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Abstract. Laser assisted Coulomb scattering by relativistic electron and heavy elec-
tron (muon) is studied by using Salamin waves [3] in the Weak Field Approximation
(WFA). Both electron and muon are described by the Dirac equation, with the anoma-
lous magnetic moment effects fully included. The generalization of this paper to heavy
electron (muon) gives interesting insights as to how the mass affects the magnitude of
the differential cross sections. No significant difference in the muon’s DCS with and
without AMM effects was detected.

PACS: 34.80.Dp, 12.20.Ds
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1 Introduction

The muon anomalous magnetic moment is one of the most precisely measured quanti-
ties in particle physics. Recent high precision measurements at Brookhaven reveal a dis-
crepancy by 3.2 standard deviations from the electroweak Standard Model which could
be a hint for an unknown contribution from physics beyond the Standard Model. A
muon looks like a copy of an electron, which at first sight is just much heavier mµ/me ∼
206.7682838. However, unlike the electron, it is unstable and its lifetime is actually rather
short. The first measurement of (gµ−2)/2 was performed at Columbia in 1960 [4] with a
result aµ =0.00122 at a precision of about 5%. Soon later in 1961, at the CERN cyclotron
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(1958-1962), the first precision determination became available [5]. Surprisingly, nothing
special was observed within the 0.4% level of accuracy of the experiment. It was the first
real evidence that the muon was just a heavy electron. In particular, this meant that the
muon is point-like and no extra short distance effects could be seen. This latter point of
course is a matter of accuracy and the challenge to go further was evident.

The E821 experiment at Brookhaven National Laboratory (BNL) [7] studied the pre-
cession of muon and anti-muon in a constant external magnetic field as they circulated
in a confining storage ring. The E821 experiment reported the following average value
(from the July 2007 review by Particle Data Group)

aµ =
g−2

2
=0.00116592080

Our aim in this paper is to shed some light on a difficult and recently addressed
description of laser-assisted processes that incorporate the muon’s anomaly. The process
under study is the laser-assisted coulomb scattering collision of a Dirac-Volkov muon.
We focus on the relativistic muonic dressing with the addition of the muon’s anomaly.
Some results are rather surprising, bearing in mind the small value of aµ. In Sec. 2, we
present the formalism as well as the coefficients that intervene in the expression of the
DCS. In Sec. 3, we discuss the results we have obtained. Throughout this work, we use
atomic units h̄=me=e and work with the metric tensor gµν=gµν=diag(1,−1,−1,−1). In
many equations of this paper, the Feynman ’slash notation’ is used. For any 4−vector A,
A/=Aµγµ=A0γ0−A.γ where the matrices γ are the well known Dirac matrices.

2 Theory

The second-order Dirac equation for a muon in the presence of an external electromag-
netic field is given by

[

(

p− 1

c
A

)2

−m2
µc2− i

2c
Fµνσµν

]

ψ(x)=0 (1)

where mµ represents the mass of the muon, σµν= 1
2 [γ

µ,γν], γµ are the Dirac matrices and
Fµν=∂µ Aν−∂ν Aµ is the electromagnetic field tensor. Aµ is the four-vector potential. The
plane wave solution of the second-order equation is known as the Volkov state [2]

ψ(x)=

(

1+
k/A/

2c(kp)

)

u(p,s)√
2VQ0

exp

[

−i(qx)−i
∫ kx

0

(Ap)

c(kp)
dφ

]

(2)

The second-order Dirac equation for a muon with anomalous magnetic moment (AMM)
effects in the presence of an external electromagnetic field is given by

[

(

p− 1

c
A

)2

−m2
µc2− i

2c
Fµνσµν+iaµ

(

p/− A/

c
+mµc

)

Fµνσµν

]

ψ(x)=0 (3)
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where aµ = κµ/(4mµ), with κµ is the muon’s anomaly. The term Fµνσµν stems from the
fact that the muon has a spin-one-half, and the term multiplying aµ is due to their AMM.
It is possible to rewrite the exact solution of Eq. (3) found by Salamin [3] as

ψ(x)=exp[−(αk/A/+βk/+δp/k/A/)]
u(p,s)√

2VQ0
e
−i(qx)−i

∫ kx
0

(Ap)
c(kp)

dφ
(4)

with

α=

(

κµc

2
− 1

c

)

/2(k.p) ; β=
κµ A2

4mµc(k.p)
; δ=

κµ

4mµ(k.p)
(5)

Finally, we take up the weak-field approximation (WFA). This is the case when the in-
tensity of the laser field is small such that the resulting quiver energy Eq of the particle,
defined as its average classical energy in an oscillating electric field, is comparable to its
rest energy E0. Retaining only terms of order one in the expansion of the first exponential
in (4) leaves one with

ψ(x)= [1−(αk/A/+βk/+δp/k/A/)]
u(p,s)√

2VQ0
exp

[

−i(qx)−i
∫ kx

0

(Ap)

c(kp)
dφ

]

(6)

Handling the interaction of a particle with an external electromagnetic field within
the context of the minimal coupling scheme ignores altogether the fact that the particle
possesses an anomalous magnetic moment. In other words, the Volkov state of a particle
does not take into account the small, but maybe important, contribution to the particle’s
dynamics coming from its interaction with the field through this part of its total magnetic
moment. For our general exact solution (4) of the non-minimally coupled Dim equation
to be correct, it should necessarily yield the Volkov state when κ, the particle’s anomaly,
is set equal to zero. When this is done, equation (5) gives β= δ= 0 and α=−1/2c(k.p).
With this at hand, equation (6) reduces to equation (2).

We turn now to the calculation of the transition amplitude with the AMM. The inter-
action of the dressed electrons with the central Coulomb field

Aµ=

(

− Z

|x| ,0,0,0

)

(7)

is considered as a first-order perturbation. This is well justified if Zα ≪ 1, where Z is
the nuclear charge of the nucleus considered. We evaluate the S-matrix element for the
transition (i−→ f )

S f i=
iZ

c

∫

d4x ψq f
(x)

γ0

|x|ψqi
(x) (8)

We first consider the quantity

ψq f
(x)

γ0

|x|ψqi
(x)=

1√
2QiV

1
√

2Q f V
u(p f ,s f )R(p f )

γ0

|x|R(pi)u(pi,si)

×exp{−i[S(q f ,x)−S(qi,x)]} (9)
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We have

exp{−i[S(q f ,x)−S(qi,x)]}=exp{i(q f −qi).x−izsin(φ−φ0)} (10)

where z is such that

z=
√

α2
1+α2

2 (11)

whereas the quantities α1 and α2 are given by

α1=
(a1.pi)

c(k.pi)
− (a1.p f )

c(k.p f )
, α2=

(a2.pi)

c(k.pi)
− (a2.p f )

c(k.p f )
(12)

and the phase φ0 is such that φ0 = arccos(α1/z) = arcsin(α2/z) = arctan(α2/α1). After
some algebraic manipulation, one gets

u(p f ,s f )R(p f )γ
0R(pi)u(pi,si)=u(p f ,s f )[C0+C1cosφ+C2sinφ

+C3cos2φ+C4sin2φ]u(pi,si) (13)

The five coefficients C0, C1, C2, C3 and C4 can be obtained using REDUCE [8] and are
explicitly given in our previous work [9]. The coefficients Ci contain all the information
about the muon’s AMM effects since they depend on κµ =4aµmµ.

We now introduce the well-known relations involving ordinary Bessel functions
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(15)

Therefore,

R(p f )γ
0R(pi)=

+∞

∑
n=−∞

Λne−inφ (16)
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where

Λn =C0B0n(z)+C1B1n+C2B2n+C3B3n+C4B4n (17)

Proceeding along the lines of standard QED calculations, for the formal differential
cross section (DCS) expression in the presence of a circularly polarized laser field and
taking into account the AMM effects of the muon, the calculation is now reduced to
the computation of traces of γ matrices. This is routinely done using Reduce [8]. We
consider the unpolarized DCS. Therefore, the various polarization states have the same
probability and the actual calculated DCS is given by summing over the final polarization
s f and averaging over the initial polarization si. Then, the unpolarized DCS is formally
given by

dσ

dΩ f

∣

∣

∣

∣

Q f=Qi+nω

=
Z2

c4

|q f |
|qi|

+∞

∑
n=−∞

1

|q f −qi−nk|4
1

2 ∑
si

∑
s f

|Mn
f i|2

∣

∣

∣

∣

∣

Q f =Qi+nω

(18)

However, the novelty in the various stages of the calculations is contained in the term
that contains all the information about the muon’s AMM effects

1

2 ∑
si

∑
s f

|Mn
f i|2 =

1

2
Tr[(p/ f c+c2)Λn(p/ic+c2)Λn] (19)

Λn =γ0Λ†
nγ0 (20)

We would like to emphasize that the REDUCE code we have written gave very long
analytical expressions for the spinorial part 1

2 ∑si
∑s f

|Mn
f i|2, which were difficult to incor-

porate in the corresponding latex manuscript. So we prefer to give below, as an example,
just the coefficient multiplying the bessel function jn(z)2 which is given by

A=
1

16(k.p f )(k.pi)m4
µc4

(A1+A2) (21)

with

A1=2(a1.p f )
2(a2.pi)

2κ4c4ω2−(a1.p f )
2κ4(k.pi)

2|a|2c6+2(a1.p f )
2κ4(k.pi)|a|2c4Eiω−8(a1.p f )

2

κ3m2
µ|a|2c4ω2+8(a1.p f )

2κ2(k.pi)
2m2

µc6−16(a1.p f )
2κ2(k.pi)m

2
µc4Eiω+16(a1.p f )

2κ2m4
µc6ω2

+12(a1.p f )
2κ2m2

µ|a|2c2ω2−16(a1.p f )
2κm4

µc4ω2−4(a1.p f )(a1.pi)(a2, p f )(a2.pi)κ
4c4ω2+2

×(a1.p f )(a1.pi)κ
4(k.p f )(k.pi)|a|2c6−2(a1.p f )(a1.pi)κ

4(k.p f )|a|2c4Eiω−2(a1.p f )(a1.pi)κ
4(k.pi)

×|a|2c4E f ω−2(a1.p f )(a1.pi)κ
4m2

µ|a|2c6ω2−2(a1.p f )(a1.pi)κ
4|a|2c4cos(p̂i,p f )ω

2|p f ||pi|+2

×(a1.p f )(a1.pi)κ
4|a|2c2E f Eiω

2+16(a1.p f )(a1.pi)κ
3m2

µ|a|2c4ω2−16(a1.p f )(a1.pi)κ
2(k.p f )(k.pi)

×m2
µc6+16(a1.p f )(a1.pi)κ

2(k.p f )m
2
µc4Eiω+16(a1.p f )(a1.pi)κ

2(k.pi)m
2
µc4E f ω−16(a1.p f )

×(a1.pi)κ
2m4

µc6ω2−24(a1.p f )(a1.pi)κ
2m2

µ|a|2c2ω2+16(a1.p f )(a1.pi)κ
2m2

µc4cos(p̂i,p f )ω
2|p f |

×|pi|−16(a1.p f )(a1.pi)κ
2m2

µc2E f Eiω
2+32(a1.p f )(a1.pi)κm4

µc4ω2+2(a1.pi)
2(a2, p f )

2κ4c4ω2
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−(a1.pi)
2κ4(k.p f )

2|a|2c6+2(a1.pi)
2κ4(k.p f )|a|2c4E f ω−8(a1.pi)

2κ3m2
µ|a|2c4ω2+8(a1.pi)

2κ2

×(k.p f )
2m2

µc6−16(a1.pi)
2κ2(k.p f )m

2
µc4E f ω+16(a1.pi)
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2κ3m2
µ

×|a|2c4ω2+8(a2, p f )
2κ2(k.pi)

2m2
µc6−16(a2, p f )

2κ2(k.pi)m
2
µc4Eiω+16(a2, p f )

2κ2m4
µc6ω2+12

×(a2, p f )
2κ2m2

µ|a|2c2ω2−16(a2, p f )
2κm4

µc4ω2+2(a2, p f )(a2.pi)κ
4(k.p f )(k.pi)|a|2c6−2(a2, p f )

×(a2.pi)κ
4(k.p f )|a|2c4Eiω−2(a2, p f )(a2.pi)κ

4(k.pi)|a|2c4E f ω−2(a2, p f )(a2.pi)κ
4m2
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3m2
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2m4
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2m2
µ|a|2
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2m2

µc4cos(p̂i,p f )ω
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2m2
µc2E f Eiω
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2κ4(k.p f )
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2κ3m2

µ
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2
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×κ4m2
µ|a|6c4ω2+κ4|a|8ω2−2κ4|a|6c2cos(p̂i,p f )ω

2|p f ||pi|+2κ4|a|6E f Eiω
2+8κ3(k.p f )

2m2
µ|a|4

×c6−16κ3(k.p f )(k.pi)m
2
µ|a|4c6−16κ3(k.p f )m

2
µ|a|4c4E f ω+16κ3(k.p f )m

2
µ|a|4c4Eiω+8κ3(k.pi)

2

×m2
µ|a|4c6+16κ3(k.pi)m

2
µ|a|4c4E f ω−16κ3(k.pi)m

2
µ|a|4c4Eiω+16κ3m4

µ|a|4c6ω2+16κ3m2
µ|a|4c4

×cos(p̂i,p f )ω
2|p f ||pi|−16κ3m2

µ|a|4c2E f Eiω
2−16κ2(k.p f )

2m4
µ|a|2c8−16κ2(k.p f )

2m2
µ|a|4c4+16κ2

×(k.p f )(k.pi)m
4
µ|a|2c8+32κ2(k.p f )(k.pi)m

2
µ|a|4c4−16κ2(k.p f )(k.pi)m

2
µ|a|2c6 cos(p̂i,p f )|p f ||pi|

and,

A2=−16κ2(k.p f )(k.pi)m
2
µ|a|2c4E f Ei+32κ2(k.p f )m

4
µ|a|2c6E f ω−32κ2(k.p f )m

4
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4
µ|a|2c6E f ω+32κ2(k.pi)m

4
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2
µ|a|4c2E f ω

+32κ2(k.pi)m
2
µ|a|4c2Eiω−32κ2m6

µ|a|2c8ω2−16κ2m4
µ|a|4c4ω2−32κ2m4

µ|a|2c6cos(p̂i,p f )

×ω2|p f ||pi|+32κ2m4
µ|a|2c4E f Eiω

2−8κ2m2
µ|a|6ω2−16κ2m2

µ|a|4c2cos(p̂i,p f )ω
2|p f ||pi|

+16κ2m2
µ|a|4E f Eiω

2+32κ(k.p f )
2m4
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4
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4
µ|a|2
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Figure 1: The DCSs of the electron (with and without AMM effects) scaled in 10−4 as a function of the angle
θ f in degrees for an electrical field strength of E = 0.05 a.u. and a relativistic parameter γ = 1.0053. The
corresponding number of photons exchanged is ±100.

3 Result and discussion

The differential cross sections have been computed for the Coulomb scattering by elec-
tron and muon impact in a geometry (θi = 45◦, φi = 45◦, φ f = 90◦ and 0◦≤ θ f ≤ 180◦) for
medium and intermediate energies (e.g., γ= 1.0053 and 1.5) and for medium and inter-
mediate intensities (e.g., E=0.05 a.u. and 0.5 a.u.).

We assume the electromagnetic wave to be quasi-monochromatic and of circularly
polarization with the vector potential

A(ϕ)= |a|(ê1 cos(ϕ)+ ê2sin(ϕ)) (22)

with |a| is a slow varying amplitude of the vector A(t,r) with the phase ϕ=kx, k=(ω/c,k)
is the four-wave vector of the laser field with frequency ω.

Three main conclusions can be drawn from Fig. 1. Firstly, in the non relativistic
regime (γ = 1.0053 and E = 0.05 a.u.), the different DCSs (with and without AMM) for
the electron give almost identical curves. Secondly, the electron’s AMM effects are not
important in this regime. It does not mean that the electron’s AMM effects are irrelevant
but only that their contribution is too small to be noticeable. Thirdly, the numerical pre-
dictions appropriately show that the electron’s DCS with AMM effects approaches the
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Figure 2: The DCSs of the muon (with and without AMM effects) scaled in 10−9 as a function of the angle
θ f in degrees for an electrical field strength of E = 0.05 a.u. and a relativistic parameter γ = 1.0053. The
corresponding number of photons exchanged is ±100.

electron’s DCS without AMM for the intensity E = 0.05 a.u. and for the incident elec-
tron’s kinetic energy (E≈ 2700 eV) . Fig. 2 shows that the two DCSs (with and without
AMM) for the muon give overlapping curves. The absolute differential cross sections
show a decreasing behavior with increasing mass, showing an overall decrease of two
orders of magnitude (from 10−4 to 10−8). This result is rather reasonable since the DCSs
decrease with the energy. Special relativity shows that relativistic mass m and relativistic
parameter γ are connected to the relativistic total energy via the well-known relationship
(E = c2γm). We notice in this equation that both relativistic parameter γ and relativis-
tic mass m produce an increase of relativistic total energy. We present in Fig. 3 the re-
sults of our DCS calculations for Coulomb scattering by relativistic unpolarized incident
electrons. We have used the formalism in which the incident electron is represented by
Dirac-Volkov state [2] for comparison. We have also displayed the explicit contribution
to the DCS due to the electron’s AMM effects by using the Salamin waves [3].

By comparing the results with and without AMM effects in the regime in which we
have (γ = 1.5 and E = 0.5 a.u.), the DCS with AMM effects always overestimates the
DCS without AMM effects by approximatively 3.2 orders of magnitude in the vicinity
of θ f = 33◦. This figure shows major differences between DCS with AMM effects and
AMM-free DCS when the electron’s mass is used (me =1 in atomic units). Fig. 4 demon-
strates the dependence on the angle θ f of the muon’s DCS (with and without AMM) for
fixed various input parameters. One sees immediately that there are almost indistin-
guishable curves over the entire angular range which is the same situation as in Fig. 2.
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Figure 3: The DCSs of the electron (with and without AMM effects) scaled in 10−9 as a function of the angle θ f

in degrees for an electrical field strength of E=0.5 a.u. and a relativistic parameter γ=1.5. The corresponding
number of photons exchanged is ±100.
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Figure 4: The DCSs of the muon (with and without AMM effects) scaled in 10−15 as a function of the angle θ f

in degrees for an electrical field strength of E=0.5 a.u. and a relativistic parameter γ=1.5. The corresponding
number of photons exchanged is ±100.



S. Taj, B. Manaut, M. El Idrissi, et al. / J. At. Mol. Sci. 4 (2013 ) 18-29 27

1 2 3 4 5 6 7 8 9 10
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

 DCS (without AMM)
 DCS (with AMM)

DC
S 

(a
.u)

mass  m  

Figure 5: The DCSs (with and without AMM effects) scaled in 10−9 as a function of the mass m for an electrical
field strength of E = 0.5 a.u., a relativistic parameter γ= 1.5 and a fixed angle θ f = 45◦. The corresponding
number of photons exchanged is ±100.

It indicates that the contribution of the muon’s anomalous magnetic moment effects to
the differential cross section is not so important. In order to illustrate the mass effects on
the DCSs, we have displayed in Fig. 5 the dependence of the calculated differential cross
section on the projectile mass m at fixed impact energy γ=1.5. A comparison of our DCSs
results (with and without AMM effects) for m varying from 1 to 10 reveals that they are
graphically indistinguishable from the value of the mass 5, demonstrating that there is
no effect of anomalous Magnetic moment from the value of mass 5. In order to clarify
the situation in which we have overlapping curves for the two approaches in Fig. 5, we
present in Fig. 6 the two approaches (DCS with and without AMM effects) that provide a
rough decrease of the DCS magnitude versus the projectile mass (150≤m≤250). In gen-
eral, DCSs decrease with the mass and give overlapping curves. Hence, from Figs. 5 and
6, we come to the conclusion that there is no effect of the muon’s anomalous magnetic
moment even at high energies and high intensities.

This theoretical study has been confirmed by the case of the Coulomb scattering of the
electron when we take (m=1) in our general program. It should be emphasized that the
above analysis can be generalized to the relativistic Coulomb scattering by incident par-
ticles with the same characterization (e+, µ+... ). We finally note that the muon’s AMM
effects are not significant for the Coulomb scattering process in the first Born approxima-
tion. As we have seen above, within the range of validity of the WFA, the anomalous
magnetic moment has an important effect on the differential cross section for the electron
but not for the muon.
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Figure 6: The DCSs (with and without AMM effects) scaled in 10−14 as a function of the mass m for an electrical
field strength of E = 0.5 a.u., a relativistic parameter γ= 1.5 and a fixed angle θ f = 45◦. The corresponding
number of photons exchanged is ±100.

4 Conclusion

In conclusion, let us enumerate shortly the main results of the present work. Extending
the study of the Coulomb scattering process of an electron by a charged nucleus to the
case of the muon showed that the muon’s anomalous magnetic moment effects do not
affect the behavior of the DCSs. In addition, we have demonstrated that the AMM effects
vanish versus the mass projectile from the value 5. However, in order to check the ac-
curacy of this physical result, we are currently in a point to investigate other approaches
with other similar particles such as e+, µ+ and τ− and prove that heavy particles with
the same electron’s characteristics give rise to the same results.
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