected. Eq. (2.1c), covers
both Dirichlet (α=1, i.e., Ω1 is a rigid inclusion) and Neumann (α=0, i.e., Ω1 is a cavity)
boundary conditions on ∂Ω1.

The inverse problem we are concerned with consists of determining not only the func-
tion u, but also the inclusion Ω1 so that u satisfies the Laplace equation (2.1a), the given
Dirichlet data f 6≡constant in (2.1b), the homogeneous boundary condition (2.1c) and the
Neumann current flux measurement

g :=∂νu on ∂Ω2. (2.1d)

In (2.1c) and (2.1d), the vector ν denotes the outward unit normal to the annular domain
Ω.

In the inverse problem, the fact that the location of Ω1 is not known is compensated
by the additional boundary condition (2.1d). When α= 0, for (2.1a), (2.1c) and (2.1d) to
be consistent, we require

∫

∂Ω2

g(s)ds=0. (2.2)

In contrast to the direct linear and well-posed boundary value problem (2.1a)-(2.1c)
with Ω1 known, the inverse problem (2.1a)-(2.1d) with Ω1 unknown is nonlinear and
ill-posed. Although the solution is unique, see [12] for two dimensions and [1] for three
dimensions, it is unstable with respect to small errors in the input Cauchy data (2.1b) and
(2.1d).
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3 The method of fundamental solutions (MFS)

In the application of the MFS to (2.1), we seek an approximation to the solution of the
three-dimensional Laplace’s equation (2.1a) as a linear combination of fundamental so-
lutions in the form

uNM(c1,c2,ξ1,ξ2;x)=
2

∑
s=1

N

∑
n=1

M

∑
m=1

cs
n,mG(ξs

n,m,x), x∈Ω, (3.1)

where G is the fundamental solution of the three-dimensional Laplace equation, given by

G(ξ,x)=
1

4π

1

|ξ−x| . (3.2)

The sources (ξs
n,m)n=1,N,m=1,M,s=1,2 are located outside the solution domain Ω, i.e., in

Ω1∪(R3\Ω̄2). In particular, the sources (ξ1
n,m)n=1,N,m=1,M ∈Ω1 are placed on a (moving)

pseudo-boundary ∂Ω′
1 similar (contraction) to ∂Ω1, while the sources (ξ2

n,m)n=1,N,m=1,M∈
R

3\Ω2 are placed on a pseudo-boundary ∂Ω′
2 similar (dilation) to ∂Ω2. In the MFS, tak-

ing the pseudo-boundary similar to the boundary yields, in general, improved results
as has been demonstrated by Gorzelańczyk and Kołodziej [11]. In (3.1), the singulari-
ties (ξ2

n,m)n=1,N,m=1,M are not preassigned. Also, the sources (ξ1
n,m)n=1,N,m=1,M move with

∂Ω1, as will be described in the iterative process presented in the sequel. The fact that the
locations of the pseudo-boundaries ∂Ω′

1 and ∂Ω′
2 are determined as part of the solution

takes care of the inherent problem of optimally locating the sources in the MFS.
Without loss of generality, we shall assume that the (known) fixed exterior boundary

∂Ω2 is a sphere of radius R. As a result, the outer boundary collocation and source points
are chosen as

x2
k,ℓ=R

(

sinϑ̃kcosφ̃ℓ,sinϑ̃k sinφ̃ℓ,cosϑ̃k

)

, k=1,Ñ, ℓ=1,M̃, (3.3a)

ξ2
n,m=ηextR

(

sinϑn cosφm,sinϑn sinφm,cosϑn

)

, n=1,N, m=1,M, (3.3b)

respectively, where

ϑ̃k=
πk

Ñ+1
, k=1,Ñ, φ̃ℓ=

2π(ℓ−1)

M̃
, ℓ=1,M̃,

and

ϑn=
πn

N+1
, n=1,N, φm=

2π(m−1)

M
, m=1,M,

and the (unknown) parameter ηext∈ (1,S) with S>1 prescribed.
We further assume that the unknown boundary ∂Ω1 is a smooth, star-like surface

with respect to its centre which has unknown coordinates (X,Y,Z). This means that its
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equation in spherical coordinates can be written as

x=X+r(ϑ,φ)sinϑcosφ, y=Y+r(ϑ,φ)sinϑsinφ, z=Z+r(ϑ,φ)cosϑ,

ϑ∈ (0,π), φ∈ [0,2π), where r is a smooth 2π−periodic function. (3.4)

The discretised form of (3.4) for ∂Ω1 becomes

rn,m= r(ϑn,φm), n=1,N, m=1,M, (3.5)

and we choose the inner boundary collocation and source points as

x1
n,m=(X,Y,Z)+rn,m

(

sinϑn cosφm,sinϑn sinφm,cosϑn

)

, n=1,N, m=1,M, (3.6a)

ξ1
m,n=(X,Y,Z)+ηintrn,m

(

sinϑncosφm,sinϑnsinφm,cosϑn

)

, n=1,N, m=1,M, (3.6b)

where the (unknown) parameter ηint ∈ (0,1).

4 Implementational details

The coefficients (c1
n,m)n=1,N,m=1,M, (c2

n,m)n=1,N,m=1,M in (3.1), the radii
(rn,m)n=1,N,m=1,M ∈ (0,1) in (3.5), the contraction and dilation coefficients ηint and
ηext in (3.6b) and (3.3b), and the coordinates of the centre (X,Y,Z) can be determined by
imposing the boundary conditions (2.1b), (2.1c) and (2.1d) in a regularized least-squares
sense. This leads to the minimization of the functional

S(c1,c2,r,η,C) :=
Ñ

∑
n=1

M̃

∑
m=1

[

uNM(c1,c2,ξ1,ξ2;x2
n,m)− f ε(x2

n,m)
]2

+
Ñ

∑
n=1

M̃

∑
m=1

[

∂νuNM(c1,c2,ξ1,ξ2;x2
n,m)−gε(x2

n,m)
]2

+
N

∑
n=1

M

∑
m=1

[

αuNM(c1,c2,ξ1,ξ2;x1
n,m)+(1−α)∂νuNM(c1,c2,ξ1,ξ2;x1

n,m)
]2

+λ1

{

|c1|2+|c2|2
}

+λ2

( N

∑
n=1

M

∑
m=2

( rn,m−rn,m−1

2π/M

)2

+
N

∑
n=2

M

∑
m=1

( rn,m−rn−1,m

π/(N+1)

)2)

, (4.1)

where λ1,λ2 ≥ 0 are regularization parameters to be prescribed, c1 = [c1
1,1,c1

1,2,. . .,c1
N,M]T,

c2=[c2
1,1,c2

1,2,. . .,c2
N,M]T, r=[r1,1,r1,2,. . .,rN,M]T, η=[ηint,ηext]T , C=[X,Y,Z]T, and the super-

script T denotes the transpose.
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Remark 4.1. (i) The Dirichlet data (2.1b) and the current flux data (2.1d) come from practical
measurements which are inherently contaminated with noisy errors, and that is why we have
replaced f and g by f ε and gε, respectively, where, in computation, the noisy data are generated
as

f ε(x2
n,m)=(1+ρn,mp f ) f (x2

n,m), gε(x2
n,m)=(1+ρn,mpg)g(x2

n,m), n=1,Ñ, m=1,M̃, (4.2)

where p f and pg represent the percentage of noise added to the Dirichlet and Neumann bound-
ary data on ∂Ω2, respectively, and ρm,n is a pseudo-random noisy variable drawn from a uniform
distribution in [−1,1] using the MATLAB command -1+2*rand(1,M̃Ñ). In our numerical exper-
iments it was observed that the effect of noise added to the Dirichlet boundary data was similar
to that of perturbing the Neumann data. As a result in the numerical results section we only
present results for noisy Neumann data, i.e., pg 6=0 and p f =0. In Section 5 we shall re-denote
pg by p.

(ii) In (4.1), the outward normal vector ν is defined as follows:

ν=sinϑcosφi+sinϑsinφj+cosϑk, if x∈∂Ω2, (4.3)

where i=(1,0,0), j=(0,1,0) and k=(0,0,1). In the case of the boundary ∂Ω1, we know that
the position vector of a boundary point is given by

x1(ϑ,φ)=(X,Y,Z)+r(ϑ,φ)(sinϑcosφ,sinϑsinφ,cosϑ), (4.4)

and that the normal to the parametrised surface is given by

ν=
x1

ϑ×x1
φ

|x1
ϑ×x1

φ|
, (4.5)

where the subscripts ϑ and φ denote the partial derivatives with respect to ϑ and φ, respectively.
Now,

x1
ϑ =

[

rϑ sinϑcosφ+rcosϑcosφ,rϑ sinϑsinφ+rcosϑsinφ,rϑ cosϑ−rsinϑ
]T

,

x1
φ =

[

rφ sinϑcosφ−rsinϑsinφ,rφsinϑsinφ+rsinϑcosφ,rφcosϑ
]T

,

and thus

x1
ϑ×x1

φ =−r
[

−rφ sinφ+rϑ sinϑcosϑcosφ−rsin2 ϑcosφ,

rφ cosφ+rϑ sinϑcosϑsinφ−rsin2 ϑsinφ,−sinϑ(rϑ sinϑ+rcosϑ)
]T

,

and

|x1
ϑ×x1

φ|= r
√

(r2+r2
ϑ)sin2 ϑ+r2

φ, (4.6)

yielding

ν=
1

√

(r2+r2
ϑ)sin2 ϑ+r2

φ

[

(−rφ sinφ+rϑ sinϑcosϑcosφ−rsin2 ϑcosφ)i

+(rφ cosφ+rϑ sinϑcosϑsinφ−rsin2 ϑsinφ)j

+(−sinϑ(rϑ sinϑ+rcosϑ))k
]

, if x∈∂Ω1. (4.7)
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As a result, from (3.1) and (3.2) the normal derivative ∂νuNM is evaluated as

∂νuNM(c1,c2,ξ1,ξ2;x)=ν ·∇uNM=− 1

4π

2

∑
s=1

N

∑
n=1

M

∑
m=1

cs
n,m

(x−ξs
n,m) ·ν

|x−ξs
n,m|3

, x∈∂Ω, (4.8)

where ν is given by (4.3) and (4.7) for x∈∂Ω2 and x∈∂Ω1, respectively.

In (4.7), we use the finite-difference approximations

rφ(ϑn,φm)≈
rn,m+1−rn,m−1

4π/M
, n=1,N, m=1,M, (4.9)

with the convention that rn,M+1= rn,1, rn,0= rn,M, and

rϑ(ϑn,φm)≈
rn+1,m−rn−1,m

2π/(N+1)
, n=2,N−1, (4.10a)

rϑ(ϑ1,φm)≈
−r3,m+4r2,m−3r1,m

2π/(N+1)
, m=1,M, (4.10b)

rϑ(ϑN ,φm)≈
rN−2,m−4rN−1,m+3rN,m

2π/(N+1)
, m=1,M. (4.10c)

(iii) Since the total number of unknowns is 3NM+5 and the number of boundary condition collocation
equations is NM+2ÑM̃ we need to take ÑM̃≥NM+3.

(iv) Since the inverse problem is ill-posed, in (4.1), the regularization terms λ1{|c1|2+|c2|2} and
λ2(|rϑ|2+|rφ|2) are added in order to achieve the stability of the numerical MFS solution uNM

and the smooth boundary ∂Ω1. We do not include regularization terms λ3|η|2 and λ4|C|2 since
both η and C only have a small number of components and the numerical solution is expected
to be stable in both η and C.

4.1 Non-linear minimization

The minimization of functional (4.1) is carried out using the MATLAB [27] optimization
toolbox routine lsqnonlin which solves nonlinear least squares problems. This rou-
tine by default uses the so-called trust-region-reflective algorithm based on the interior-
reflective Newton method [5,6], and terminates when (i) the change in the solution vector
is less than a specified tolerance, or (ii) the change in the residual is less than a spec-
ified tolerance, or (iii) the specified number of iterations or number of function eval-
uations is exceeded. The routine lsqnonlin does not require the user to provide the
gradient and, in addition, it offers the option of imposing lower and upper bounds on
the elements of the vector of unknowns (c1,c2,r,η,C) through the vectors lb and up.
We can thus easily impose the constraints 0 < rn,m < 1, n = 1,N, m = 1,M, 0 < ηint < 1,
1 < ηext < S and −R < X < R,−R < Y < R,−R < Z < R . In our numerical experi-
ments we choose S = 2. Moreover, we choose the initial guess vector of unknowns
(c1

0,c2
0,r0,η0

int,η
0
ext,C)=(0,0,0.1,0.5,2,0).
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5 Numerical examples

Example 5.1. We first consider an example for which the exact solution is known from [4].
Here we consider the case where X=Y=Z=0, R=1 and α=1. In particular, we consider

Ω1=
{

(x,y,z)∈R
3 : x2+y2+z2

<R2
0<1

}

, Ω2=
{

(x,y,z)∈R
3 : x2+y2+z2

<1
}

(5.1)

and

u(x,y,z)=
1

√

x2+y2+z2
− 1

R0
. (5.2)

For any 0<R0<1, the function u satisfies problem (2.1a)-(2.1d), with

f (x,y,z)=
R0−1

R0
and g(x,y,z)=−1, (x,y,z)∈∂Ω2. (5.3)

In our numerical experiments we chose R0=0.5.
In Fig. 1 we present the results obtained with no noise, no regularization with

M= N = 12, M̃= Ñ = 14 for various numbers of iterations, as well as the correct sphere
to be reconstructed. From this figure it can be seen that, for exact data, very accurate
numerical results are obtained in a relatively small number of iterations. Next, in order
to investigate the stability of the numerical solution we perturb the input flux data gǫ in
(4.2) by up to quite a large amount of pg = p=10% noise. The corresponding results for
noise p= 5% and 10% are presented in Figs. 2 and 3, respectively. From these figures it
can be seen that, if no regularization, i.e., λ1 =λ2 =0, is employed in the functional (4.1)
which is minimized, then the numerical solution becomes unstable if the number of iter-
ations exceeds a certain threshold which depends on the amount of noise p. In order to
deal with this instability, we employ regularization in (4.1). In Figs. 4 and 5 we present
the corresponding reconstructed surfaces with noise levels of p=5% and p=10%, respec-
tively, after 100 iterations, and various levels of regularization λ1 with λ2 =0. Improved
results are obtained for λ1=10−2 to 10−1 for p=5%, and λ1=10−1 to 100 for p=10%. The

Figure 1: Example 5.1: Results for M=N=12, M̃= Ñ=14, no noise and no regularization. The reconstructed
values of r are presented as red dots.
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Figure 2: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=5% and no regularization.

Figure 3: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=10% and no regularization.

corresponding results for various levels of regularization λ2 with λ1 =0 are presented in
Figs. 6 and 7. Improved results are obtained for λ2=10−2 to 100 for both p=5% and 10%.

A possible heuristic argument for how to choose the regularization parameters λ1 or
λ2 is given by the L-curve method [13, 14]. The L-curves obtained with regularization in
λ1 (when λ2=0), and λ2 (when λ1=0) for p=10% noise and 100 iterations are presented
in Figs. 8(a) and (b), respectively. In these figures we have denoted by ‖c‖2 = ‖(c1,c2)‖2

and ‖r′‖2 =‖(rϑ,rφ)‖2, whilst ‖Residual‖2 denotes the square-root of the sum of the first
three terms in the right hand side of (4.1). From Figs. 8(a) and (b) one can observe that
there is some indication that the corresponding L-corner values of the regularization pa-
rameters are λ1 =10−2 when λ2 =0, and λ2 =100 when λ1 =0. The fact that these values
of the regularization parameters provide stable solutions with some optimal smoothness
is confirmed in Figs. 5 and 7, respectively.

Example 5.2. We next consider the case where X =Y=Z= 0, R= 1, α= 1 and the rigid
inclusion Ω1 has an acorn shape [28] described parametrically by

r(ϑ,φ)=0.2
(

0.6+
√

4.25+2cos3ϑ
)

, ϑ∈ (0,π),φ∈ [0,2π), (5.4)
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Figure 4: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=5% and regularization with λ1.

Figure 5: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=10% and regularization with λ1.

Figure 6: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=5% and regularization with λ2.

and Ω2 is the unit sphere. The Dirichlet data on ∂Ω2 is taken as

u(x,y,z)=ex+y, (x,y,z)∈∂Ω2. (5.5)

Since in this case no analytical solution is available, the Neumann data (2.1d) is numer-
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Figure 7: Example 5.1: Results for M=N=12, M̃= Ñ=14, noise p=10% and regularization with λ2.

10
0
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1

10
1

10−2

10−3

||Residual||
2

|| 
c|

| 2

(a)

10
−0.5

10
−0.4

10
−0.3

10
−2

10
−1
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0

||Residual||
2

|| 
r′ || 2

(b)

100

10−1

Figure 8: Example 5.1: L-curves obtained with regularization in (a) λ1 and (b) λ2 for noise p=10%.

ically simulated by solving the direct Dirichlet well-posed problem given by Eqs. (2.1a),
(5.5), and (2.1c) with α=1, when ∂Ω1 is given by (5.4), using the MFS with M=N= M̃=
Ñ=43. In order to avoid committing an inverse crime, the inverse solver is applied using
M= N = 18, M̃= Ñ = 20. In Figs. 9 and 10 we present the results for p= {0,5%} noisy
data, respectively, obtained with no regularization and various numbers of iterations. As
in Figs. 1 and 2, it can be seen that, for exact data, very accurate numerical results are
obtained with a relatively small number of iterations; however, for noisy data, unstable
solutions quickly appear once the number of iterations exceeds about 100. Regularization
is therefore necessary in order to alleviate this instability. In Figs. 11 and 12 we present
the reconstructed surfaces for p = 5% noise, obtained after 500 iterations with various
levels of regularization λ1 with λ2=0, and λ2 with λ1=0, respectively. The L-curves ob-
tained with regularization in λ1 and λ2 for noise p=5% and 500 iterations are presented
in Figs. 13(a) and (b), respectively. First, from Fig. 13(a) it can be seen that no L-curve



A. Karageorghis, D. Lesnic and L. Marin / Adv. Appl. Math. Mech., 5 (2013), pp. 510-527 521

Figure 9: Example 5.2: Results for M=N=18, M̃= Ñ=20, no noise and no regularization. The reconstructed
values of r are presented as red dots.

Figure 10: Example 5.2: Results for M=N=18, M̃= Ñ=20, noise p=5% and no regularization.

Figure 11: Example 5.2: Results for M=N=18, M̃= Ñ=20, noise p=5% and regularization with λ1.

has been obtained and, in fact, the numerical results presented in Fig. 11 show that regu-
larization with λ1 is not so effective. On the other hand, as can be seen from Fig. 12 and
further justified by the L-corner obtained in Fig. 13(b), regularization with λ2 between
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Figure 12: Example 5.2: Results for M=N=18, M̃= Ñ=20, noise p=5% and regularization with λ2.
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Figure 13: Example 5.2: L-curves obtained with regularization in (a) λ1 and (b) λ2 for noise p=5%.

10−2 to 10−1 produces a stable solution which is a reasonable reconstruction of the true
acorn shape (5.4).

Example 5.3. The previous two examples were related to reconstructing a rigid inclusion,
i.e., α = 1 in Eq. (2.1c). In this example we consider reconstructing a cavity, i.e., α = 0
in Eq. (2.1c). We further take X = Y = Z = 0, R = 1, and the cavity Ω1 has the acorn
shape described parametrically by (5.4) and Ω2 is the unit sphere. As in Example 5.2,
the Dirichlet data on ∂Ω2 is taken as (5.5). Since in this case no analytical solution is
available, the Neumann data (2.1d) is numerically simulated by solving the direct mixed
well-posed problem given by Eqs. (2.1a), (5.5), and (2.1c) with α= 0, when ∂Ω1 is given
by (5.4), using the MFS with M = N = M̃ = Ñ = 41. In order to avoid committing an
inverse crime, the inverse solver is applied using M=28, N=14, M̃= Ñ=20. In Fig. 14
we present the results obtained for no noise, no regularization and various numbers of
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Figure 14: Example 5.3: Results for M = 28, N = 14, M̃ = Ñ = 20, no noise and no regularization. The
reconstructed values of r are presented as red dots.

Figure 15: Example 5.3: Results for M=28, N=14, M̃= Ñ=20, noise p=5% and no regularization.

Figure 16: Example 5.3: Results for M=28, N=14, M̃= Ñ=20, noise p=5% and regularization with λ1.

iterations. The corresponding results for noise p=5% are presented in Fig. 15. In Figs. 16
and 17 we present the corresponding reconstructed surfaces with p=5% noise, obtained
after 500 iterations, and various levels of regularization λ1 with λ2=0, and λ2 with λ1=0,
respectively. Most of the conclusions drawn from Example 5.2 apply for this example as
well, perhaps the only difference which is worth noting is in comparing Figs. 11 and 16
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Figure 17: Example 5.3: Results for M=28, N=14, M̃= Ñ=20, noise p=5% and regularization with λ2.

which shows that regularization with λ1 seems more effective when retrieving a cavity
than a rigid inclusion.

Example 5.4. All the examples so far have been centred at the origin. We consider now
an off-centre X =Y = Z = 0.1 rigid inclusion Ω1 of a pinched ball shape [28] described
parametrically by

r(ϑ,φ)=0.4
√

1.44+0.5(cos2ϑ−1)cos2φ, ϑ∈ (0,π), φ∈ [0,2π), (5.6)

and Ω2 is the unit sphere, i.e., R = 1. The Dirichlet data on ∂Ω2 is taken as (5.5) and
the Neumann data (2.1d) is numerically simulated by solving the direct Dirichlet well-
posed problem given by Eqs. (2.1a), (5.5), and (2.1c) with α = 1, when ∂Ω1 is given by
(5.6), using the MFS with M=N= M̃= Ñ=43. In order to avoid committing an inverse
crime, the inverse solver is applied using M=N=18,M̃= Ñ=20. In Fig. 18 we present
the results obtained for no noise, no regularization and various numbers of iterations.

Figure 18: Example 5.4: Results for M=N=18, M̃= Ñ=20, no noise and no regularization. The reconstructed
values of r are presented as red dots.
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Figure 19: Example 5.4: Results for M=N=18, M̃= Ñ=20, noise p=5% and no regularization.

Figure 20: Example 5.4: Results for M=N=18, M̃= Ñ=20, noise p=5% and regularization with λ1.

Figure 21: Example 5.4: Results for M=N=18, M̃= Ñ=20, noise p=5% and regularization with λ2.

The corresponding results for noise p= 5% are presented in Fig. 19. In Figs. 20 and 21
we present the corresponding reconstructed surfaces for p = 5% noise, obtained after
500 iterations, and various levels of regularization λ1 with λ2 = 0, and λ2 with λ1 = 0,
respectively. The same conclusions as in Examples 5.2 and 5.3 are obtained.
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6 Conclusions

The full merits of employing a meshless method, namely, ease of implementation, speed
and accuracy, over more traditional domain or boundary discretisation methods become
more evident in the solution of three-dimensional inverse problems. The numerical so-
lution of such problems by the latter, mesh-dependent methods may become prohibitive
due to the large number of times (iterations) an expensive direct solver has to be called. In
particular, in this paper, a three-dimensional reconstruction of a void defect (rigid inclu-
sion or cavity) embedded in a host material has been performed using a dynamic MFS
with regularization. The coordinates of the centre of the assumed star-shaped void do
not need to be prescribed as they are taken to be unknowns in the minimization process
along with the location of the pseudo-boundaries on which the fictitious MFS sources are
positioned. The numerically obtained results show that the numerical method is accurate
(for no noise) and stable with respect to noise added in the input data.
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