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Abstract. A scheme is proposed for implementing a two-qubit quantum logic gate and
realizing the Deutsch-Jozsa algorithm in cavity QED. In the scheme a three-level atom
interacts with highly detuned cavity modes. The gate is not affected by the atomic
decay rates because of the metastable lower levels are involved in the gate operations.
The Deutsch-Jozsa algorithm is easily realized with current experimental techniques.
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1 Introduction

In the last decade, people have paid much attention to physical realization of quantum
computer owing to that it can offer an enormously acceleration compared to the classical
one, such as quantum search [1] and Shor factoring [2]. As we all know that a quantum
computing network is made up of a series of one-qubit rotation and two-qubit gates
[3]. Considering a simple example of quantum algorithm-the Deutsch-Jozsa algorithm,
which combines quantum parallelism with quantum interference. Also, two-qubit gate
is an important step in it. It aims to distinguish function f (x) between constant and
balanced on 2n inputs [4,5]. The value of function f (x) is 0 or 1 for each input. If f (x)
is the constant, for all the inputs, the function values will be constant. But the values of
the balanced function are equal to 0 for half of all the inputs while 1 for the other half. So
far, there are many proposals for realizing the Deutsch-Jozsa algorithm theoretically and
experimentally in the NMR system [6,7], ion trap [8], homonuclear multispin systems [9]
and cavity QED [10,11].

Cavity QED is regarded as an ideal system to realize quantum information process-
ing [10-17]. Lately, Zheng et al. [10]. have proposed a scheme for implementing the
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Deutsch-Jozsa algorithm. Following this, Yang et al. [12] have come up with a scheme to
implement the Deutsch-Jozsa algorithm in cavity QED by using Schrodinger cat states,
the atomic spontaneous emission can be minimized and it doesn’t need the Hadamard
gates because of the use of Schrodinger cat states. Ma et al. [13] also have proposed an
idea to realize the Deutsch-Jozsa algorithm which uses superconducting quantum inter-
ference devices. Recently , Vallone et al. [14] describe an experimental scheme of the
Deutsch-Jozsa algorithm with a six-qubit cluster states in their scheme, and the basis of
the original measurement model allowing the algorithm implementation is its biggest
characteristics. In our work, we propose a way to implement two-qubit quantum gates
and the Deutsch-Jozsa algorithm in cavity QED system, in which a three-level atom in-
teracts with highly detuned cavity modes. And the gate error induced by atomic spon-
taneous emission is minimized during the gate operation. The required experimental
techniques are easy obtainable. Therefore our scheme might be experimentally realizable
by using present available techniques. Meanwhile, the experimental achievement of the
Deutsch-Jozsa algorithm would give birth to more important role in quantum computa-
tion.

The paper is organized as follows. In Section 2, we propose a scheme to realize a two
qubit C-NOT gate. In Section 3 is devoted to describe how to implement the Deutsch-
Jozsa algorithm in detail. Discussion and conclusion are given in Section 4.

2 Two qubit C-NOT gate

Here we consider a three-level Λ-type atomic system, as shown in Fig. 1. The atom levels
are devoted by |g〉, |l〉, and |e〉.

The cavity modes having the annihilation operators â, b̂ interact with the atomic tran-
sitions |g〉 to |e〉, |l〉 to |e〉, respectively. And the cavity-field mode frequencies and the
corresponding atomic transition frequencies are w1, w2 and weg, wel, respectively. The

 

Figure 1: Schematic drawing of a three-lever atomic system in -type configuration. Here, ω1, ω2 are frequencies

of the cavity-field mode. The parameters ∆1 and ∆2 are corresponding detuning of cavity-field mode from the

respective atomic transition, respectively.



X. -K. Song and L. Ye / J. At. Mol. Sci. 4 (2013 ) 261-268 263

interaction Hamiltonian (assuming h̄=1 ) in the interaction picture is

H= g1 âei∆1t|e〉〈g|+g2 b̂ei∆2t|e〉〈l|+H.c. (1)

where g1, g2 are the atom-field coupling strength for the two transitions. ∆1 = weg−
w1, ∆2 =wel−w2 are the one-photon detuning between the atomic transition frequencies
and the cavity modes frequencies, respectively.

Assume the initial photon occupation numbers of the two cavity-mode to be n1, n2,
respectively. Atom is initially in the state |g〉, then the state evolution of the system is

|ψ(t)〉= a1(t)|g〉|n1,n2〉+a2(t)|e〉|n1−1,n2〉+a3(t)|n1−1,n2+1〉 (2)

where ai(t) represent occupation amplitude of the corresponding vectors, ai(t) are com-
plex numbers. The time evolution of this system is decided by the Schrödinger equation

i
∂|ψ〉

∂t
=H|ψ〉 (3)

then we can obtain

i
∂a1

∂t
= g1

√
n1e−i∆1ta2

i
∂a2

∂t
= g1

√
n1e−i∆2ta1+g2

√

n2+1e−i∆2ta3

i
∂a3

∂t
= g2

√

n2+1e−i∆2ta2

(4)

we can use the following transformation in order to simplify the above equation

P1= a1

P2= a2e−i∆1t

P3= a3e−i(∆1−∆2)t

(5)

Next, we assume that the coupling strength could satisfy g1 = g2 = g, and we work in
the case ∆i ≥ g, there is no energy exchange between the cavity and the atomic system.
On this occasion, the excited state |e〉 can be adiabatically eliminated [18]. Hence we can

neglect time derivative of p2. Let
∂p2

∂t =0, the equation (4) can reduce to

∂p1

∂t
=

ig2

∆1
[n1 p1+

√

n1(n2+1)p3]

∂p3

∂t
=−i(∆1−∆2)p3+

ig2

∆1
[
√

n1(n2+1)p1+(n2+1)p3] (6)

Using initial conditions n1=1 and n2=0, we can obtain the solution of equation (6)

p1 = eict

{[

coswt+
i

2w
(∆1−∆2)sinwt

]

p1(0)+
ig2

∆1w
sinwtp3(0)

}

p3 = eict

{[

coswt− i

2w
(∆1−∆2)sinwt

]

p3(0)+
ig2

∆1w
sinwtp1(0)

}

(7)
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where

c=
1

2

[

2g2

∆1
−(∆1−∆2)

]

w=
1

2

[

(∆1−∆2)
2+

4g4

∆4
1

]

(8)

If we set the case

∆1−∆2=
2g2

∆1
(9)

and choose interaction time wt=π, assuming the initial condition p1(0)[p3(0)=1], then
p1(t)[p3(t)=−1]. So we get the two-qubit gate as follows

|0〉a|0〉b|g〉→|0〉a|0〉b|g〉
|0〉a|0〉b|l〉→|0〉a|0〉b|l〉
|0〉a|1〉b|g〉→|0〉a|1〉b|g〉
|0〉a|1〉b|l〉→|0〉a|1〉b|l〉 (10)

Therefore we can get a C-NOT gate where cavity field mode b̂ is control qubit and the
atomic qubit is used as target qubit in computational subsystem from equation (10).

CN =H†CPH (11)

in which H is the Hadamard gate on the atom with |g〉 → (|g〉−|l〉)/
√

2, |e〉 = (|g〉+
|l〉)/

√
2, CP is the C-PHASE operation in equation (10).

3 Two-qubit Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is a simple quantum algorithm in the quantum computa-
tion, aimed to distinguish between constant and balanced function on 2n inputs. The
Deutsch-Jozsa algorithm needs only one query to decide whether function is constant or
balanced, while a classical algorithm will require 2n/2+1 queries at worst. In theory, the
Deutesch-Jozsa algorithm can be briefly represented as follows. First, we prepared the
query qubit in the perposition state (|0〉a+|1〉a)/

√
2 and the auxiliary working qubit is

prepared in the state (|0〉b−|1〉b)/
√

2. So the state of the whole system is

|φ1〉=
1

2
(|0〉a+|1〉a)(|0〉b−|1〉b) (12)

while the function f (x) is characterized by the unitary mapping transformation U f , i.e.,
U f : |x〉|y〉→|x〉|y⊕ f (x)〉 in which ⊕ indicates addition modulo 2. The unitary transfor-
mation on the system leads to

|φ2〉=
1

2

[

(−1) f (0)|0〉a+(−1) f (1)|1〉a

]

(|0〉b−|1〉b) (13)
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For U f , there are four possible transformations: for U f ,1, f (0)= f (1)=0; for U f ,2, f (0)=
f (1)= 1; for U f ,3, f (0)= 1, f (1)= 0; for U f ,4, f (0)= 0, f (1)= 1. Then a Hardmard gate
is performed on the query qubit, after this transformation, the state of the query qubit
becomes | f (0)⊕ f (1)〉. If the function is constant, the state of query qubit becomes |0〉a,
otherwise it becomes |1〉a. Thus a measurement on the query qubit can tell us if the
function is constant or balanced (as is demonstrated in Fig. 2).
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1

1f 2f

Detector
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Figure 2: Quantum circuit for realizing the Deutsch-Jozsa algorithm.

In this part, we pay our attention on the experimental realization of the Deutsch-
Jozsa algorithm in cavity QED. Now, we let the cavity mode serves as the query qubit
and the level of atom plays as the auxiliary working qubit. Firstly we should prepare the
cavity in the required state. Assume the cavity mode initilly is in the vacuum state and
the first atom is in the state (|g〉1+|e〉1)/

√
2. In the interaction picture, the interaction

Hamiltonian is
H1= ig(a†S−−aS†) (14)

in which S†, S− devote the raising and lowering operations for the atom, a†, a are the
creation and annihilation operation for the cavity mode, and g is coupling constant. After
an interaction time t, the evolution of the state is given by

|e〉1|0〉c →cosgt|e〉1|0〉c+singt|g〉1|1〉c (15)

Hence, we choose gt=π/2, the cavity is in the state (|0〉c+|1〉c)/
√

2, with the atom left
in the ground state. Then we send the second atom whose is in the state (|g〉2−|l〉2)/

√
2

pass the cavity. So the whole system consist of the second atom and the cavity and the
state of this system is

|ϕ〉sys=
1

2
(|0〉c+|1〉c)(|g〉2−|l〉2) (16)

which can be rewritten as

|ϕ〉1=
1

2
(|0〉c+|1〉c)(|0〉b−|1〉b) (17)

where |0〉b and |1〉b = |l〉. In this condition , equation (17) has the same form with the
equation (12). So we can make use of it to realize the Deutsch-Jozsa algorithm.
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Secondly our goal is to reveal that the four transformations can be implemented in
cavity QED.

In the case f (0)= f (1)= 0, the atom is highly detuned with the cavity mode, which
has no exchange between the atom and the cavity mode, and the state remains in the
state |ϕ〉1.

In the case f (0)= f (1)= 1, the third atom is sended through the cavity. Choose the
amplitudes and frequencies of the cavity field appropriately to make sure that the state
of the second atom remains during the interaction between the cavity-field and the third
atom. The third atom is initially in the ground state, the atom interacts with the cavity
mode now. For a time t′ later, we can gain

|g〉3|1〉c →cosgt′|g〉3|1〉c−singt′|e〉3|0〉c (18)

With the choice gt′=
π

2
, leading to

|g〉3|1〉c →|e〉3|0〉c (19)

Then we use a π-Ramsey pulse to achieve the single-qubit transformation on the atom,
we have

|g〉3→−|e〉3, |e〉3→|g〉3 (20)

Next we perform the atom interacts with the cavity mode by the interaction time
rightly, we gain |e〉3|0〉c →|g〉3|1〉c. After these procedure above, resulting in

|ϕ〉2=
1

2
(−|0〉c−|1〉c)(|0〉b−|1〉b) (21)

In the case f (0) = 0, f (1) = 0, we perform the C-NOT gate of equation (11), we can
easily obtain

|ϕ〉3=
1

2
(|0〉c−|1〉c)(|0〉b−|1〉b) (22)

In the case f (0)=0, f (1)=1, in order to realize it , we first perform equation (19), then
we perform equation (20), finally, we can perform |e〉3|0〉→|g〉3|1〉c. These lead to

|ϕ〉4=
1

2
(−|0〉c+|1〉c)(|0〉b−|1〉b) (23)

Apparently we have achieved the unitary transformation via the process above. Thirdly,
we send a fourth atom with the initial state |g〉4 through the cavity for a interaction time
t”, we have

|g〉4|0〉c →|g〉4|0〉c

|g〉4|1〉c →cosgt”|g〉4 |1〉c−singt”|e〉4|0〉c (24)

Here we choose gt”=
3π

2
.
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In the end, we perform the Hadamard operation on the fourth atom. If the function
is constant, the state of the fourth atom becomes |g〉4, and if the function is balanced, the
state of the fourth atom is |e〉4. In this way, a single measurement of the state of the atom
is adequacy to decide the properties of the function.

4 Discussion and conclusion

It is indispensible for us to give a brief discussion on the experimental feasibility of the
proposed scheme. For the Rydberg with principal quantum 50 and 51, the radiative time
is about Tr =3×10−2s, and the coupling constant is g=2π×25kHz [19,20]. The required
atom-cavity-field interaction time are ∆1π/

√
2g2 ≈ 1.414×10−4s (with the choice ∆1 =

10g), π/2g = 1.0×10−5s, and 3π/2g = 1.5×10−5s, respectively. Then the time required
to complete the whole procedure is on the order of T ≈ 1.6×10−3s, much shorter than
Tr. Meanwhile the efficient decay time of the cavity is about 3.0×10−2s, longer than
the required time . Therefore, based on cavity QED techniques presently available, our
scheme might be realizable.

In conclusion, we have described a concise scheme to realize the C-NOT gate and the
Deutsch-Jozsa algorithm in cavity QED. Owing to the extraordinary role of the C-NOT
gate in the process of the implementation of the Deutsch-Jozsa, we have realized it at first.
In addition, the required experimental techniques of our scheme are easily available, so
our scheme may be realized. The experimental achievement of the Deutsch-Jozsa algo-
rithm would conceive more deeply effect on quantum computation, and it inspires trying
to understand the law of computation.
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