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Abstract. Using the scattering matrix method, we investigate the acoustic phonon trans-

mission and thermal conductance in a quantum waveguide with three stubs at low temper-

ature. It is found that transmission coefficient shows periodic feature and the number of

cutoff frequency bands increases with increasing of height h; and the thermal conductance

exhibits oscillatory decaying behavior with increasing of the widths between any two stubs;

In addition, thermal conductance is sensitive to the width and height of stubs; The results

show that changing the geometric parameters of the stubs could provide an efficient way

to control the thermal conductance of the proposed micro-structures artificially.
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1 Introduction

Acoustic phonon heat transmission in a quantum waveguide structure is a very important sub-

ject and has attracted increasing attention in recent years [1–10]. The characters of phonon

transmission and thermal conductance are mainly researched objects because phonon trans-

mission and thermal conductance are two vital parameters in semiconductor nanostructure

which plays a key role in controlling the performance and stability of phonon device. Many

theoretical and experimental investigations of phonon transport in various kinds of nanos-

tructure such as thin films [2], quantum wells [3], superlattices [4], nanowires [5–7], one-

dimensional glass [8], and nanotubes [9, 10] have been reported and made tremendous

progress in the last decade. Using the Landauer formulation of transport theory, several

groups [11–14] have derived the expressions of phonon transmission and thermal conduc-

tance for ballistic phonon transport at a low enough temperature in an ideal elastic beam
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and found that the thermal conductance which quantized in a universal value π2κB T/3h,

analogous to the well-known 2e2/h electronic conductance quantum. And they also found

that thermal conductance is controlled by the first several modes at low temperature. These

predictions have been verified experimentally by Schwab et al. [15]. Li and his copartner

researched phonon transmission and thermal conductance in a quantum waveguide struc-

ture by using the scattering matrix method recently, then they revealed a series of interesting

characters such as acoustic phonon mode splitting behavior [16] and the nonintegral quan-

tized thermal conductance of an asymmetric y-branch three terminal junction [17] at very

low temperatures through a T-shaped quantum waveguide. Scattering matrix method is an

effective method for accounting of phonon or electron transmission and thermal conductance

in nanostructure. Using this method, in this paper, we mainly investigate the characters of

phonon transmission and thermal conductance in a three-stub quantum waveguide structure

and obtain some novel and interesting physical characteristics which are different from other

shaped discontinuity quantum waveguide nanostructure. For example, transmission coeffi-

cient shows periodic feature with the increasing of heights h at the different reduced frequen-

cies and thermal conductance exhibits oscillatory decaying behavior with the width between

any two stubs.

2 Model and formalism

We consider the geometric structure as shown in Fig. 1, which is divided into seven regions

(I-V I I). We assume that the temperature in region ξ is Tξ and the temperature difference δT

is very small, so the mean temperature (T) can be adopted as the temperature of every region

in the following calculations. As we known if the thickness of structure is very thin, then

we can ignore mode mixing effects at boundaries and interfaces. In really three-dimensional

case, then the thickness should be small with respect to the other dimensions and also to the

wavelength of the elastic waves. There is no mixing of the Z mode, so we only need calculate

a two-dimensional case.

We employ the expression of thermal conductance K as [18,19]

K=
h̄2

kbT 2

∑

m

1

2π

∫ ∞

ωm

τm(ω)
ω2eβhω

(eβhω)2
dω, (1)

where τm(ω) is the energy transmission coefficient form mode m of region I at frequency ω

across all the interfaces into the modes of region V I I , ωm is the cutoff frequency of the m-th

mode, β=1/kBT , kB is the Boltzman constant, T is the temperature and h̄ is the Plank’s con-

stant. The effect of scattering is introduced through the transmission coefficient, so the central

issue in predicting the thermal conductance is then to calculate the transmission coefficient.

When waveguide structure is continuous, τm(ω) = 1, but if the structure is discontinuity,

τm(ω)≤1, owing to scattering effect in the stubs.

In this paper, we employ the elastic model to calculate the transmission coefficient of

acoustic phonon. To our knowledge, there are three different modes in quantum waveguide
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Figure 1: Three T-shaped quantum waveguide: two main quantum wires with three �nite stubswhih is divided into seven regions(I-V I I), those regions' transverse dimensions are WI , WI I , WI I I ,
WIV , WV , WV I and WV I I respetively. The other parameters are shown in the �gure.
structure, here we only investigate SH mode propagating in the x direction. Also it should be

pointed that we only calculate in the stress-free boundary condition, for it is more useful than

hard-wall boundary condition in practice.

The displacement field function satisfies the scalar potential equation,

∂ 2u

∂ t2
−ν2

SH∇
2u=0, (2)

where the SH wave velocity νSH is related to the mass density ρ and elastic stiffness constant

C44,

νSH =
p

C44/ρ. (3)

The stress-free boundary condition at the edges requires that n̂·∇u=0, with n̂ the normal

to the edge. The phonon displacement field equations in region ξ can be written in the form

µξ(x , y)=
N
∑

m=0

�

gξmeik
ξ
m(x−xξ)+hξme−ik

ξ
m(x−xξ)
�

φξm(y), (4)

where xξ is the reference coordinate along the x direction for region ξ, gξ and hξ are con-

stants to be determined by matching the boundary conditions. φξm(y) (ξ= I ,I I ,I I I , IV ,V ,V I

and V I I) represents the orthogonal transverse mode m in region ξ,

φξm(y)=















È

2

Wξ
cos

nπ

Wξ
y, m 6=0,

È

1

Wξ
, m=0,

(5)
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kξm can be expressed in terms of incident phonon frequencyω, the SH wave velocity µSH , and

the transverse dimension Wξ of region ξ by the energy conservation condition

kξ
2

m =
ω2

µ
ξ
SH

2
−

m2π2

W 2
ξ

. (6)

In principle, the sum over m in above equations includes all propagating modes and

evanescent modes. However, in the real calculations, we take into account all the propagating

modes and several lowest evanescent modes to meet the desired precision. In the calculates,

we will employ those values of dielectric constants and mass density of GaAs referred to [20]:

C44(GaAs)=5.99(1010Nm−2) and ρ(GaAs)=5317.6(kg.m−3).

3 Numerical results and discussion

We first research transmission coefficient dependence on the height of the stub and the inci-

dent phonon reduced frequency ω/∆ in the structure, as shown in Fig. 2. Here, we choose

WI =WI I I =WI V =WV I I =10nm, L1= L2=10 nm, d1=d2=d3=10 nm. From Fig. 2, we can

clearly see that

1) total transmission coefficient is always unity with any incident phonon reduced fre-

quency when h=0. This is because the stubs vanish and the structure reverts to being

a straight quantum waveguide for this case, there is no imperfect coupling and ballistic

transport through the structure;

2) as ω→ 0, total transmission coefficient approaches unity and is independent of the

height of the stub, unlike the case of electrical transport, where the transmission is al-

ways close to zero when the Fermi energy approaches zero. The reasons for these phe-

nomena are that acoustic phonon satisfies the stress-free boundary condition, whereas

the electron satisfies the grid boundary condition. The stress-free boundary condition

allows the propagation of acoustic phonon when ω→0, the wavelength of phonon is

much larger than the dimension of the scattering region, the displacement field becomes

essentially the same throughout. As can be seen in Fig. 2, the transmission coefficient

presents periodic character as a function of the heights of the stubs and period length

decrease with an increase in the reduced frequency. This is related to the conditions of

stationary wave and we will illuminate this issue in detail in Fig. 3.

To comprehend the characters of phonon transmission as a function of the heights of the

stubs more clearly, we give its two-dimensional pictures as shown in Fig. 3. Here, we explore

phonon transmission for (i): h1=h2=h3=h; (ii): h1=h3=h=10 nm, h2=h; (iii): h1=h2=
10 nm, h3=h. First, the transmission exhibits a periodic pattern as a function of h for a given

frequency, and the number of the period decreases with an increase in the reduced frequency.

This is related to the conditions of stationary wave. It is known that there are incident wave

and the reflected wave in the waveguide which interfere with each other and form stationary
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wave. When the phase shift between them equals to 2nπ, the transmission will be reinforced

and when the phase shift is (2n+1)π, the transmission will be zero, and thus a periodic

oscillation appears in the transmission spectra as the figure described. As can be seen in

Fig. 3, the periods are same for a given reduced frequency whatever the heights of the stubs

are. For example, there are six periods when ω/∆=1 and four periods when ω/∆=0.6. The

phenomena indicate that the period of transmission coefficient is dependent on the reduced

frequency and is independent of the heights of stubs. The transmission coefficients are always

unity in Fig. 3(a) when h=0 for the reduced frequency, as it is aforementioned. However, it

is clearly seen from Fig. 2(b) and Fig. 2(c) that transmission coefficients for fixing h1 and h3

and increasing h2 are different from those for fixing h1 and h2 and increasing h3 at certain

frequency. This is owing to the fact that the orthogonal transverse modes in the second stub

are different from those in the third stub.

To investigate the properties of phonon transmission as a function of reduced frequency

ω/∆, we give its two-dimensional results as shown in Fig. 4. From Fig. 4, we can see clearly

that the phonon transmission approaches unity when ω→ 0, as it is mentioned in Fig. 2.

Transmission spectra present a series of peaks and valleys with increasing the height of the

stub and cutoff frequency bands at which all phonons are reflected completely are clearly

observed in Fig. 4. Further calculations show that the number of cutoff frequency bands

depends on the heights of the stubs. And the higher the stub, the more the cutoff frequency

bands. For example, there is only one cutoff frequency band when the heights of the stubs

are 2 nm, whereas there are four cutoff frequency bands when the heights of the stubs are

40 nm in Fig. 3(a). Moreover, the cutoff frequency bands shift to a lower reduced frequency

ω/∆ with increasing heights of the stubs. This is owing to the fact that the total reflection

 Figure 2: Transmission oe�ient versus the height h and the inident phonon redued frequeny
ω/∆. Here, h1=h2=h3=h.
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D/Figure 3: Transmission oe�ient as a funtion of the height h for di�erent redued frequenies:(a) for h1=h2=h3=h; (b) for h1=h3=h=10 nm, h2=h; () for h1=h2=10 nm, h3=h. The solid,dashed, dotted and dash-dotted urves are for ω/∆=0.1,0.4,0.6,0.9, respetively.

Figure 4: Total transmission oe�ient as a funtion of the redued frequeny ω/∆ of inidentphonons at the di�erent heights h. (a) for h1 = h2 = h3 = h and urves from below to aboveorrespond to the height h=2 nm, 15 nm, 28 nm, 40 nm. (b) for h1=h3=h=10 nm, h2=h andurves from below to above orrespond to the height h=2 nm, 15 nm, 28 nm, 40 nm. () for
h1=h2 =10 nm, h3=h and urves from below to above orrespond to the height h=2,10,28,40nm.
is controlled by the coupling strength of the propagating lowest-order modes and the excited

modes in regions I I , IV and V I . It is known that the coupling strength can be expressed by

the overlap of the transverse functions of the incident wave and the excited wave: Qmn =
∫

φ I
m(y)φ I I

n (y)d y [21], where m and n are indices of the transverse modes in regions I and

I I , respectively. Also, the case is the same for regions I I I and IV , as well as regions V and IV .

So, with the increasing of the height h, excited modes will interfere with propagation modes

in regions I I , IV and V I and coupling strength will be enhanced.
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Next, we turn to study the characters of thermal conductance in the structure. Here,

h1=h2 =h3=h, d1= d2= d3= d . For the structure discussed here, the stress-free boundary

condition is also applied. Fig. 5 shows the thermal conductance divided by temperature K/T ,

which is reduced by the zero temperature the ideal universal value π2k2
B/3h, as a function of

the parameter h for different temperatures with all of modes. We find that reduced thermal

conductance is close to the ideal universal value, π2k2
B/3h, when h→0 at a very low tempera-

ture. This is owing to the fact that the stubs vanish and the structure reverts to being a uniform

waveguide, in which no scattering happens in the whole quantum waveguide, and only zero

mode can be excited. Thus only the zero mode contributes to the thermal conductivity and the

conductivity of zero mode is close to the ideal universal value in such a uniform waveguide at

a very low temperature, as shown in Fig. 5. It is worth pointing out that the conductivity of

zero mode first decreases and then increase with an increase in temperature. Here, we only

discuss the characters of thermal conductance when temperature is 0.0522 K and 0.1739 K.

When h→0, the thermal conductance at T=0.1739 K is larger than that at T=0.0522 K, and

the higher temperature is, the larger thermal conductance will be. This is because the higher

transverse modes m(m>0) are excited and these modes splice bring the increase of thermal

conductance at the higher temperature. We also show thermal conductance is always large

at the beginning but quickly decline with the increasing heights h whatever width d is. The

result shows that when the parameter h is very small the wavelength of phonon is larger than

the width of stubs so that the effect of stubs’ scattering is not very large, but scattering and

coupling are rapidly strengthened with an increase in height h. Thermal conductance linearly

decreases with the increasing height h when T=0.0522 K, however, thermal conductance will

first decrease and then oscillate with the increasing height h when T =0.1739 K, as shown in

Fig. 5.

Figure 5: The thermal ondutane K/T as a funtion of the height h for di�erent temperaturesand di�erent widths d; (a) orrespond to the redued temperature T=0.0522 K; (b) orrespond tothe redued temperature T=0.1739 K. Curves from below to above orrespond to the width d=15nm, 10 nm, 5 nm. Here, L1= L2.
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Finally, we turn to discuss the effects of length between two stubs on the thermal conduc-

tance (shown in Fig. 6). We first elucidate the characters of the total thermal conductance

with the length L for different heights of stubs and different temperatures. Some main char-

acters can be seen from the picture. First, when the structural parameters of the stubs are

all utterly same, we find that the total thermal conductance in Fig. 6(a) is larger than those

in Fig. 6(b). It means that total thermal conductance is different for different temperatures.

This originates from the higher the temperature, the more the modes in the quantum wave-

guide, and they affect each other, and so, the total thermal conductance is different. Then,

it is clearly observed that the total thermal conductance decreases with the increasing of the

heights h whenever the temperature is 0.0522 K or 0.1739 K. This is because the effect of

phonon scattering by the stubs is reinforced with the increasing of the heights of stubs which

leads to the decrease in the phonon transmission. Now, we elucidate Figs. 6(a) and 6(b), re-

spectively. From Fig. 6(a), it can be clearly seen that the total thermal conductance increases

until L is 7 nm and then decreases to a certain value and keeps its size with the increasing of

L when the temperature is 0.0522 K. However, the total thermal conductance presents oscil-

latory decaying behaviors with the increase in the width L when the temperature is 0.1739

K. This indicates that the thermal conductance of zero mode is sensitive to the total thermal

conductance. When temperature is very low, only zero mode exists in the quantum wave-

guide. The higher the temperature, the more mode in the quantum wave-guide and the more

complex mode-mode coupling. And when length L is lager enough, the mode-mode coupling

becomes very weak, and the thermal conductance will keeps a certain value. So L is vital to

the total thermal conductance and we can control the total thermal conductance by changing

L in the design of devices.

Figure 6: The thermal ondutane K/T as a funtion of the length L for di�erent temperaturesand di�erent heights h; (a) orrespond to the redued temperature T =0.0522 K; (b) orrespondto the redued temperature T =0.1739 K. Curves from below to above orrespond to the height
h=10 nm, 5 nm and 2 nm. Here, L1= L2= L.
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4 Summary

In conclusion, we have presented numerical calculations of the phonon transmission and ther-

mal conductivity in a dielectric quantum waveguide structure at the stress-free boundary con-

dition in this paper. We mainly research on the relationship between phonon transmission and

thermal conductance and quantum structure parameters in a three-stub quantum waveguide.

The results show some interesting physical effects: transmission coefficient shows periodic

feature and the number and location of cutoff frequency bands have great changes with the

increasing of heights h; The thermal conductance exhibits oscillatory decaying behaviors with

increasing the width between any two stubs; The transmission coefficient and thermal con-

ductance is sensitive to the width and height of stub; From these results it is expected that

by designing the structural parameters in dielectric quantum waveguide one can control the

transmission spectrum and thermal conductance of the proposed structure to match practical

requirements in devices.
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