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Abstract. We study the ground and the first excited states energies and the transition
frequency between the first excited- and the ground-state of strong-coupling polaron
in an anisotropic quantum dot. The effects of the electron-phonon coupling strength
and the transverse and the longitudinal effective confinement lengths are taken into
consideration by using variational method of the Pekar type. It is found that the tran-
sition frequency is an increasing function of the electron-phonon coupling strength,
whereas the state energies are decreasing one of it. They will increase rapidly with
decreasing transverse and longitudinal effective confinement lengths.

PACS: 73.21.La,71.38.-k

Key words: Anisotropic quantum dot, polaron, Variational method of the Pekar type

1 Introduction

In recent years, lots of novel effects in systems consisting of quantum dot (QD) have at-
tracted interests from more and more physicists. Because of the wide device applications
and many new effects in such structures, understanding their electronic and transport
properties is of particular importance. Consequently, there has been a large amount of
experimental work [1-3] on QD. Meanwhile, many investigators studied its properties
in many aspects by a variety of theoretical methods [4-8]. Using a variational approach
with squeezed states, Kervan et al. [9] investigated the polaronic effects of an electron
confined in a parabolic QD and obtained the polaronic correction to the ground and the
first excited states energies in the presence of optical phonons. Li and Xia [10]studied the
quantum-confined Stark effects in GaAs/AlxGa1−xAs self-assembled QDs in the frame-
work of the effective-mass envelope-function theory. The electron and hole optical transi-
tion energies were calculated in the presence of an electric field in different directions. At
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low temperature, Zaitsev et al. [11] studied the magneto-optics and picosecond dynamics
of radiative recombination of excitons in self-assembled semi-magnetic CdSe /ZnMnSe
QDs. Kaer et al. [12] investigated the influence of the electron-phonon interaction on the
dynamical properties of a QD-cavity system. Within the spin-density-functional theory,
Zhang et al.[13] investigated the electronic structure of dynamic QDs formed by surface
acoustic waves potential and the confinement potential produced by gate voltage. Based
on Huybrechts’s strong-coupled polaron model, Tokuda modified the linear-combination
operator and the unitary transformation methods. The effective mass of strong-coupled
polaron in an asymmetric QD induced by Rashba effect has been studied by us [14]. The
properties of the strong-coupling polaron in an anisotropic quantum dot, however, has
not been studied so far by employing variational method of the Pekar type. Especially,
the properties of the transition frequency of the polaron have never been investigated
yet.

In the present paper, we study the effects of the electron-phonon coupling strength
and the transverse and longitudinal effective confinement lengths on the ground and the
first excited states energies and the transition frequency of a strong-coupling polaron in
an anisotropic quantum dot by using variational method of the Pekar type.

2 Theory model and calculations

The electron under consideration is moving in a polar crystal quantum dot with three-
dimensional anisotropic harmonic potential, and is interacting with bulk LO phonons.
The Hamiltonian of the electron-phonon interaction system can be written as
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where m is the band mass, ω|| and ωz are the measure of the transverse and longitudinal
confinement strengths of the potentials in the xy plane and the z direction, respectively.
a+q (aq) denotes the creation (annihilation) operator of the bulk LO phonon with wave
vector q, and r=(ρ,z) is the position vector of the electron. Vq and α in Eq.(1) are
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We carry out the well known Lee-Low-Pines [15] transformation to Eq. (1)

U=exp

[

∑
q

( fqa+q − f ∗q aq)

]

, (3)
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where fq( f ∗q ) is the variational function, we obtain

H′=U−1HU. (4)

For convenience, we use spherical coordinates and then the ground state wave function
is a Gaussian. Following the Pekar variational method, we may choose the trial ground
state wavefunction of the electron-phonon system to be

|ϕ0〉= |0〉|0ph〉−π− 3
4 λ

− 3
2

0 exp

[

−λ2
0r2

2

]

|0ph〉, (5)

where λ0 is the variational parameter, |0ph〉 is unperturbed zero phonon state, which
satisfies aq|0ph〉= 0·|0〉 is the trial ground state wavefunction of electron. Similarly, the
trial wave-function of the electron-phonon system in the first-excited state may be chosen
as

|ϕ1〉= |1〉|0ph〉=
(

π3

4

)− 1
4

λ
5
2
1 rcosθexp

(

−λ2
1r2

2

)

|0ph〉, (6)

where λ1 is the variational parameter and |1〉 is the first excited state trial wavefunction
of electron with 〈0|0〉=1, 〈1|1〉=1, 〈1|0〉=0. The above equation satisfies the following
normalized relation:

〈ϕ0|ϕ0〉=1, 〈ϕ0|ϕ1〉=0, 〈ϕ1|ϕ1〉=1. (7)

By minimizing the expectation value of the Hamiltonian, we then obtain the electron
ground state energy E0 = 〈ϕ0|H′|ϕ0〉 and the first excited state energy E1 = 〈ϕ1|H′|ϕ1〉.
By using the variational method, we can obtain λ0 and λ1, and the ground state and
first-excited state energies of the polaron in the anisotropic QD can be written as
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where lp=
√

h̄/mω|| and lv=
√

h̄/mωz are the transverse and longitudinal effective con-

finement lengths. The transition frequency between the first excited and the ground
states of the polaron is given by

ω=
E1−E0

h̄
. (10)

3 Numerical results and discussion

Now we perform numerical calculations to show the effects of the electron-phonon cou-
pling strength α and the transverse and longitudinal effective confinement lengths lp and



Y. Sun, Z. -H. Ding, and J. -L. Xiao / J. At. Mol. Sci. 4 ( 2013) 176-182 179

6.0 6.4 6.8 7.2 7.6 8.0
0

1

2

3

4

5

a

E
0
/ћ
w
L
O

 

 

 

 lv=0.5
 lv=0.6

Figure 1: The ground state energy E0 as a function of the electron-phonon coupling strength α.
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Figure 2: The first excited state energy E1 as a function of the electron-phonon coupling strength α.

lv on the polaron ground state energy E0, the first excited state energy E1 and the transi-
tion frequency ω.

Figs. 1, 2 and 3 show the relationship between E0, E1 and ω of the polaron varying
with the electron-phonon coupling strength α for lp =0.4. The solid and the dotted lines
correspond to the cases of lv = 0.5 and lv = 0.6, respectively. From the three figures we
can see that E0, E1 are decreasing functions of the electron-phonon coupling strength α,
whereas the transition frequency ω is an increasing one of the coupling strength α. This
is because the larger the electron-phonon coupling strength is, the stronger the electron-
phonon interaction is. Therefore, it leads to the electron energy increment and makes the
electrons interact with more phonons. As a result of it, the transition frequency of the
polaron is increased. Since the fourth term in Eqs. (8) and (9) are the contribution from
the electron-phonon coupled to the state energies with a negative value. For this reason,
the state energies will be enhanced with decreasing coupling strength.
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Figure 3: The transition frequency ω as a function of the electron-phonon coupling strength α.
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Figure 4: The ground state energy E0 as a function of the transverse and longitudinal effective confinement

lengths lp and lv.

Figs. 4, 5 and 6 present E0, E1 and ω as functions of the transverse and longitudinal
effective confinement length lp and lv with α=6.5. From the three figures we can see that
the ground and first excited states energies and the transition frequency increase rapidly
with decreasing transverse and longitudinal effective confinement lengths. This result is
in agreement with that of the vibrational frequency and the interaction energy of Ref.16.

From the expressions of lp =
√

h̄/mω|| and lv =
√

h̄/mωz, we can see that the effective

confinement lengths (lp and lv) are reciprocal with the square root of the confinement
strength ω|| and ωz, and then the state energies and the transition frequency will increase
with increasing confinement strength. This is because the motion of the electrons is con-
fined by the confining potential. With the increase of the confining potential (ω|| and ωz),
that is, with decreasing ρ and z, the energy of the electrons and the interaction between
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Figure 5: The first excited state energy E1 as a function of the transverse and longitudinal effective confinement

lengths lp and lv.
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Figure 6: The transition frequency ω as a function of the transverse and longitudinal effective confinement

lengths lp and lv.

the electron and the phonons are enhanced because of the smaller particle motion range.
As a result of it, the state energies and the transition frequency of the polaron are all in-
creased. These can also be attributed to the interesting quantum size confining effects.
We also see that the influence of the transverse confinement length on them is larger than
that of the longitudinal one.

4 Conclusion

In conclusion, based on the Pekar type variational method, we have investigated the
ground and the first excited states energies and the transition frequency of the strong-
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coupling polaron in an anisotropic quantum dot. It is found that the state energies are
decreasing functions of the electron-phonon coupling strength, whereas the transition
frequency is an increasing one of it. They will increase rapidly with decreasing trans-
verse and longitudinal effective confinement lengths. These can also be attributed to the
interesting quantum size confining effects.
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