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Abstract. We discuss the blinking statistical behaviors of dynamics of single molecule
system, using the recently developed generating function method. We make a thor-
ough study for the fluorescence blinking behaviors and get the statistical properties
of the jumping events respectively onto ON state or OFF state, including the waiting
time and waiting time distribution for every directional jumping event, the cumulants
of jumping events, the cross correlation, the joint probabilities between two directional
jumping events and the probabilities.
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1 Introduction

The observation of blinking phenomenon is ubiquitous for all single molecule studies,
such as various quantum dots [1–3], single polymer segment [4],fluorescent proteins
[5–8], single dye molecules [9] and so on. About the distribution of sojourn time on
ON state (fluorescence) or OFF state (nonfluorescence), there are some descriptions, such
as the single exponential distribution for the three-level system, the nonexponential dis-
tribution for the condensed phase system with continuum manifold states and power
law distribution for the single semiconductor quantum dots. The studies of physical
mechanism behind the fluorescence intermittency in quantum dots have been proposed,
including different pictures [10].

Due to the effect of conformational (environment) fluctuation, the conversion rate
between the ON state and OFF state can be considered as the stochastic variable. In a
widely discussed example, i.e., the reaction of ligand binding to the protein, the rate of
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ligand binding to proteins is more slower than that while reaction were completely dif-
fusion controlled. The entrance of ligand to the protein is blocked by a number of side
chains and thus ligand could not bind if these side chains were fixed at their equilib-
rium positions [8]. The blocking behaviors of the side chains act as a gate and the gate
would fluctuate between open and closed positions. The opening and closing of the gate
is a stochastic process. Further, Zwanzig [7] considered that the conversion process is
assumed to be passage through a bottleneck, which is geometrical. The decay rate of pas-
sage through the bottleneck is proportional to the area of the bottleneck and the external
fluctuations influence the cross-sectional area.

In this study, we assume that the reactivity fluctuates stochastically and the ligand has
a finite size. When the radius of bottleneck is smaller than the size of ligand, the decay
rate of single molecule is zero, while lager than the size of ligand, the rate of passage
through the bottleneck is proportional to the cross-sectional area of this bottleneck. The
influence of environment changes the cross-sectional area of bottleneck.

Similarity, the blinking behaviors of an enzyme single molecule can be considered
using this stochastic gating model. The reductive and oxidative reactions are respectively
corresponding to the activity (ON state) and nonactivity (OFF state) of fluorescence [9].

We use the generating function method to consider the statistics of jumping events,
the different directions jumping statistics can be got respectively. The paper is organized
as follows. In Section 2 of this paper, we present the theoretical derivation of the generat-
ing function for single molecule fluorescence blinking and the statistical quantities, that
can be extracted. In Section 3, we give the numerical results of statistical properties for
single system fluorescence blinking. The conclusions are given in Section 4.

2 Theoretical framework

The dynamics of fluorescence intermittency is corresponding to the transformation be-
tween the ON state and the OFF state in blinking statistics. Due to the influences of envi-
ronment fluctuations, the transformation rate can be considered as the stochastic variable.
The time-dependent dynamics equation about the single biological system can be shown

ON

kOFF(t)
//

OFF
kON(t)
oo

. (1)

The generating function approach has been formed to calculate SMS fluorescence
blinking statistics behaviors. We have used the generating function to study the sta-
tistical properties of single molecule system [11–17]. This approach is amenable to both
analytical and numerical calculations for many of statistical properties inherent to SMS
measurement. In comparison with previous works [18], we introduce two “auxiliary”
variables s1 and s2, respectively accounting the OFF state jumping times and ON state
jumping times within a time interval. The generating function form about Eq. (1) was
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defined [11, 12, 19]

P(s1,s2,t)=
∞

∑
n1,n2=0

pn1n2(t)s
n1
1 sn2

2 , (2)

where pn1n2(t) is the probabilities of the single molecule from ON to OFF n1 times and
form OFF to ON n2 times. s1 and s2 are the counting variables. According to the defini-
tions [11], we write the coupled equations for the evolution of P and Q

Ṗ(s1,s2,t)=−kON(t)P(s1,s2,t)+s1kOFF(t)Q(s1,s2,t),

Q̇(s1,s2,t)= s2kON(t)P(s1,s2,t)−kOFF(t)Q(s1,s2,t), (3)

and the generating function

P(s1,s2,t)≡P(s1,s2,t)+Q(s1,s2,t). (4)

We can formally let the transformation rate kON(t)=KeqkOFF(t) and kOFF(t)=kOFF(r(t))
and r(t) is a random function of time t. Here, we respectively consider the calculations
of blinking statistical variables for the ON state and the OFF state. The average values
of the generating function P(s1,s2,t) can be divided into two separate stages following
Zwanzic [20]. First, we can calculate a partial average P(r,s1,s2,t) and Q(r,s1,s2,t) by
employing the following equations

Ṗ(r,s1,s2,t)=−kON(r)P(r,s1,s2,t)

+s1kOFF(r)Q(r,s1,s2,t)+ẐP(r,s1,s2,t),

Q̇(r,s1,s2,t)=s2kON(r)P(r,s1,s2,t)

−kOFFQ(r,s1,s2,t)+ẐQ(r,s1,s2,t), (5)

where Ẑ is the so-called “master” operator (for the discrete disorder process) or “Smolu-
chowski” operator (for the continuous disorder process).

The complete noise average of the generating function can be obtained by

〈P(s1,s2,t)〉=
∫

dr(P(r,s1,s2,t)+Q(r,s1,s2,t)). (6)

For the continuous disorder process, the “Smoluchowski” operator is Ẑ = λθ
∂

∂r (
∂

∂r +
r
θ
).

For this type process, the time-dependent of r(t) is determined by the Langevin equation
[20, 21]

dr(t)

dt
=−λr(t)+F(t), (7)

where λ is the decay rate and F(t) is the Gaussian white noise. As is customary one
requires the thermal equilibrium information about the first and second moments of r(t)
and F(t),

〈r(t)〉eq =0, 〈r2(t)〉eq = θ,

〈F(t)〉eq =0, 〈F(t)·F(t′)〉eq=2λθδ(t−t′). (8)
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Base on the preceding discussion, the full set of 12 equations about generating func-
tion to be solved is then

Ẏ(s1,s2,t)=



















M 0 0 0 0 0
∂

∂s1
M M 0 0 0 0
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×Y(s1,s2,t)+ẐY(s1,s2,t), (9)

where M is a function of s1 and s2, which is of the form

M(s1,s2)=

(

−kON s1kOFF

s2kON −kOFF

)

, (10)

and Y(s1,s2,t)=
(

P , ∂P/∂s1, ∂P/∂s2,∂2P/∂s2
1,∂2P/∂s2

2, ∂2P/∂s1∂s2

)†
. Here P is a func-

tion of s1, s2 and t given by (4).
Once the generating function is gotten, we can extract some statistical quantities of

blinking jumping behaviors, for example, the waiting time respectively for OFF state
jumping and ON state jumping

〈τ〉OFF =
∫ ∞

0
〈P(s1,s2,t)〉|s1=0,s2=1dt, (11a)

〈τ〉ON =
∫ ∞

0
〈P(s1,s2,t)〉|s1=1,s2=0dt, (11b)

waiting time distributions D for no blinking jumping, DOFF for OFF state jumping and
DON for ON state jumping

D0=−
dP00

dt
, (12a)

DOFF=−
dP0(OFF)

dt
, (12b)

DON =−
dP0(ON)

dt
, (12c)

the moments of the jumping times onto the OFF state or the ON state

〈N(n)〉OFF =
∂n

∂n
s1

〈P(s1,s2,t)〉|s1=s2=1, (13)

〈N(n)〉ON =
∂n

∂n
s2

〈P(s1,s2,t)〉|s1=s2=1, (14)
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and the cross correlation of the blinking jumping times for the OFF state and the ON state

〈Ns1
Ns2〉=

∂2

∂s1∂s2
〈P(s1,s2,t)〉|s1=s2=1. (15)

The joint probability of the times for OFF and ON states jumping is shown by

Pn1n2 =
1

n1!n2!

∂(n1+n2)

∂sn1
1 ∂sn2

2

〈P(s1,s2,t)〉|s1=s2=0, (16)

and the probability of the n times only for OFF state jumping or ON state jumping within
the time interval [0,t] are respectively defined by

Pn(OFF)=
1

n!

∂n

∂sn
1

〈P(s1,s2,t)〉|s1=0,s2=1,

Pn(ON)=
1

n!

∂n

∂sn
2

〈P(s1,s2,t)〉|s1=1,s2=0. (17)

Some statistical quantities about the stochastic gating of fluorescence blinking are con-
sidered using the geometrical fluctuating bottleneck model. Similar to be the Zwanzig’s
fluctuating bottleneck model, we consider the dependence of the passage rate on relax-
ation rate of the gate radius: the open-or-closed stochastic gating. With regard to the rate
of transformation between the ON state and the OFF state, the blinking jumping can not
happen and the transformation rate is zero, when the radius of the bottleneck is smaller
than r0. r0 indicate the radius of the ligand. The rate of escape through the bottleneck,
kOFF(t) is given by

kOFF(r(t))=

{

0, 06r6r0,

k(r(t)−r0)2, r>r0.
(18)

A reflecting boundary condition is used at r= 0, avoiding negative values of the radius
of the gate. The initial condition is chosen a Gaussian equilibrium distribution function.
It is obviously seen that when r0 =0 the Zwanzig’s model can be got.

3 Numerical results

Relative to the timescale of blinking rate modulation, we consider the fast and slow rate
blinking conditions. The bottleneck radiuses r0 can be respectively taken from 0 to 8 for
the fast case and from 0 to 2 for the slow case, which have achieved the extremity of the
considering question.

Waiting time and waiting time distribution. The open gate is corresponding to the ON
state in blinking dynamics. While the gate is open, the ligand will have the probability to
bind onto the protein. After the binding, the protein becomes inert. This is similar to the
reductive reaction in the single molecule enzymatic dynamics. The survival probability
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of protein without a bound ligand or the enzyme with the oxidative form is an interest
quantity to the kinetics. Initially, the researchers disclaimed the exponential distribution
of the waiting time for ON state jumping or OFF state jumping. Then, some found that
the distribution for the sojourn time on ON state or OFF state followed the power law
form [1]. Here, using the generating function, we get the waiting time for each directional
jumping and the waiting time distributions for ON state jumping, OFF state jumping and
no jumping.
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Figure 1: (Color online) The waiting time of the OFF state jumping and ON state jumping as the function of
r0, while the blinking rates are fast or slow. The parameters used are from Ref. [18]: Keq=2.0, λ=1.0, κ=5.0
and θ=5.0 (for fast case); Keq=2.0, λ=1.0, κ=0.2 and θ=0.2 (for slow case).

Fig. 1 shows the waiting time as a function of ligand radius r0, respectively for the
fast (top row) and slow (bottom row) blinking rates. The blue solid and red cross lines
are waiting time for ON and OFF state jumping, and green lines for any jumping without
regard to the direction. For the fast or slow rate blinking, the waiting time is initially
increasing slowly, then becomes fast as the increase of radius r0 at any jumping case. The
waiting time for ON state jumping and OFF state jumping are identical, and greater than
jumping without direction. Because the jumping without direction is only for one jump
process, but the waiting time for ON or OFF state jumping is according to waiting time
for double jumping (one ON state jumping and one OFF state jumping). The distribution
as the r0 and the relation between the OFF state and the ON state are consistent with the
reaction-diffusion process.

For the relatively small radius r0, the binding of ligand to the protein can easily hap-
pen and don’t wait for long time, corresponding to the smaller waiting time for ON state
jumping and OFF state jumping. With the increase of ligand radius, the waiting time
for the passage through the bottleneck drastically gets long. This variation tendency of
waiting time as the ligand radius r0 is according to our common understanding.

Following, the top two lines of Fig. 2 show the distributions D of waiting time for
no jumping, the OFF state jumping and the ON state jumping, respectively for the fast
(the first line) and slow (the right line) rate blinking. For any blinking rate process and
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Figure 2: (Color online) The distributions of waiting time as the function of time t and the decay coefficient of
these distributions (in the bottom line) as function of radius r0 for no jumping, the OFF state jumping and the
ON state jumping, while the blinking rates are fast (left column) and slow (right column). The parameters for
fast and slow cases are the same as those in Fig. 1.

the any radius, the decay behaviors of waiting time distribution as the time all show an
exponential decay ultimately, in spite of the nonexponential behavior originally. And the
decay behaviors have the very same tendency for the OFF state jumping and the ON state
jumping, but different from no jumping process showing by the black lines.

For the fast rate blinking, we respectively consider the three kinds of waiting time
distributions for r0 = 0, 4 and 6. As the increasing of the radius r0, the originally non-
exponential decay and ultimately exponential decay also exist, but the coefficients of ex-
ponential decays become small and become equal. For r0 =4 and r0 =6, the same decay
behaviors appear and the three processes have the same decay coefficient. Moreover,
the exponential decay behaviors have divergency and the divergency becomes broad as
the radius from 4 to 6. On the whole, the values of waiting time distribution for three
jumping processes all reduce as the increasing of radius for the same time, correspond-
ing to the lengthening of waiting time, which is in accordance with the change behavior
of waiting time in Fig. 1. In the bottom of left column, the ultimately exponential de-
cay coefficient of distribution for the fast rate blinking is given as the function of radius
r0. We can clearly see that the decay coefficients of the OFF state and ON state jumping
events are the same, and the coefficients for the three processes tend to be identical when
the r0 is relatively big.

For the slow rate blinking showing in the second line of Fig. 2, we also consider the



B. P. Han, L. S. Gu, Z. W. Ji, and Y. J. Zheng / J. At. Mol. Sci. 1 (2010) 280-291 287

three kinds of r0 = 0, 1 and 1.5 for the three jumping processes. The originally nonex-
ponential decay and ultimately exponential decay also appear for the considered three
radius. But when r0 = 0, there is obvious divergence between the waiting time distri-
butions for no jumping process and the OFF (or ON) state jumping process. And as the
increasing of r0, the divergence gradually decrease and tends to uniformity while r0=1.5.
Also with the increasing of r0, the waiting time for the three jumping processes becomes
longer and longer. In the bottom of right column, the exponential decay coefficient for the
slow rate blinking is shown as the increasing of radius r0. Differently from the fast case,
the decay coefficient is relatively small initially, then quickly increase and finally tends to
be stable, as the increase of r0. And the decay coefficients of the no jumping and the OFF
(or ON) state jumping process are different for r0=0−5 and then tend to be identical.
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Figure 3: (Color online) The first cumulant κ1 and second cumulant κ2/κ1−1 of blinking and as a function of
r0 for fast (left) and slow (right) rate blinking, considering respectively for the ON state jumping (star lines) and
OFF jumping state (blue solid lines). The parameters for fast and slow cases are the same as those in Fig. 1.

The first and second cumulants of jumping times. Fig. 3 shows the first (κ1 = 〈N(1)〉) and
second κ2/κ1−1 (κ2=〈N2〉−〈N〉2) cumulants as a function of r0 for the ON state jumping
events and the OFF state jumping events, when the rate of blinking jumping events is fast
(left) or slow(right). The first and second cumulants for the ON state jumping and the
OFF state jumping show the same decay behaviors. The first cumulants is continuously
increasing for the long time, so we take different calculation time for specific cases. For
the fast and slow blinking rate, we respectively calculate the first cumulant at t= 5 and
t=300, showing in the top of Fig. 3. As the increasing of r0, the first cumulants all reduce,
no matter for the fast or slow blinking rate. These are identical with the fact, that the
blinking frequency is becoming small with the increasing of r0.

But the second cumulant will saturate to be a certain value with the increasing time
at the any radius r0, no matter for the ON state jumping or the OFF state jumping. In
the bottom of Fig. 3, we give the stable value change of the second cumulant with the
increasing of r0. For the fast blinking rate case, the second cumulant is bigger than 0, but
is less than 0 for the slow blinking rate case, for any r0. Those are in accordance with the
diversity of blinking rate.
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Figure 4: The cross correlation as functions of r0, while the rate blinking is fast (top) or slow (bottom). The
parameters for slow and fast cases are the same as those in Fig. 1.

The cross correlation of blinking jumping times for the OFF state and the ON state. The cross
correlation 〈Ns1

Ns2〉 of the blinking jumping times for different directions is calculated by
using Eq. (15). The cross correlations for the fast and slow rate blinking are respectively
shown in the top and bottom of Fig. 4. Due to the continuous increase of cross correlation
with time t, we respectively take the calculation time t = 0.5 and t = 200 for fast and
slow cases. We can see that the change behaviors display the similar decay nature as
the increasing of r0 and time t. But the cross correlation for the fast rate blinking is much
bigger than the slow condition for every value of r0, which is due to the bigger conversion
rate for the fast rate blinking case. Relatively small r0 can induces the strong correlation
between the ON state jumping and the OFF state jumping. As the increasing of r0, the
cross correlations all gradually tend to be less correlation, no matter for fast rate or slow
rate blinking. This is because the effect of bottleneck (or environment) is very strong for
small radius r0. But there is hardly jumping event for the relatively big r0 of every rate
blinking case.

The joint probability of the jumping times for the OFF state and ON state. The joint prob-
ability Pn1n2 of the blinking jumping times can be got by using Eq. (16). In the Fig. 5,
the different joint probabilities P10 and P11 are shown as the function of r0 and time t, for
the fast (left column) and slow (right column) rate blinking. As the increasing of r0, the
probability maximum of P10 and P11 appears more and more late in time, no matter for
the fast or the slow rate blinking case.

For the fast rate blinking in the left part, the maximums of probabilities P10 and P11
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Figure 5: (Color online) The joint probabilities for the jumping times as the function of r0 and time t (in top
two lines), and the probability maximum as the function of r0 (in the bottom line), while the blinking rates
are fast (left column) or slow (right column). The parameters for slow and fast cases are the same as those in
Fig. 1.

have a fluctuation, firstly reach a peak, and then rapidly drop to zero at big value of r0.
Obviously, the middle radius also can induce the big P11 or P10, similar to the very small
radius r0. For the slow rate blinking, the changes show a stable behavior at first, then
rapidly drop to zero at relatively big r0. The larger radius makes against the passage
through the bottleneck and there is hardly jumping event, no matter for the fast or for the
slow rate blinking.

The probability of the jumping n times only for ON state or only for OFF state. These proba-
bilities can be calculated from Eq. (17). For the slow rate blinking, we show the probabil-
ity P1 and P2 as the function of time t and radius r0 in Fig. 6, while the ON state jumping
probability is shown in the left column and the OFF state jumping in the right column.
As the increasing of r0, the maximum of probability appears more and more late in time,
no matter for P1 or P2. For the fast rate blinking case, the probability changes as the time
t and r0 present the same tendency and here we don’t repeatedly give the picture.

Then in Fig. 7, we only give the maximums of P1 and P2 for the ON state and OFF
state jumping in the fast or the slow rate blinking case. For any blinking rate, the change
behaviors of maximum of P1 or P2 are the same for the OFF state jumping and the ON
state jumping, showing by the solid and the star lines. Obviously, for the slow rate case,
the maximum change of probability as the function of r0 is according to the evolution of
probability in Fig. 6, showing by the same color lines in the two figures. For the fast rate
blinking case, the probability maximums as the function of radius have a peak and then
rapidly drop to zero at the big r0. For the slow rate blinking, the changes show a stable
behavior at first, then rapidly drop to zero for big r0.
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column) or the OFF state (right column) as functions of time t and r0, while the rate blinking is slow. The
parameters used are: Keq=2.0, λ=1.0, κ=0.2 and θ=0.2.
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Figure 7: (Color online) The probability maximums only for the ON state jumping and the OFF state jumping
as a function of r0 for fast (top part) and slow (bottom part) rate blinking. The parameters for fast and slow
cases are the same as those in Fig. 1.

4 Discussion and conclusion

In this study, we have studied the statistical properties of ubiquitous blinking phenomenon
under stochastic gating and got the generating function framework with two “auxiliary”
variables, counting the times of the OFF state jumping and the ON state jumping. Using
the modified model, we considered the properties behaviors for the blinking jumping
events comprehensively, from the waiting time distribution to the cumulants of jump-
ing times. Also we gave the joint probability and cross correlation of blinking events,
indicating the correlation degree between the times for ON state jumping and OFF state
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jumping. For the fast and slow rate blinking behaviors, there are different change behav-
iors at some ligand radius.
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