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Abstract In this paper we study the proximal point algorithm (PPA) based prediction-

correction (PC) methods for monotone variational inequalities. Each iteration of these

methods consists of a prediction and a correction. The predictors are produced by in-

exact PPA steps. The new iterates are then updated by a correction using the PPA

formula. We present two profit functions which serve two purposes: First we show that

the profit functions are tight lower bounds of the improvements obtained in each iter-

ation. Based on this conclusion we obtain the convergence inexactness restrictions for

the prediction step. Second we show that the profit functions are quadratically depen-

dent upon the step lengths, thus the optimal step lengths are obtained in the correction

step. In the last part of the paper we compare the strengths of different methods based

on their inexactness restrictions.
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1 Introduction

Let Ω be a nonempty closed convex subset of Rn and F be a continuous monotone mapping
from Rn into itself. The variational inequality problem is to determine a vector u∗ ∈ Ω such that

VI(Ω, F ) (u − u∗)T F (u∗) ≥ 0, ∀u ∈ Ω. (1.1)

VI(Ω, F ) problems include nonlinear complementarity problems (when Ω = Rn
+) and systems of
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nonlinear equations (when Ω = Rn), and thus have many important applications [7,8,9].

A classical method for solving variational inequality is the proximal point algorithm (ab-
breviated as PPA) [17,18]. Given uk ∈ Ω and βk > 0, the new iterate uk+1 of PPA is obtained
by solving the following variational inequality:

(PPA) u ∈ Ω, (u′ − u)T Fk(u) ≥ 0, ∀u′ ∈ Ω, (1.2)

where
Fk(u) = (u − uk) + βkF (u). (1.3)

An equivalent recursion form of PPA is

uk+1 = PΩ[uk+1 − Fk(uk+1)], (1.4)

where PΩ denotes the projection on Ω. The above projection equation can be written as

uk+1 = PΩ[uk − βkF (uk+1)]. (1.5)

Since uk+1 occurs on both sides of equation (1.5), we call the method an implicit method [11].

The ideal form (1.5) of the method is often impractical since in many cases solving problem
(1.2) exactly is either impossible or expensive. In 1976 Rockafellar set up the fundamental
convergence analysis for the approximate proximal point algorithm (abbreviated as APPA) to a
general maximal monotone operator [17]. Extensive developments on APPA followed, focusing
on different fields such as convex programming, mini-max problems, and variational inequality
problems. To mention a few, see [1, 3, 4, 5, 6, 16]. The major challenges of such methods include
setting the restrictions of the approximation which are both easy to implement and tight for
convergence, and accelerating the convergence.

In this paper, we study a particular group of methods which share the flavor of APPA. We
call the methods proximal point algorithm based prediction-correction methods (abbreviated as
PPA-PC methods). Given uk ∈ Ω and βk > 0, let vk be an approximate solution of (1.2) in the
sense that

vk ≈ PΩ[vk − Fk(vk)] (1.6)

and define
ṽk := PΩ[vk − Fk(vk)]. (1.7)

The new iterate of these methods is given by either

(PPA-PC1) uk+1(α, vk) = PΩ[uk − αβkF (vk)] (1.8)

or
(PPA-PC2) uk+1(α, ṽk) = PΩ[uk − αβkF (ṽk)]. (1.9)

In such methods, vk and ṽk can be viewed as predictors generated by inexactly solving the
variational inequality (1.2). Ignoring the step length α, the new iterate uk+1 in (1.8) (resp. in
(1.9)) can be viewed as the corrector obtained from equation (1.5) via substituting the uk+1 in the
right hand side by the predictor vk (resp. ṽk). Therefore, we refer (1.8) and (1.9) as PPA based



· 16· He Bingsheng Jiang Jianlin Qian Maijian Xu Ya

prediction-correction methods (PPA-PC1) and (PPA-PC2), respectively. The method presented
in [15] uses vk as the predictor and belongs to PPA-PC1. The modified inexact PPA in [13] takes
ṽk as the predictor and thus belongs to PPA-PC2.

Remark 1.1 At first glance it seems that PPA-PC2 is more complicated than PPA-PC1,
since it requires one extra projection in order to obtain ṽk at the prediction step. However, the
following discussion and the analysis in section 3 indicate that evaluating ṽk is also necessary in
PPA-PC1.

According to equation (1.4), vk is the exact solution in the k-th iteration of PPA if and only
if vk = ṽk. Hence it is natural to view

ζk := vk − ṽk (1.10)

as an inexactness indicator of the predictors. Another natural choice for such an indicator is

ṽk − PΩ[uk − βkF (ṽk)].

However this quantity requires further projection. Note that from equation (1.3) we have

ṽk = PΩ[uk − βkF (vk)]. (1.11)

Recalling that the projection is a non-expansive mapping we obtain

‖ṽk − PΩ[uk − βkF (ṽk)]‖ = ‖PΩ[uk − βkF (vk)] − PΩ[uk − βkF (ṽk)]‖ ≤ ‖βk[F (ṽk) − F (vk)]‖.

Hence the second natural choice of an inexactness indicator is

ξk := βk[F (ṽk) − F (vk)]. (1.12)

On the other hand, the functions

Θk(α, vk) := ‖uk − u∗‖2 − ‖uk+1(α, vk) − u∗‖2 (1.13)

and
Θk(α, ṽk) := ‖uk − u∗‖2 − ‖uk+1(α, ṽk) − u∗‖2 (1.14)

can be viewed as the improvements in the k-th iteration of PPA-PC1 and PPA-PC2, respectively.

The major objective of this paper is to answer the following questions:

• (A). Given a predictor, how should one choose the step length α in order to gain more
progress in each iteration?

• (B). In order to guarantee convergence, what restrictions on ζk in (1.10) (resp. ξk in (1.12))
should be applied when vk (resp. ṽk) is taken as the predictor?

• (C). Which method is more efficient to be implemented PPA-PC1 or PPA-PC2 ?

We will prove that the following α-dependent functions

Ψk(α) := 2α{‖uk − ṽk‖2 − βk(ζk)T F (vk)} − α2‖uk − ṽk‖2 (1.15)



PPA Based Prediction-Correction Methods for Monotone Variational Inequalities · 17·

and
Φk(α) := 2α{‖uk − ṽk‖2 + (uk − ṽk)T ξk} − α2‖(uk − ṽk) + ξk‖2 (1.16)

are tight lower bounds of the improvements (1.13) in PPA-PC1 and (1.14) in PPA-PC2, respec-
tively. These differentiable functions offer us the bases to answer the above mentioned questions.

This paper is organized as follows: In Section 2, we summarize some basic concepts about
variational inequalities and prove a lower bound which is shared by both progress functions
Θk(α, vk) and Θk(α, ṽk). In Section 3, we answer questions (A) and (B) when vk is taken as
the predictor. In Section 4 we answer questions (A) and (B) when ṽk is taken as the predictor.
In Section 5 we show that compared with PPA-PC1, PPA-PC2 has significant advantage in
implementation.

Throughout this paper we assume that the operator F is continuous and monotone on Ω,
i.e.,

(u − v)T (F (u) − F (v)) ≥ 0, ∀u, v ∈ Ω.

In addition, we assume that the solution set of VI(Ω, F ), denoted by Ω∗, is nonempty, and {βk}
is a positive sequence such that 0 < βmin = inf∞k=0 βk ≤ sup∞

k=0 βk = βmax < +∞.

2 Preliminaries

This section summarizes some basic properties of variational inequalities and proves a com-
mon proposition of the PPA based correction methods.

2.1 Projection operator and variational inequality

We use the concept of projection under the Euclidean norm, which will be denoted by PΩ(·),
i.e.,

PΩ(w) = argmin{‖w − u‖ | u ∈ Ω}.
From the above definition, it follows that

{w − PΩ(w)}T {v − PΩ(w)} ≤ 0, ∀w ∈ Rn, ∀v ∈ Ω (2.1)

and
(v − w)T {PΩ(v) − PΩ(w)} ≥ ‖PΩ(v) − PΩ(w)‖2, ∀v, w ∈ Rn. (2.2)

Consequently, we have

‖PΩ(v) − PΩ(w)‖ ≤ ‖v − w‖, ∀v, w ∈ Rn (2.3)

and
‖PΩ(v) − u‖2 ≤ ‖v − u‖2 − ‖v − PΩ(v)‖2, ∀u ∈ Ω, ∀v ∈ R

n.. (2.4)

Lemma 2.1([2]p.267) Let β > 0, then u∗ solves VI(Ω, F ) if and only if

u∗ = PΩ[u∗ − βF (u∗)].

Denote
e(u, β) := u − PΩ[u − βF (u)]. (2.5)
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Then solving VI(Ω, F ) is equivalent to finding a zero point of e(u, β). The next lemma states
that ‖e(u, β)‖ is a non-decreasing function for β > 0.

Lemma 2.2([12]Lemma2) For all u ∈ Rn and β̃ ≥ β > 0, it holds that

‖e(u, β̃)‖ ≥ ‖e(u, β)‖. (2.6)

2.2 A common lower bound for the progress functions

The PPA based prediction-correction methods use vk or ṽk as predictors. As a preparation
we present a common lower bound held by both progress functions Θk(α, vk) and Θk(α, ṽk)
defined by equations (1.13) and (1.14) respectively. This common lower bound does not depend
on the unknown solution u∗.

Assume v ∈ Ω and consider the following general correction step, which is shared by all
PPA-PC methods:

uk+1(α, v) = PΩ[uk − αβkF (v)]. (2.7)

Consider the progress function

Θk(α, v) := ‖uk − u∗‖2 − ‖uk+1(α, v) − u∗‖2. (2.8)

Given the predictor v, the progress Θk(α, v) is a function of the step length α. It is natural to
consider maximizing this function by choosing an optimal parameter α. However, since u∗ is
the solution point and thus is unknown, we can not maximize Θk(α, v) directly. The following
proposition introduces a tight lower bound of Θk(α, v), namely the function Υk(α, v), which does
not include the unknown solution u∗. The proposition hereby converts the task of maximizing
the function Θk(α, v) to that of maximizing the function Υk(α, v).

Proposition 2.1 For given uk ∈ Ω and βk > 0, let v ∈ Ω be any point in Ω and the new
iterate be produced by (2.7). Then we have

Θk(α, v) ≥ Υk(α, v), (2.9)

where Θk(α, v) is defined in (2.8) and

Υk(α, v) := ‖uk − uk+1(α, v)‖2 + 2αβk{uk+1(α, v) − v}T F (v). (2.10)

Proof Since u∗ ∈ Ω and uk+1(α, v) = PΩ[uk − αβkF (v)], it follows from (2.4) that

‖uk+1(α, v) − u∗‖2 ≤ ‖uk − αβkF (v) − u∗‖2 − ‖uk − αβkF (v) − uk+1(α, v)‖2. (2.11)
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Fig. 2.1 Geometric interpretation of Inequality (2.11)

Consequently, using the definition of Θk(α, v), we get

Θk(α, v) ≥ ‖uk − u∗‖2 + ‖uk − uk+1(α, v) − αβkF (v)‖2 − ‖uk − u∗ − αβkF (v)‖2

= ‖uk − uk+1(α, v)‖2 + 2αβk{uk+1(α, v) − uk}T F (v) + 2αβk(uk − u∗)T F (v).
(2.12)

Since v ∈ Ω, using the monotonicity of F we have

(v − u∗)T F (v) ≥ (v − u∗)T F (u∗) ≥ 0

and consequently
(uk − u∗)T F (v) ≥ (uk − v)T F (v). (2.13)

Applying (2.13) to the last term in the right side of (2.12), we obtain

Θk(α, v) ≥ ‖uk − uk+1(α, v)‖2 + 2αβk{uk+1(α, v) − v}T F (v) (2.14)

and the assertion of this proposition is proved.

Remark 2.1 The inequality Θk(α, v) ≥ Υk(α, v) is tight in general. To see this we observe
a special case in which Ω = Rn, F (u) = Mu+q and M is skew-symmetric. In this case, it follows
from (2.7) that

uk+1(α, v) = uk − αβkF (v)

and thus (2.11) is reduced to an equality. Because Ω = Rn, we have F (u∗) = 0. In addition,
since F (u) = Mu + q and M is skew-symmetric, it follows that

(v − u∗)T F (v) = (v − u∗)T F (u∗)

and consequently
(uk − u∗)T F (v) = (uk − v)T F (v).

Inequality (2.13) is reduced to an equality. Therefore, we have Θk(α, v) = Υk(α, v) in this special
case.

The key technique applied in the proof of Proposition 2.1 is inequality (2.11). This technique
was first used in [10] and later used in [12] for convergence analysis. Note that Proposition 2.1
is true for any v ∈ Ω and it does not guarantee that Υk(α, v) > 0 for all α > 0 sufficiently small.
In the following sections, we will convert Υk(α, v) to some quadratic functions of α for v = vk

and v = ṽk, respectively.

3 Convergence Properties of Method PPA-PC1

In this section, we explore the convergence properties of the PPA-PC1 method. We investi-
gate the choice of the optimal step length in the correction step and the inexactness restriction
in the prediction step. The PPA-PC1 method uses vk as the predictor, and the step length
dependent correction formula is

uk+1(α, vk) = PΩ[uk − αβkF (vk)]. (3.1)
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It follows from Proposition 2.1 that

Θk(α, vk) = ‖uk − u∗‖2 − ‖uk+1(α, vk) − u∗‖2 ≥ Υk(α, vk)

and
Υk(α, vk) = ‖uk − uk+1(α, vk)‖2 + 2αβk{uk+1(α, vk) − vk}T F (vk). (3.2)

Notice that uk+1(α, vk) is obtained from (3.1) which includes a mapping of projection. Hence
Υk(α, vk) is a non-differentiable function of α. Obtaining an optimal step length α for Υk(α, vk)
directly is not straightforward. The following proposition offers us a tight lower bound of
Υk(α, vk) which is a quadratic function of α.

Proposition 3.1 Given uk ∈ Ω and βk > 0, let vk ∈ Ω be an approximate solution of
(1.2) in the sense of (1.6) and the new iterate uk+1(α, vk) be given by (3.1). Then for any α > 0
we have

‖uk − u∗‖2 − ‖uk+1(α, vk) − u∗‖2 ≥ Υk(α, vk) ≥ Ψk(α), (3.3)

where
Ψk(α) := 2α{‖uk − ṽk‖2 − βk(ζk)T F (vk)} − α2‖uk − ṽk‖2 (3.4)

and ζk is as defined in (1.10).

Proof Note that Proposition 2.1 is true for any v ∈ Ω and

Υk(α, vk) = ‖uk − uk+1(α, vk)‖2 + 2αβk{uk+1(α, vk) − vk}T F (vk)

= ‖uk − uk+1(α, vk)‖2 + 2αβk{uk+1(α, vk) − ṽk}T F (vk)

−2αβk(ζk)T F (vk).

(3.5)

In inequality (2.1) set w := uk−βkF (vk). From equation (1.11) we have ṽk = PΩ[uk−βkF (vk)] =
PΩ(w). Note that uk+1(α, vk) ∈ Ω, then it follows that for any α > 0

0 ≥ 2α{uk+1(α, vk) − ṽk}T{[uk − βkF (vk)] − ṽk}. (3.6)

Adding (3.5) and (3.6), we obtain

Υk(α, vk) ≥ ‖uk − uk+1(α, vk)‖2 + 2α{uk+1(α, vk) − ṽk}T (uk − ṽk)

−2αβk(ζk)T F (vk).
(3.7)

Observe the first two terms of the right hand side of (3.7). We have

‖uk − uk+1(α, vk)‖2 + 2α{uk+1(α, vk) − ṽk}T (uk − ṽk)

= ‖uk − uk+1(α, vk)‖2 + 2α{(uk+1(α, vk) − uk) + (uk − ṽk)}T (uk − ṽk)

= ‖uk − uk+1(α, vk)‖2 + 2α{uk+1(α, vk) − uk}T (uk − ṽk) + 2α‖uk − ṽk‖2

= ‖(uk − uk+1(α, vk)) − α(uk − ṽk)‖2 + (2α − α2)‖uk − ṽk‖2

≥ (2α − α2)‖uk − ṽk‖2.

(3.8)

Substituting (3.8) into (3.7), we obtain

Υk(α, vk) ≥ Ψk(α)
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and the assertion of this proposition is proved.

Remark 3.1 The inequality Υk(α, vk) ≥ Ψk(α) is tight for PPA-PC1. To see this we
observe a special case Ω = Rn. In this case, it follows from (1.11) that

ṽk = vk − Fk(vk) = uk − βkF (vk)

and thus (3.6) is reduced to an equality. In addition, equation (3.1) becomes

uk+1(α, vk) = uk − αβkF (vk)

and thus
(uk − uk+1(α, vk)) − α(uk − ṽk) = αβkF (vk) − αβkF (vk) = 0.

Hence inequality (3.8) is also reduced to an equality. Therefore Υk(α, vk) = Ψk(α) in PPA-PC1
when Ω = Rn.

The result of Proposition 3.1 is the foundation for investigating the convergence properties
of the PPA-PC1 method. Based on the inequality

‖uk+1(α, vk) − u∗‖2 ≤ ‖uk − u∗‖2 − Ψk(α), (3.9)

where
Ψk(α) = 2α{‖uk − ṽk‖2 − βk(ζk)T F (vk)} − α2‖uk − ṽk‖2,

we explore the inexactness criteria in the prediction step as well as the step length in the cor-
rection step of method PPA-PC1. We call Ψk(α) a profit-function of method PPA-PC1 since
it is the tight lower bound of the improvement obtained in the k−th iteration of the PPA-PC1
method. Let us consider the choice of the optimal step length α∗

k which maximizes the profit
function Ψk(α) in the k-th iteration. Note that Ψk(α) is a quadratic function of α and it reaches
its maximum at

α∗
k =

‖uk − ṽk‖2 − βk(ζk)T F (vk)
‖uk − ṽk‖2

(3.10)

with
Ψk(α∗

k) = α∗
k

(
‖uk − ṽk‖2 − βk(ζk)T F (vk)

)
. (3.11)

As in the SOR methods for linear systems, for fast convergence, we propose a relaxation factor
γk ∈ [1, 2) and set the step-size αk in (3.1) by αk = γkα∗

k. The recommended correction formula
of method PPA-PC1 is

(PPA-PC1∗) uk+1 = PΩ[uk − γkα∗
kβkF (vk)]. (3.12)

By simple manipulations we obtain

Ψk(γkα∗
k)

(3.4)
= 2γkα∗

k

(
‖uk − ṽk‖2 − βk(ζk)T F (vk)

)
− (γ2

kα∗
k)(α∗

k‖uk − ṽk‖2)
(3.10)
= (2γkα∗

k − γ2
kα∗

k)
(
‖uk − ṽk‖2 − βk(ζk)T F (vk)

)

(3.11)
= γk(2 − γk)Ψk(α∗

k).

(3.13)
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It follows from Proposition 3.1 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γk(2 − γk)Ψk(α∗
k). (3.14)

In [10,12], the relaxation factor was recommended to be γk ∈ [γl, γu] ⊂ [1.5, 1.8].

We are now in a position to consider the inexactness restriction in the prediction step of
PPA-PC1. Notice that the result in Proposition 3.1 is valid only for α > 0. In order to guarantee
convergence of PPA-PC1 one must have α∗

k > 0. Observe the check numerator in equation (3.10).
Using uk − ṽk = (uk − vk) + ζk and Fk(v) = (v − uk) + βkF (v), we have

‖uk − ṽk‖2 − βk(ζk)T F (vk)

=
1
2
{‖(uk − vk) + ζk‖2 + ‖uk − ṽk‖2 − (ζk)T βkF (vk)}

=
1
2
{‖uk − vk‖2 + ‖ζk‖2 + ‖uk − ṽk‖2} − (ζk)T {(vk − uk) + βkF (vk)}

=
1
2
{‖uk − vk‖2 + ‖uk − ṽk‖2} − {(ζk)T Fk(vk) − 1

2‖ζk‖2}.

(3.15)

Therefore, we can consider the following inexactness restriction in the prediction step of PPA-
PC1:

(ζk)T Fk(vk) − 1
2‖ζk‖2 ≤ ν

2

(
‖uk − vk‖2 + ‖uk − ṽk‖2

)
, ν < 1. (3.16)

Substituting (3.16) in (3.15) we obtain

‖uk − ṽk‖2 − βk(ζk)T F (vk) ≥ 1 − ν

2

(
‖uk − vk‖2 + ‖uk − ṽk‖2

)
.

Consequently from (3.10) and (3.11) we have

α∗
k >

1 − ν

2
and

Ψk(α∗
k) ≥ (1 − ν)2

4

(
‖uk − vk‖2 + ‖uk − ṽk‖2

)
. (3.17)

Theorem 3.1 Given uk ∈ Ω and βk > 0, let vk ∈ Ω be an approximate solution of (1.2)
in the sense of (1.6) and the new iterate uk+1 be generated by (3.12). If the inexactness criterion
(3.16) holds, then {uk} converges to some u∞ ∈ Ω∗.

Proof First, according to the analysis above, we have

‖uk+1 − u∗‖2
(3.14)

≤ ‖uk − u∗‖2 − γk(2 − γk)Ψk(α∗
k)

(3.17)

≤ ‖uk − u∗‖2 − γk(2 − γk)(1 − ν)2

4

(
‖uk − vk‖2 + ‖uk − ṽk‖2

)
.

Since γk ∈ [γl, γu] ⊂ (0, 2), there is a constant c0 > 0 such that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − c0(‖uk − vk‖2 + ‖uk − ṽk‖2), ∀u∗ ∈ Ω∗. (3.18)

This means that the sequence {uk} is bounded. Next, we have
∞∑

k=1

c0

(
‖uk − vk‖2 + ‖uk − ṽk‖2

)
≤ ‖u0 − u∗‖2.
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Therefore,
lim

k→∞
‖uk − vk‖ = 0, lim

k→∞
‖uk − ṽk‖ = 0,

and consequently {vk} is also bounded. Moreover, since ζk = (uk − ṽk) − (uk − vk), we have

lim
k→∞

‖ζk‖ = 0.

Since βk ≥ βmin, it follows from Lemma 2.2 that

‖e(vk, βmin)‖ ≤ ‖vk − PΩ[vk − βkF (vk)]‖
(1.10)
= ‖ζk + ṽk − PΩ[vk − βkF (vk)]‖

(1.11)

≤ ‖ζk‖ + ‖PΩ[uk − βkF (vk)] − PΩ[vk − βkF (vk)]‖
(2.3)

≤ ‖ζk‖ + ‖uk − vk‖

and thus
lim

k→∞
e(vk, βmin) = 0. (3.19)

Let u∞ be a cluster point of {vk} and the subsequence {vkj} converges to u∞. Since e(u, β) is
a continuous function of u, it follows from (3.19) that

e(u∞, βmin) = lim
j→∞

e(vkj , βmin) = 0.

According to Lemma 2.1, u∞ is a solution point of VI(Ω, F ). Note that inequality (3.18) is true
for all solution points of VI(Ω, F ), hence we have

‖uk+1 − u∞‖2 ≤ ‖uk − u∞‖2, ∀k ≥ 0 (3.20)

and it follows that the sequence {uk} converges to u∞.

Remark 3.2 The method proposed in [15] is a specific implementation of the PPA-PC1
method (1.8). In [15] the inexactness restriction for prediction is set as

(ζk)T Fk(vk) − 1
2
‖ζk‖2 ≤ ν

2
‖uk − vk‖2, ν < 1, (3.21)

and the correction step is set as

uk+1 = PΩ[uk − βkF (vk)]. (3.22)

It is clear that condition (3.21) is more restrictive than condition (3.16). Under restriction (3.21)
in the prediction step, it follows that

1
2
‖uk − ṽk‖2 − βk(ζk)T F (vk) =

1
2
‖uk − vk‖2 −

(
(ζk)T [(vk − uk) + βkF (vk)] − 1

2
‖ζk‖2

)

≥ 1 − ν

2
‖uk − vk‖2.

Consequently from (3.10) we have

α∗
k =

‖uk − ṽk‖2 − βk(ζk)T F (vk)
‖uk − ṽk‖2

≥
1
2‖uk − ṽk‖2 + 1−ν

2 ‖uk − vk‖2

‖uk − ṽk‖2
> 0.5.
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The correction step (3.22) can be viewed as a special form of (3.12) by setting αk = γ∗
kα∗

k where

γ∗
k :=

1
α∗

k

∈ (0, 2). (3.23)

From equation (3.4) we have

Ψk(1) = ‖uk − ṽk‖2 − 2βk(ζk)T F (vk).

setting uk − ṽk = uk − vk + ζk, we have

Ψk(1) = ‖uk − vk‖2 −
(
2(ζk)T {(vk − uk) + βkF (vk)} − ‖ζk‖2

)
.

Applying the inexactness restriction (3.21) we obtain

Ψk(1) ≥ (1 − ν)‖uk − vk‖2. (3.24)

It follows from Proposition 3.1 that the sequence {uk} generated by the algorithm proposed in
[15] satisfies the inequality

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − ν)‖uk − vk‖2. (3.25)

The convergence of the algorithm follows from (3.25) directly.

4 Convergence Properties of Method PPA-PC2

In this section, we investigate the similar properties of PPA-PC2, namely the optimal step
length in the correction step and the inexactness restriction in the prediction step. The method
PPA-PC2 uses ṽk (defined in (1.7)) as the predictor, and its correction formula is given by

uk+1(α, ṽk) = PΩ[uk − αβkF (ṽk)], (4.1)

which is dependent on the parameter α. It follows from Proposition 2.1 that

Θk(α, ṽk) = ‖uk − u∗‖2 − ‖uk+1(α, ṽk) − u∗‖2 ≥ Υk(α, ṽk)

and
Υk(α, ṽk) = ‖uk − uk+1(α, ṽk)‖2 + 2αβk(uk+1(α, ṽk) − ṽk)T F (ṽk). (4.2)

Since uk+1(α, ṽk) is obtained from (4.1), Υk(α, ṽk) is again a non-differentiable function of α. Fol-
lowing the similar discussion as in the previous section, we seek a tight lower bound of Υk(α, ṽk)
which is a smooth function of α.

Since ṽk = PΩ[uk − βkF (vk)] and ξk = βk(F (ṽk) − F (vk)) ((1.7) and (1.12)), the predictor
ṽk in PPA-PC2 satisfies the following equation:

ṽk = PΩ[uk − βkF (ṽk) + ξk]. (4.3)

According to Lemma 2.1, the pair ṽk and ξk satisfies the inequality

ṽk ∈ Ω, (u′ − ṽk)T {(ṽk − uk) + βkF (ṽk) − ξk} ≥ 0, ∀u′ ∈ Ω. (4.4)
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A method of type (4.1) which uses ṽk from (4.4) as predictor was proposed by the first author
in [13].

Proposition 4.1 Given uk ∈ Ω and βk > 0, let vk ∈ Ω be an approximate solution of
(1.2) in the sense of (1.6), ṽk be defined in (1.7) and the new iterate uk+1(α, ṽk) be given by
(4.1). Then for any α > 0 we have

‖uk − u∗‖2 − ‖uk+1(α, ṽk) − u∗‖2 ≥ Υk(α, ṽk) ≥ Φk(α), (4.5)

where
Φk(α) := 2α(uk − ṽk)T dk − α2‖dk‖2, (4.6)

dk := uk − ṽk + ξk, (4.7)

and ξk is defined as in (1.12).

Proof The proof is parallel to the proof of Proposition 3.1. Based on (4.3), it follows from
(2.1) that

0 ≥ 2α{uk+1(α, ṽk) − ṽk}T {[uk − βkF (ṽk) + ξk] − ṽk}.
Adding the inequality above and (4.2) similar to inequality (3.7), for any α ≥ 0, we obtain

Υk(α, ṽk) ≥ ‖uk − uk+1(α, ṽk)‖2 + 2α(uk+1(α, ṽk) − ṽk)T (uk − ṽk + ξk). (4.8)

Using the notation of dk, we obtain

Υk(α, ṽk) ≥ ‖uk − uk+1(α, ṽk)‖2 + 2α{(uk+1(α, ṽk) − uk) + (uk − ṽk)}T dk

= ‖(uk − uk+1(α, ṽk)) − αdk‖2 + 2α(uk − ṽk)T dk − α2‖dk‖2

≥ 2α(uk − ṽk)T dk − α2‖dk‖2

= Φk(α)

(4.9)

and the assertion of this proposition is proved.

Remark 4.1 For the PPA-PC2 method, inequality Υk(α, ṽk) ≥ Φk(α) is tight. Applying
similar argument as in Remark 3.1 we obtain that Υk(α, ṽk) = Φk(α) when Ω = Rn.

The result in Proposition 4.1 is the foundation for investigating the convergence properties
of the PPA-PC2 method. Based on the inequality

‖uk+1(α, ṽk) − u∗‖2 ≤ ‖uk − u∗‖2 − Φk(α), (4.10)

and
Φk(α) = 2α(uk − ṽk)T dk − α2‖dk‖2,

we explore the inexactness criteria in the prediction step as well as the step length in the correc-
tion step of method PPA-PC2. We refer to Φk(α) as a profit-function of method PPA-PC2, since
it measures the improvement obtained in the k-th iteration of method PPA-PC2. It is natural
to maximize the profit function Φk(α) in each iteration. Note that Φk(α) is a quadratic function
of α and it reaches its maximum at

α∗
k =

(uk − ṽk)T dk

‖dk‖2
(4.11)
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with
Φk(α∗

k) = α∗
k(uk − ṽk)T dk. (4.12)

Following the discussion in the previous section, for fast convergence we propose a relaxation
factor γk ∈ [1, 2) and set the step-size αk in (4.1) by αk = γkα∗

k. The recommended correction
formula is

uk+1 = PΩ[uk − γkα∗
kβkF (ṽk)]. (4.13)

By simple manipulations we obtain

Φk(γkα∗
k)

(4.6)
= 2γkα∗

k(uk − ṽk)T dk − (γ2
kα∗

k)(α∗
k‖dk‖2)

(4.11)
= (2γkα∗

k − γ2
kα∗

k)(uk − ṽk)T dk

(4.12)
= γk(2 − γk)Φk(α∗

k).

(4.14)

It follows from Proposition 4.1 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γk(2 − γk)Φk(α∗
k). (4.15)

In [10,12], the relaxation factor was recommended to be γk ∈ [γl, γu] ⊂ [1.5, 1.8].

In order to guarantee α∗
k > 0, we only need

|(uk − ṽk)T ξk| ≤ ν‖uk − ṽk‖2, ν < 1.

However, to obtain numerical stability we propose

|(uk − ṽk)T ξk| ≤ ν‖uk − ṽk‖2 and ‖ξk‖ ≤ μ‖uk − ṽk‖, 0 < ν < 1 ≤ μ (4.16)

as a recommended inexactness restriction in the prediction step of PPA-PC2.

We now proceed to obtain a lower bound for the profit function Φk(α∗
k). From the first part

of (4.16), we have

(uk − ṽk)T dk = ‖uk − ṽk‖2 + (uk − ṽk)T ξk ≥ (1 − ν)‖uk − ṽk‖2. (4.17)

In the case of (uk − ṽk)T ξk ≤ 0, it follows from (4.7) that

‖dk‖2 ≤ ‖uk − ũk‖2 + ‖ξk‖2

(4.16)

≤ (1 + μ2)‖uk − ṽk‖2

(4.17)

≤ (1+μ2)
1−ν (uk − ṽk)T dk.

(4.18)

Otherwise, if (uk − ṽk)T ξk ≥ 0, noticing that μ ≥ 1 we have

‖dk‖2
(4.16)

≤ (1 + μ2)‖uk − ṽk‖2 + 2(uk − ṽk)T ξk

≤ (1 + μ2)‖uk − ṽk‖2 + (1 + μ2)(uk − ṽk)T ξk

(4.7)
= (1 + μ2)(uk − ṽk)T dk.

(4.19)
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Therefore, from (4.11), (4.18) and (4.19), we have

α∗
k ≥ 1 − ν

1 + μ2
.

and consequently from (4.12) and (4.17),

Φk(α∗
k) ≥ (1 − ν)2

1 + μ2
‖uk − ṽk‖2. (4.20)

If the inexactness restriction (4.16) holds, then from (4.15) and (4.20) we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γk(2 − γk)(1 − ν)2

1 + μ2
‖uk − ṽk‖2. (4.21)

Theorem 4.1 Given uk ∈ Ω and βk > 0, let vk ∈ Ω be an approximate solution of (1.2)
in the sense of (1.6) and the new iterate uk+1 be generated by (4.13). If the inexactness criterion
(4.16) holds, then {uk} converges to some u∞ ∈ Ω∗

Proof The proof is based on inequality (4.21) and is similar to the proof of Theorem 3.1.
We omit the details.

5 Comparison of PPA-PC1 and PPA-PC2

In this section we compare the inexactness restrictions of the two methods. Both restrictions
are tight for the convergence of the methods. We indicate that the restriction on PPA-PC2 is
much more relaxed compared to the restriction on PPA-PC1, as illustrated in the particular case
where the variational inequality is linear.

First we summarize the main features of each method. The PPA-PC1 method takes vk as
the predictor and the main result is

Θk(α, vk) = ‖uk − u∗‖2 − ‖uk+1(α, vk) − u∗‖2 ≥ Υk(α, vk) ≥ Ψk(α), (5.1)

where
Ψk(α) = 2α{‖uk − ṽk‖2 − βk(ζk)T F (vk)} − α2‖uk − ṽk‖2. (5.2)

On the other hand, the method PPA-PC2 uses ṽk as the predictor and the relevant result is

Θk(α, ṽk) = ‖uk − u∗‖2 − ‖uk+1(α, ṽk) − u∗‖2 ≥ Υk(α, ṽk) ≥ Φk(α), (5.3)

where
Φk(α) = 2α{‖uk − ṽk‖2 + (uk − ṽk)T ξk} − α2‖(uk − ṽk) + ξk‖2. (5.4)

Functions Ψk(α) (5.2) and Φk(α) (5.4) are the tight differentiable lower bounds of Θk(α, vk) and
Θk(α, ṽk), respectively. Since Inequalities (5.1) and (5.3) can not be improved in the general case,
it is reasonable to take functions Ψk(α) and Φk(α) as the foundations for analysis of methods
PPA-PC1 and PPA-PC2, respectively.

The inexactness restriction in PPA-PC1 is based on function Ψk(α). Since vk ∈ Ω and
ṽk = PΩ[vk − Fk(vk)], it follows from (2.1) that

{(vk − Fk(vk)) − ṽk}T {vk − ṽk} ≤ 0.
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From (1.10) and the above inequality we have

(ζk)T Fk(vk) ≥ ‖ζk‖2. (5.5)

Therefore, in order to satisfy the inexactness restriction (3.16) in the prediction step of PPA-PC1,
namely,

(ζk)T Fk(vk) − 1
2
‖ζk‖2 ≤ ν

2

(
‖vk − uk‖2 + ‖uk − ṽk‖2

)
, ν < 1,

it is necessary to have

(vk − ṽk)T Fk(vk) ≤ ν(‖uk − vk‖2 + ‖uk − ṽk‖2), ν < 1. (5.6)

Usually F (u∗) �= 0, as uk → u∗, if the direction vk −PΩ[vk −Fk(vk)] is almost parallel to Fk(vk),
it follows from (5.6) that

‖vk − ṽk‖ = O(‖uk − vk‖2 + ‖uk − ṽk‖2). (5.7)

Meanwhile, for the PPA-PC2 method, Φk(α) is the base for considering the inexactness restriction
in the prediction. Recall that the inexactness restriction (4.16) is

|(uk − ṽk)T ξk| ≤ ν‖uk − ṽk‖2 and ‖ξk‖ ≤ μ‖uk − ṽk‖, 0 < ν < 1 ≤ μ.

Since ξk = βk[F (ṽk) − F (vk)], the above inequalities are satisfied if

βk‖F (vk) − F (ṽk)‖ ≤ ν‖uk − ṽk‖, ν < 1. (5.8)

If F is Lipschitz continuous, then it follows from (5.8) that

‖vk − ṽk‖ = O(‖uk − ṽk‖). (5.9)

Comparing (5.7) and (5.9), it seems that the inexactness restriction (4.16) in PPA-PC2 is much
more relaxed than (3.16) in PPA-PC1 when uk is near a solution point.

In order to illustrate the difference in the two inexactness restrictions, we consider the
phenomenon where the two PPA-PC methods are applied to the following linear variational
inequality

LVI(Ω, M, q) u∗ ∈ Ω, (u − u∗)T (Mu∗ + q) ≥ 0, ∀u ∈ Ω, (5.10)

where M is a skew-symmetric matrix.

By setting vk := uk, we have

ṽk = PΩ[uk − βk(Muk + q)] (5.11)

and
ξk = βkM(ṽk − uk).

Since M is skew-symmetric, MT = −M , it follows that (uk − ṽk)T ξk = 0. Therefore, for any
ν ∈ (0, 1) and μ = max{1, βmax‖M‖}, we have

|(uk − ṽk)T ξk| ≤ ν‖uk − ṽk‖2 and ‖ξk‖ ≤ μ‖uk − ṽk‖. (5.12)
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The inexactness restriction (4.16) in PPA-PC2 is held.

For the PPA-PC1 method, when vk = uk, from the left and right hand sides of (5.6) we
obtain

(vk − ṽk)T Fk(vk)
(5.5)

≥ ‖vk − ṽk‖2 = ‖uk − ṽk‖2

and

ν(‖uk − vk‖2 + ‖uk − ṽk‖2) = ν‖uk − ṽk‖2,

respectively. Therefore, this predictor (vk = uk) does not satisfy (5.6) and thus does not satisfy
the inexactness restriction (3.16) in the method PPA-PC1.

The implementation advantage of the PPA-PC2 method over the PPA-PC1 method becomes
obvious in this case. Some numerical experiments in [14] showed how efficiently the PPA-PC2
method can be implemented when it is applied to a linear variational inequality raised from a
constrained shortest network problem [19].

6 Conclusion

In this paper we study two methods (PPA-PC1 and PPA-PC2), which are the proximal point
algorithm (PPA) based prediction-correction (PC) methods for monotone variational inequalities.
For each method we present a profit function. We show that the profit functions are tight lower
bounds of the improvement obtained in each iteration for the methods. Based on this conclusion
we then obtain the convergence inexactness restrictions for the prediction step. By comparing the
inexactness restrictions for the two methods we conclude that the PPA-PC2 method possesses
much stronger computational efficiency, since its inexactness restriction is much relaxed compared
to that of the PPA-PC1 method.
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