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Abstract. A matrix is said to be stable if the real parts of all the eigenvalues are negative. In
this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner
cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is
also given.
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1 Introduction

T. Chan [9] proposed a circulant preconditioner for Toeplitz matrices in 1988. R. Chan, Jin and
Yeung [6] showed that T. Chan’s preconditioner can be defined not only for Toeplitz matrices
but also for general matrices. Given a unitary matrix U ∈ Cn×n, define

MU ≡ {U∗ΛnU | Λn is any n-by-n diagonal matrix}. (1)

For any matrix An ∈ C
n×n, T. Chan’s preconditioner cU (An) ∈ MU is defined to the minimizer

of
‖cU (An) − An‖ = min

Wn∈MU

‖Wn − An‖ ,

where ‖ · ‖ is the Frobenius norm. Let F denote the Fourier matrix whose entries are given by:

(F )j,k =
1√
n

e2πi(j−1)(k−1)/n, i ≡
√
−1, 1 ≤ j, k ≤ n. (2)

When U = F in (1), MU is the set of all circulant matrices [11]. It is proved that T. Chan’s
circulant preconditioner is a good preconditioner for solving a large class of linear systems, see,
e.g., [4, 5, 7, 9, 16, 17].
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In this paper, we will study some stability properties of T. Chan’s preconditioner from the
viewpoint of numerical range. The stability property is essential in many applications, including
control theory and dynamical systems [1]. We first introduce the following definition.

Definition 1.1. A matrix is said to be stable if the real parts of all the eigenvalues are negative.

We now briefly review some important results. For any matrix E ∈ Cn×n, let δ(E) denote a
diagonal matrix whose diagonal is equal to the diagonal of E. For T. Chan’s preconditioner, we
have the following lemma, see [6, 15, 22].

Lemma 1.1. Let An ∈ Cn×n and cU (An) be T. Chan’s preconditioner. Then

(i) cU (An) is uniquely determined by An and is given by

cU (An) ≡ U∗δ(UAnU∗)U.

(ii) If An is Hermitian, then cU (An) is also Hermitian. Moreover, we have

min
j

λj(An) ≤ min
j

λj

(

cU (An)
)

≤ max
j

λj

(

cU (An)
)

≤ max
j

λj(An),

where λj(E) is the j-th eigenvalue of E.

From Lemma 1.1 (ii), it is easy to see that if An is Hermitain and stable, then so is cU (An).
In [19], Jin et al. showed that if An is normal and stable, then cU (An) is also normal and stable.
The result is further generalized in [3]. It is proved that if An is ∗-congruent to a stable diagonal
matrix, i.e., An = Q∗DQ where Q is a nonsingular matrix and D is a stable diagonal matrix,
then cU (An) is stable. Recently, by noting that any matrix An can be written as

An = H + iK,

where

H =
1

2
(An + A∗

n) and K =
1

2i
(An − A∗

n)

are Hermitian, Cheng and Jin proved the following result:

Lemma 1.2. ( [10]) Let An ∈ Cn×n and suppose that An = H + iK where H and K are
Hermitian. Then T. Chan’s preconditioner cU (An) is stable for any unitary matrix U ∈ C

n×n if
and only if H is negative definite.

It is a well-known fact that ∗-congruence does not change the inertia of a Hermitian matrix.
Furthermore, for Hermitian matrices H and K with H nonsingular, H and K are simultaneously
diagonalizable by ∗-congruence if and only if H−1K has real eigenvalues and is diagonalizable [13,
p.229]. Suppose now that H is positive definite. Then H−1K is similar to H−1/2KH−1/2 which is
Hermitian. Therefore, H and K are simultaneously diagonalizable by ∗-congruence. Of course,
the same conclusion holds when H is negative definite. Thus, by using Lemma 1.2, one can
show that the condition in [3], i.e., An is ∗-congruent to a stable diagonal matrix, is actually
a necessary and sufficient condition for cU (An) to be stable for all unitary U . However, the
condition in Lemma 1.2 is much simpler.

Another result concerning the stability of cU (A) is the following:

Lemma 1.3. ([10]) Let An ∈ Cn×n. Then there exists a unitary matrix U ∈ Cn×n such that
cU (An) is stable if and only if

Re[tr(An)] < 0,

where Re[·] denotes the real part of a complex number and tr(·) denotes the trace of a matrix.
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Note that the solution of Anx = b is just the solution of

θAnx = θb,

where θ is any nonzero complex number. Thus, for solving the system, we are free to consider
θAn instead of An. When tr(An) is nonzero, we can always find θ ∈ Cn with |θ| = 1 such that

Re[tr(θAn)] = Re[θtr(An)] < 0.

Thus by Lemma 1.3, we have

Corollary 1.1. Let An ∈ C
n×n. Then there exists θ with |θ| = 1 and a unitary matrix U ∈ C

n×n

such that T. Chan’s preconditioner cU (θAn) is stable if and only if tr(An) 6= 0.

T. Chan’s preconditioner cU (An) is always normal for any unitary matrix U . In some cases,
like the circulant preconditioner cF (An) where F is the Fourier matrix given by (2), we have
definite formulas for their eigenvalues [11]. If all the eigenvalues are contained in some open half-
plane defined by a line through the origin, we can always find θ with |θ| = 1 such that all the
eigenvalues of θcF (An) have negative real parts. Again, as far as stability of the preconditioner
is concerned, one should replace the original system Anx = b by θAnx = θb because cF (θAn) =
θcF (An) is stable.

2 Stability from numerical range

One may ask if we can have a result similar to Lemma 1.2 by using θAn. To this end, we
introduce the numerical range of An denoted by W (An).

Definition 2.1. ([12, 14]) The numerical range of a matrix An ∈ Cn×n is given by

W (An) ≡ {x∗Anx : x ∈ C
n and ‖x‖ = 1} ⊂ C.

The following lemma is essential in the study of numerical range, see [12, 14].

Lemma 2.1. Let An ∈ Cn×n. We have

(i) W (U∗AnU) = W (An) for any unitary matrix U ∈ Cn×n.

(ii) W (An) is a compact convex set.

(iii) σ(An) ⊂ W (An) where σ(An) is the spectrum of the matrix An.

(iv) If An is diagonal, then W (An) is the convex hull of the diagonal entries of An.

For a convex set S in C, it is easy to obtain the following lemma.

Lemma 2.2. For a convex set S in C, there exists an θ with |θ| = 1 such that θS ⊂ C− if and
only if 0 /∈ S, where C− ≡ {q ∈ C : Re(q) < 0}.

Proof If 0 /∈ S, by the convexity of S, we know that there is a straight line l passing through the
origin and that S is contained in one of the two open half-planes determined by l. Consequently,
there exists a complex number θ with |θ| = 1 such that θS ⊂ C−. It is also true conversely.

We therefore have
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Theorem 2.1. Let An ∈ C
n×n. Then there exists some θ with |θ| = 1 such that T. Chan’s

preconditioner cU (θAn) is stable for all unitary matrices U ∈ Cn×n if and only if 0 /∈ W (An).

Proof “ ⇒ ”: Suppose that there exists some θ with |θ| = 1 such that cU (θAn) is stable for
all unitary matrices U ∈ Cn×n. By Lemma 1.2, we know that if we write

θAn = H + iK,

where H and K are Hermitian, then H is negative definite and so x∗Hx < 0 for all nonzero
x ∈ Cn. Thus,

0 /∈ {x∗Hx + ix∗Kx : x ∈ C
n and ‖x‖ = 1} = W (θAn).

Note that

W (θAn) = θW (An)

and thus 0 /∈ W (An).
“ ⇐ ”: Suppose 0 /∈ W (An). Then by Lemma 2.1 (ii) and Lemma 2.2, there is a complex

number θ with |θ| = 1 such that

W (θAn) = θW (An) ⊂ C
−.

Let θAn be decomposed as

θAn = H + iK,

where H and K are Hermitian. We have

{x∗Hx + ix∗Kx : x ∈ C
n and ‖x‖ = 1} = W (θAn) ⊂ C

−

which implies that x∗Hx < 0 for all x ∈ Cn with ‖x‖ = 1 and so H is negative definite. By
Lemma 1.2, cU (θAn) is stable for all unitary matrices U ∈ Cn×n.

Now, the problem we are facing is that how to judge 0 /∈ W (A). We remark that when
A ∈ C2×2, W (A) is always an elliptical disk, possibly degenerate. Moreover, one can always
find the (boundary) ellipse in terms of the 4 entries of A. For a general matrix A ∈ Cn×n and
x, y ∈ Cn, let

Axy =

[

x∗Ax x∗Ay
y∗Ax y∗Ay

]

2×2

.

It is proved in [20] that W (A) is the union of all the sets W (Axy) where x and y run over all
pairs of real orthonormal vectors. Thus we can have a rough picture about the shape of W (A)
by plotting enough W (Axy).

When An is Hermitian, W (An) is the interval with endpoints being the largest and smallest
eigenvalues of An. Thus, Lemma 1.1 (ii) means that when An is Hermitian, W (cU (An)) ⊂
W (An). In fact, the result is true for any matrix An.

Theorem 2.2. For any matrix An ∈ Cn×n and any unitary matrix U ∈ Cn×n, we have

W (cU (An)) ⊂ W (An).

Proof By Lemma 1.1 (i) and Lemma 2.1 (i), we have

W (cU (An)) = W (U∗δ(UAnU∗)U) = W (δ(UAnU∗)).



32 Stability of T. Chan’s Preconditioner from Numerical Range

Let δ(UAnU∗)ii = dii, for i = 1, 2, · · · , n. By direct calculation and Lemma 2.1 (i), we have

dii ∈ W (UAnU∗) = W (An). (3)

Note that by Lemma 2.1 (iv),

W (δ(UAnU∗)) = Co({d11, d22, · · · , dnn}), (4)

where Co(S) denoted the convex hull of S. Since W (An) is convex, we have by (3) and (4),

W (δ(UAnU∗)) ⊂ W (An),

i.e.,

W (cU (An)) ⊂ W (An).

By Theorem 2.2 and Lemma 2.1 (iii), we get, for any unitary U ,

σ(cU (An)) ⊂ W (cU (An)) ⊂ W (An).

Thus, if we can have W (An) ⊂ C
− (equivalently H negative definite), then cU (An) is stable for

all unitary U . Due to the convexity of W (An), if 0 /∈ W (An), we know that there exists θ such
that W (θAn) ⊂ C− and so cU (θAn) is stable for all unitary U . For example,

(i) If H is positive definite, then cU (−An) is stable for all unitary U ;

(ii) If K is positive definite, then cU (iAn) is stable for all unitary U ;

(iii) If K is negative definite, then cU (−iAn) is stable for all unitary U .

More generally, with β = cosα + i sinα,

1

2
[(βAn) + (βAn)∗] = (cosα)H − (sin α)K.

Thus, we can deduce that if there exist a, b ∈ [−1, 1] such that aH + bK is positive definite, then
there exists some θ with |θ| = 1 such that cU (θAn) is stable for all unitary U .

3 An application

In [8, 16, 18], the following initial value problem is considered











dy(t)

dt
= f(t) ≡ Jy(t) + g(t), t ∈ (t0, T ],

y(t0) = z,

(5)

where y(t), f(t), g(t) : R → Rm, z ∈ Rm and J ∈ Rm×m. Let the grid points be given by

tj = t0 + jh, j = 0, · · · , s,

where h = (T − t0)/s. To get y(tj), j = 1, 2, · · · , s, the boundary value method (BVM) is used.
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3.1 Boundary value method

The BVM is based on k-step linear multistep formula:

k−ν
∑

i=−ν

αi+νyn+i = h

k−ν
∑

i=−ν

βi+νfn+i, n = ν, . . . , s − k + ν, (6)

and boundary values:

y0,y1, . . . ,yν , ys−k+ν+1,ys−k+ν+2, . . . ,ys. (7)

Note that in (7), only y0 is known. For the remainders in (7), we use other two sets of additional
equations with the same order of accuracy of (6),

k
∑

i=0

α
(j)
i yi = h

k
∑

i=0

β
(j)
i fi, j = 1, · · · , ν − 1, (8)

and
k

∑

i=0

α
(j)
k−iys−i = h

k
∑

i=0

β
(j)
k−ifs−i, j = s − k + ν + 1, · · · , s, (9)

see [2] for a detail. By combining (6), (8), (9), and the initial value y0, we obtain a linear system:

My = b, (10)

where

M = A ⊗ I − hB ⊗ J (11)

with I ∈ Rm×m being the identity matrix, J being the matrix from (5), and “ ⊗ ” being the
Kronecker product. The vector y in (10) is defined by

yT = [yT
0 ,yT

1 , . . . ,yT
s ] ∈ R

m(s+1).

The known vector b ∈ Rm(s+1) in (10) depends on f , the boundary values and the coefficients
of the method. The matrix A ∈ R(s+1)×(s+1) in (11) is defined as follows,

A =









































1 · · · 0
α0

(1) · · · αk
(1)

...
...

...

α0
(ν−1) · · · αk

(ν−1) O

α0 · · · αk

. . .
. . .

. . .

α0 · · · αk

O α0
(s−k+ν+1) · · · αk

(s−k+ν+1)

...
...

...

α
(s)
0 · · · αk

(s)









































. (12)
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The matrix B in (11) is defined similarly by using β′s instead of α′s in (12) and the first row of
B is zero, see [2, 4, 8]. Let

AT =



















αν · · · αk

...
. . .

. . .
. . .

α0
. . .

. . .
. . . αk

. . .
. . .

. . .
...

α0 · · · αν



















∈ R
(s+1)×(s+1)

and BT ∈ R(s+1)×(s+1) is defined similarly by using β′s instead of α′s in AT . Then, the following
preconditioner is considered:

S ≡ s(AT ) ⊗ I − hs(BT ) ⊗ cF (J), (13)

where s(AT ), s(BT ) are Strang’s circulant preconditioners for AT , BT respectively, and cF (J) is
T. Chan’s circulant preconditioner for J . We remark that for a Toeplitz matrix Tn = [tij ] with
tij = ti−j , the diagonals of Strang’s circulant preconditioner s(Tn) are defined by

sk =























tk, 0 ≤ k ≤ ⌊n/2⌋,

tk−n, ⌊n/2⌋ < k < n,

sn+k, −n < k < 0.

To show that S is invertible, we need to introduce the stability of the BVM. The characteristic
polynomials ρ(z) and σ(z) of the BVM are defined by

ρ(z) ≡ zν
k−ν
∑

j=ν

αj+νzj and σ(z) ≡ zν
k−ν
∑

j=ν

βj+νzj,

where {αi}, {βi} are given by (6). The Aν,k−ν -stability polynomial is defined by

π(z, q) ≡ ρ(z) − qσ(z),

where z, q ∈ C.

Definition 3.1. ([2]) The region

Dν,k−ν = {q ∈ C : π(z, q) has ν zeros inside |z| = 1 and k − ν zeros outside |z| = 1}

is called the region of Aν,k−ν -stability for a given BVM with (ν, k − ν)-boundary conditions.
Moreover, the BVM is said to be Aν,k−ν -stable if C

− ⊆ Dν,k−ν .

We have the following theorem on the invertibility of the preconditioner S. The proof is
similar to that of Theorem 2 in [3], and we therefore omit it. Nevertheless, we note here that
the stability of cF (J) is crucial in the proof and it is now ensured by a much simpler condition,
namely J + JT is negative definite.

Theorem 3.1. If the BVM for (5) is Aν,k−ν -stable and the matrix J + JT is negative definite,
then the preconditioner S in (13) is invertible.
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Table 1: Number of iterations and CPU time (sec.).

No. of iterations CPU time
m s I S I S
24 20 80 4 1.469 0.140

40 160 4 6.719 0.250
80 320 4 53.063 0.469

48 20 80 4 2.890 0.250
40 160 4 19.250 0.484
80 320 4 113.500 0.969

96 20 80 4 6.422 0.500
40 160 4 34.391 0.938
80 320 4 273.891 1.969

3.2 Numerical test

To illustrate the efficiency of our proposed preconditioner S defined by (13), one numerical
example is given in this section. The BVM we used here is the fifth order generalized Adams
method [2]. All experiments are performed in MATLAB and the M-file “gmres” is used to
solve the preconditioned systems. In our calculations, the stopping criterion in the GMRES
method [21] is

‖rq‖2

‖r0‖2
< 10−6,

where rq is the residual after the q-th iteration and the zero vector is the initial guess. All
programs are run on a 2.4 GHz PC with 1.024 Gbytes of memory.

Example 3.1. Consider











dy(t)
dt

= Qmy(t), t ∈ (0, 1] ,

y(0) = (1, 1, · · · , 1)T ,

where Qm = [qij ]
m
i,j=1 with

qij =























−3, i = j;

2−(i+j−1), i > j;

3−(i+j−1), i < j.

It is easy to check that Qm + QT
m is negative definite. Therefore by Theorem 3.1, the precon-

ditioner S defined in (13) is invertible. Table 1 shows the number of iterations and CPU time
in seconds required for convergence with different combinations of matrix sizes m and s. In the
table, I denotes no preconditioner and S is our new preconditioner. As expected, the number of
iterations required for convergence is small and remains a constant for increasing m and s with
the preconditioner S. The CPU time required for convergence with the preconditioner S is again
much less than that without preconditioner, especially for large values of m and s.
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4 Concluding remarks

In this paper, we have used the concept of numerical range to study some of the stability prop-
erties of T. Chan’s preconditioner. T. Chan’s preconditioner cU (An) is a normal matrix with
eigenvalues being the diagonal elements of UAnU∗ and the numerical range W (An) is exactly the
set of all possible diagonal elements of UAnU∗ when U runs through all the unitary matrices.
It is quite natural that these two subjects are closely related. The numerical range, together
with its generalizations, is a rich subject (see [12] and [14, Chapter 1]) and has been studied
intensively. Here we have used only the most basic properties to obtain some elementary results.
It is expected that more results on cU (A) can be obtained.
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