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Abstract. In this paper, we present a new fourth-order upwinding embedded bound-
ary method (UEBM) over Cartesian grids, originally proposed in the Journal of Com-
putational Physics [190 (2003), pp. 159-183.] as a second-order method for treating
material interfaces for Maxwell’s equations. In addition to the idea of the UEBM to
evolve solutions at interfaces, we utilize the ghost fluid method to construct finite dif-
ference approximation of spatial derivatives at Cartesian grid points near the material
interfaces. As a result, Runge-Kutta type time discretization can be used for the semi-
discretized system to yield an overall fourth-order method, in contrast to the original
second-order UEBM based on a Lax-Wendroff type difference. The final scheme allows
time step sizes independent of the interface locations. Numerical examples are given
to demonstrate the fourth-order accuracy as well as the stability of the method. We
tested the scheme for several wave problems with various material interface locations,
including electromagnetic scattering of a plane wave incident on a planar boundary and
a two-dimensional electromagnetic application with an interface parallel to the y-axis.

Key words: Yee scheme; upwinding embedded boundary method (UEBM); ghost fluid method
(GFM); Maxwell’s equations.

1 Introduction

The finite difference time domain (FDTD) Yee scheme, first introduced by Yee in 1966
[1] and later developed by Taflove and others [2], has been used for a broad range of
application problems in computational electromagnetics. The staggered Yee scheme has
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been demonstrated to be robust, efficient, and simple to implement. However, when
used to model curved objects or to solve Maxwell’s equations in media with material
interfaces, the Yee scheme requires locally conforming meshes for the irregular boundaries
or the material interfaces. Otherwise, it will reduce to at best first-order accuracy and
may produce locally non-convergent results [3, 4]. Furthermore, for Maxwell’s equations
with discontinuous coefficients, the Yee scheme might not be able to capture the possible
discontinuity of the solution across the interfaces.

A number of finite difference methods have been proposed in the past for modeling
time-domain Maxwell’s equations with curved material interfaces. The usual and straight-
forward approach is to introduce appropriate local modifications into the Yee scheme but
still keep the staggered grid [4, 5]. Recently, there are some studies of high-order em-
bedded FDTD schemes for time-domain Maxwell’s equations with material interfaces,
including the non-dissipative staggered fourth-order accurate explicit method and the
staggered fourth-order compact implicit method by Yefet et al [6, 7], and the explicit
fourth-order staggered method and the explicit fourth-order orthogonal curvilinear stag-
gered grid method by Xie et al [8, 9]. Also, high-order FDTD methods via hierarchical
implicit derivative matching are presented in [10].

In this paper, we present a new fourth-order upwinding embedded boundary method
(UEBM) over Cartesian grids, originally proposed in [11] as a second-order method for
treating material interfaces for Maxwell’s equations. In addition to the idea of the UEBM
to evolve solutions at the interfaces, we utilize the ghost fluid method to construct finite
difference approximation of spatial derivatives at Cartesian grid points near the mate-
rial interfaces. As a result, Runge-Kutta type time discretization can be used for the
semi-discretized system to yield an overall fourth-order method, in contrast to the original
second-order method based on a Lax-Wendroff type difference. The fourth-order method
still uses a simple Cartesian grid and a central difference scheme for mesh points away from
the interfaces. Solutions at both sides of the interfaces are calculated with an upwinding
strategy while preserving the possible physical jump conditions. Previous numerical meth-
ods making use of Cartesian grids for the approximation of one-dimensional hyperbolic
equations could also be found in [12–14].

The ghost fluid method (GFM) was originally designed to treat contact discontinuities
in the inviscid Euler equations in [15], and since then it has been generalized to handle
irregular boundaries in a variety of problems [16–28]. For examples, with the use of
the so-called ghost cells (based on the GFM), Gibou et al proposed in [20] a second-
order accurate finite difference method for Poisson equations, and most recently in [21]
a fourth-order accurate finite difference discretization for the Laplace and heat equations
on irregular domains with Dirichlet boundary conditions on the irregular interfaces. For
second-order wave equations, by using ghost points on either side of the interfaces, Kreiss
et al proposed several second-order embedded boundary methods with Dirichlet boundary
condition [25, 26], Neumann boundary condition [27], and jump conditions [28] on the
irregular interfaces, respectively.

In this paper, we shall combine the GFM with the UEBM to derive high-order Carte-
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sian grid based finite difference methods for hyperbolic systems. In particular, we shall
utilize the ideas in [21] to develop a fourth-order accurate finite difference method for
one-dimensional time-domain Maxwell’s equations with discontinuous coefficients. First,
the equations are discretized in space on a uniform Cartesian grid and the interface is al-
lowed to locate between Cartesian grid points in an arbitrary fashion. Then, ghost points
are introduced in the neighborhood of the interface, and used in the discretization of the
spatial derivatives in the wave equations. To capture the boundary conditions across the
interface, like in the original UEBM, the solutions at both sides of the interface are cal-
culated by one-sided extrapolations of the solutions from the corresponding sides of the
interface. Since in a hyperbolic system, the upwind characteristic information should be
unaffected by the material interface, the two interface solutions are so constructed such
that both the jump condition and the upwinding characteristic properties are observed.

The rest of the paper is organized as follows. In Section 2, we introduce the new fourth-
order UEBM for scalar wave equations while its extension to one-dimensional system is
given in Section 3. In Section 4, we present a series of numerical examples to show the
fourth-order accuracy and the stability for time marching step sizes independent of the
interface locations. Finally, a conclusion is given in Section 5.

2 One-dimensional scalar wave equation

To demonstrate the basic idea of the fourth-order UEBM, we begin by considering the
following scalar wave equation

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ Ω = [a, b], (2.1)

where the wave speed c is assumed to be positive and discontinuous at xd ∈ (a, b), i.e.,

c =

{

c− > 0, x < xd,
c+ > 0, x > xd.

The solution u(x, t) is in general discontinuous at the interface xd, and is assumed to
satisfy the following given interface jump condition

r+u(x+
d , t) − r−u(x−

d , t) = g(t), (2.2)

where u(x−
d , t) and u(x+

d , t) represent the two one-sided limits of the solution as x ap-
proaches the interface xd.

We shall employ a semi-discrete approach to develop a fourth-order finite difference
method for (2.1). The spatial computational domain [a, b] is discretized into cells of size ∆x
to form a uniform Cartesian grid {xi = a + i∆x, 0 ≤ i ≤ N, ∆x = (b − a)/N}. Let Un

i

denote the numerical approximation of the solution u(xi, tn), and also let U−,n and U+,n

denote the numerical approximation of the solutions u(x−
d , tn) and u(x+

d , tn), respectively.
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Figure 1: Illustration of the ghost cell and the ghost value (with linear extrapolation).

2.1 Approximation of spatial derivative at Cartesian grids

For a semi-discrete approach, let us first focus on the discretization of the spatial derivative
ux. To compute a fourth-order accurate approximation of ux at the node xi, we use

(ux)i ≈
1

12∆x
(Ui−2 − 8Ui−1 + 8Ui+1 − Ui+2) . (2.3)

However, the discretization (2.3) is valid only if all the nodes in the fourth-order stencil
belong to the same side of the interface, and needs to be modified otherwise. Suppose that
the discontinuity, xd, lies between the nodes xj and xj+1, and xd = xj + θ∆x (see Fig. 1),
where 0 ≤ θ < 1 is the cell fraction. We seek to approximate ux at the nodes xj−1 and xj.
Since the solution might not be continuous across the interface, we need valid values for
Uj+1 and Uj+2 that “emulate” the behavior of the solution to the left of the interface. As
discussed in [21], this can be achieved by introducing ghost cells near the discontinuity,
or in another word, ghost values UG

j+1 and UG
j+2 to the right of the interface defined by

extrapolation of the solution to the left of the interface. Then, the spatial discretization
(2.3) for the irregular grid points xj−1 and xj can be rewritten as

(ux)j−1 ≈ 1

12∆x

(

Uj−3 − 8Uj−2 + 8Uj − UG
j+1

)

, (2.4)

(ux)j ≈
1

12∆x

(

Uj−2 − 8Uj−1 + 8UG
j+1 − UG

j+2

)

. (2.5)

We could construct a cubic extrapolant L(x) of u(x) to the left of the interface, such
that L(−2∆x) = Uj−2, L(−∆x) = Uj−1, L(0) = Uj and L(θ∆x) = U−. Then the ghost
values at the nodes xj+1 and xj+2 are defined as UG

j+1 = L(∆x) and UG
j+2 = L(2∆x),

respectively. In practice, however, when the cell fraction θ is small, we instead construct
a cubic extrapolant L(x) such that L(−2∆x) = Uj−3, L(−∆x) = Uj−2, L(0) = Uj−1, and
L((1+θ)∆x) = U−. Note that in this case, we use U− rather than Uj in the extrapolation,
and it is for this reason that, in addition to the solution at all grid points, at each time step
we need to calculate the solution at both sides of the interface as well. Accordingly, the
ghost values at the nodes xj+1 and xj+2 are defined as UG

j+1 = L(2∆x) and UG
j+2 = L(3∆x),
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respectively. We have

UG
j+1 = L(2∆x) = a1(θ)Uj−3 + a2(θ)Uj−2 + a3(θ)Uj−1 + a4(θ)U−, (2.6)

UG
j+2 = L(3∆x) = b1(θ)Uj−3 + b2(θ)Uj−2 + b3(θ)Uj−1 + b4(θ)U−, (2.7)

where

a1(θ) =
3(θ − 1)

3 + θ
, a2(θ) =

8(1 − θ)

2 + θ
, a3(θ) =

6(θ − 1)

1 + θ
, a4(θ) =

24

F (θ)
,

b1(θ) =
6(θ − 2)

3 + θ
, b2(θ) =

15(2 − θ)

2 + θ
, b3(θ) =

10(θ − 2)

1 + θ
, b4(θ) =

60

F (θ)
,

and F (θ) =
∏3

i=1(i + θ).

Similarly, to approximate the spatial derivative at the nodes xj+1 and xj+2, we require
ghost values at the nodes xj−1 and xj, denoted by UG

j−1 and UG
j , respectively, which can

“emulate” the behavior of the solution defined to the right of the interface as if no interface
is present. Accordingly, the numerical discretization (2.3) of the spatial derivative ux at
the nodes xj+1 and xj+2 in terms of the ghost values would be

(ux)j+1 ≈ 1

12∆x

(

UG
j−1 − 8UG

j + 8Uj+2 − Uj+3

)

, (2.8)

(ux)j+2 ≈ 1

12∆x

(

UG
j − 8Uj+1 + 8Uj+3 − Uj+4

)

. (2.9)

Here, the ghost values UG
j−1 and UG

j could be obtained by a cubic extrapolant R(x) such
that R(0) = Uj+1, R(∆x) = Uj+2, R(2∆x) = Uj+3, and R((θ − 1)∆x) = U+. Then, the
ghost values at the nodes xj−1 and xj are defined as UG

j−1 = R(−2∆x) and UG
j = R(−∆x),

respectively. But again considering that the cell fraction θ could be very close to one in
practice, we use the cubic extrapolant with the conditions that R(0) = Uj+2, R(∆x) =
Uj+3, R(2∆x) = Uj+4, and R((θ − 2)∆x) = U+, giving the following ghost values at the
nodes xj−1 and xj instead

UG
j = R(−2∆x) = a1(1 − θ)Uj+4 + a2(1 − θ)Uj+3 + a3(1 − θ)Uj+2 + a4(1 − θ)U+,

(2.10)

UG
j−1 = R(−3∆x) = b1(1 − θ)Uj+4 + b2(1 − θ)Uj+3 + b3(1 − θ)Uj+2 + b4(1 − θ)U+.

(2.11)

2.2 Calculation of solutions at interface, U
− and U

+

As mentioned earlier, to capture the boundary conditions across the material interfaces
using a Cartesian grid, we need to keep track of the solution at both sides of the interfaces
as well. Please note that they are also required in calculating the ghost values for points
in the neighborhood of the interfaces. Since the solution of Eq. (2.1) represents a wave
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propagating from the left to the right, we calculate U− by a cubic extrapolant P (x) such
that P (−3∆x) = Uj−3, P (−2∆x) = Uj−2, P (−∆x) = Uj−1, and P (0) = Uj, i.e.,

U− = P (θ∆x) = − Q(θ)

6(θ + 3)
Uj−3 +

Q(θ)

2(θ + 2)
Uj−2 −

Q(θ)

2(θ + 1)
Uj−1 +

Q(θ)

6θ
Uj , (2.12)

where Q(θ) =
∏3

i=0(i + θ) (when θ = 0, U− = Uj), and then calculate U+ simply using
the jump condition (2.2),

U+ =
1

r+
(g + r−U−). (2.13)

Remark 1: The above fourth-order central finite difference scheme, together with its local
modification in the neighborhood of the interface, can be applied at all nodes in a bounded
domain except at x0, x1, xN−1 and xN . Since the solution of Eq. (2.1) represents a wave
propagating from the left to the right, a physical boundary condition shall be imposed
at the first node x0. At the other three nodes, the following third-order accurate one-
sided approximations are employed as numerical boundary conditions in order to globally
approximate the derivative.

(ux)1 ≈ 1

6∆x
(−2U0 − 3U1 + 6U2 − U3) , (2.14)

(ux)N−1 ≈ 1

6∆x
(UN−3 − 6UN−2 + 3UN−1 + 2UN ) , (2.15)

(ux)N ≈ 1

6∆x
(−2UN−3 + 9UN−2 − 18UN−1 + 11UN ) . (2.16)

Remark 2 (Avoiding downwind differencing near material interfaces): When
the cell fraction is θ = 0, the approximations (2.4) and (2.5) will reduce to one-sided
approximations like (2.15) and (2.16), which are stable upwind schemes for the problem
being concerned. When the cell fraction is θ = 1 (in this case, U+ = Uj+1), however, the
approximations (2.8) and (2.9) will reduce to the following one-sided approximations

(ux)j+1 ≈ 1

6∆x
(−11Uj+1 + 18Uj+2 − 9Uj+3 + 2Uj+4) , (2.17)

(ux)j+2 ≈ 1

6∆x
(−2Uj+1 − 3Uj+2 + 6Uj+3 − Uj+4) . (2.18)

Note that the scheme (2.17) is essentially an unstable downwind scheme (as confirmed
by our numerical tests). For this reason, when θ is close to one, instead of using (2.8),
we calculate Uj+1 by constructing a cubic interpolant S(x) such that S(∆x) = Uj+2,
S(2∆x) = Uj+3, S(3∆x) = Uj+4, and S((θ − 1)∆x) = U+. Then, we have

Uj+1 = S(0) =
−6

T (θ)
U+ +

3(1 − θ)

2 − θ
Uj+2 −

3(1 − θ)

3 − θ
Uj+3 +

1 − θ

4 − θ
Uj+4, (2.19)

where T (θ) =
∏4

i=2(θ − i).
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Remark 3: It has been shown theoretically and demonstrated numerically that, when
a certain order finite difference method is used to approximate mixed initial boundary
value problems, the use of a local one-order-lower scheme at a finite number of grid points
will not affect the global accuracy of the scheme [4, 8, 21, 29, 30]. For example, when the
GFM is used in solving Laplace and heat equations on arbitrary domains, first-, second-,
third- and fourth-order accuracy in L∞ norm is maintained in the case of constant, linear,
quadratic and cubic extrapolations, respectively [21]. It is for this reason that we use
the cubic extrapolations (2.6)-(2.7) and (2.10)-(2.11) to define ghost values, the cubic
extrapolation (2.12) to calculate the interface solution U−, the cubic interpolation (2.19)
to find Uj+1, and the one-sided third-order finite difference schemes (2.14)-(2.16) at and
near the boundaries as the numerical boundary conditions. As confirmed by numerical
experiments in Section 4, the overall fourth-order convergence rate of the fourth-order
scheme is maintained.

To have the fourth-order accuracy in both space and time, we use a fourth-order Runge-
Kutta scheme for temporal integration as it can provide a relatively large stability region.
Specifically, we use the classical four-stage Runge-Kutta scheme even though a further
improvement can be achieved by using the high resolution fourth-order low-dissipation
and low-dispersion Runge-Kutta scheme proposed by Hu et al [31].

3 One-dimensional wave system

The discretization scheme discussed in Section 2 for scalar wave equations can be extended
naturally to the following system of linear wave equations,

∂u

∂t
+ A

∂u

∂x
= 0, x ∈ Ω = [a, b], (3.1)

where u(x, t) = (u1(x, t), · · · , un(x, t))T . The coefficient matrix A has different formulas
across the discontinuity xd ∈ (a, b) representing a material interface

A =

{

A−, x < xd,
A+, x > xd,

and, in general, the solution u(x, t) will be discontinuous across the interface. Its values
at the left and the right sides of the interface, u(x−

d , t) and u(x+
d , t), are assumed to be

coupled by the following jump condition

R+u(x+
d , t) − R−u(x−

d , t) = g(t). (3.2)

We seek to develop a uniformly fourth-order finite difference method by a semi-discrete
approach. For regular grid points, the standard fourth-order central finite difference ap-
proximation (2.3) is employed for the spatial discretization

(ux)i ≈
1

12∆x
(Ui−2 − 8Ui−1 + 8Ui+1 − Ui+2) . (3.3)
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At nodes in the neighborhood of the interface, i.e., xj−1, xj, xj+1, and xj+2, ghost values
UG

j−1, UG
j , UG

j+1, and UG
j+2 are defined and used to approximate ux in the exactly same

fashion as discussed in Section 2 for the case of scalar wave equations.
In general, the coefficient matrix could have eigenvalues of opposite signs, indicating

that waves could propagate through the interface in opposite directions. In this case, cu-
bic extrapolations similar to (2.12) are then employed to calculate both U− and U+, the
solutions at both sides of the interface. In a hyperbolic problem, however, upwinding com-
ponents of waves should pass through an interface unaffected by downwind contributions,
which implies that for the solutions at both sides of the interface, the upwinding property
should be maintained. For the numerical solution to satisfy this upwinding property as
well as the jump condition (3.2), special treatment has to be introduced. Suppose that
the coefficient matrix A can be diagonalized as follows

A = PΛP−1,

where Λ = diag(λ1, λ2, · · · , λn) in which λi’s are the eigenvalues. Without loss of gen-
erality, we assume that λ1, · · · , λp ≥ 0, and λp+1, · · · , λn < 0. Also for a well-defined
hyperbolic problem, A− and A+ are assumed to have the same number of positive eigen-
values as well as the same number of negative ones. Then, by introducing the characteristic
variable w = (w1, w2, · · · , wn)T = P−1u, first we can rewrite the jump condition (3.2) as

Q+w+ − Q−w− = g, (3.4)

where Q− = R−P−, Q+ = R+P+, and w− = (P−)−1u− and w+ = (P+)−1u+ are
the approximations of the characteristic variable w at the two sides of the discontinuity,
respectively. Then we let

w− =

(

w−
1

w−
2

)

, w+ =

(

w+
1

w+
2

)

be the partitions of w− and w+ based on the signs of the eigenvalues of the coefficient
matrix, i.e., w1 = (w1, · · · , wp)

T and w2 = (wp+1, · · · , wn)T , and

Q− =





Q−
11 Q−

12

Q−
21 Q−

22



 , Q+ =





Q+
11 Q+

12

Q+
21 Q+

22



 (3.5)

be the corresponding partitions of the matrices Q− and Q+, respectively. By the upwinding
principle, the w−

1 component of w− and the w+
2 component of w+ should not be affected

by the embedded interface boundary. On the other hand, the w+
1 component of w+ and

the w−
2 component of w− shall be corrected in an upwinding manner, which can be done

by rearranging the jump condition (3.4) as

(

Q+
11 −Q−

12

Q+
21 −Q−

22

) (

w+
1

w−
2

)

= g −
(

−Q−
11 Q+

12

−Q−
21 Q+

22

)(

w−
1

w+
2

)

. (3.6)
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Here, the coefficient matrix on the left side of Eq. (3.6) will be invertible for well-posed
hyperbolic systems. Once we have the updated characteristic components w+

1 and w−
2 ,

the solutions at the interface are calculated by u− = P−w− and u+ = P+w+.
As discussed in Section 2, in the case that the cell fraction θ is very close to zero

or one, for the stability concern the corresponding downwind characteristic information
in Uj and Uj+1 should be corrected. To this end, after calculating the two solutions
by finite difference scheme, say UF

j and UF
j+1, we also need to calculate them by cubic

interpolations as (2.19), say UI
j and UI

j+1. Then at each node, the two solutions are

corrected such that only the upwinding information in UF
j and UF

j+1 is preserved, giving
the two solutions

Uj = P−
(

WF
j,1

WI
j,2

)

, Uj+1 = P+

(

WI
j+1,1

WF
j+1,2

)

,

with

Wα
j = (P−)−1Uα

j =

(

Wα
j,1

Wα
j,2

)

, Wα
j+1 = (P+)−1Uα

j+1 =

(

Wα
j+1,1

Wα
j+1,2

)

representing the partitions of Wα
j and Wα

j+1 based on the signs of the eigenvalues of the
coefficient matrix, where α ∈ {F, I}.

4 Numerical examples

To test the fourth-order accuracy and the stability of the proposed scheme, several wave
systems with available exact solutions are simulated in this section. In all of our numerical
examples, the exact solutions are imposed as initial conditions as well as Dirichlet bound-
ary conditions at the boundaries of the computational domains so that we can measure
the errors in the numerical solutions and thus investigate the convergence property of the
scheme. Also, unless otherwise specified, the exact solutions are utilized in defining jump
conditions of the type [u] = u+ − u− across material interfaces.

4.1 Linear one-dimensional wave system

We begin by considering the one-dimensional wave system (3.1) in the domain Ω = [0, 1],
with different formulas for the coefficient matrix across the discontinuity xd ∈ (0, 1) being

A− =

(

0 1
1 0

)

and A+ =

(

0 3
3 0

)

,

respectively. One analytical solution u = (u1, u2)
T to this system is

u1(x, t) =















1

2
(sin(k(x + t)) + sin(k(x − t)) , 0 ≤ x < xd,

1

2
(sin(k(x + 3t)) + sin(k(x − 3t)) , xd < x ≤ 1,
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Table 1: Order of accuracy corresponding to constant, linear, quadratic, and cubic extrapolation.

Constant Linear Quadratic Cubic
N ‖ E ‖ order ‖ E ‖ order ‖ E ‖ order ‖ E ‖ order

100 1.03E-1 1.59E-2 4.00E-3 3.52E-3

200 5.05E-2 1.03 4.38E-3 1.86 4.14E-4 3.27 2.01E-4 4.13

400 2.48E-2 1.02 1.11E-3 1.98 4.87E-5 3.09 1.27E-5 3.99

800 1.23E-2 1.01 2.78E-4 2.00 6.18E-6 2.98 7.90E-7 4.01

1600 6.11E-3 1.01 6.93E-5 2.00 7.81E-7 2.98 4.92E-8 4.01

3200 3.05E-3 1.00 1.73E-5 2.00 9.81E-8 2.99 3.07E-9 4.00

and

u2(x, t) =















−1

2
(sin(k(x + t)) − sin(k(x − t)) , 0 ≤ x < xd,

−1

2
(sin(k(x + 3t)) − sin(k(x − 3t)) , xd < x ≤ 1,

where the wave number k is set as 8π in the following tests, corresponding to a total of
four wavelengths in the domain [0, 1].

As mentioned earlier, the overall accuracy of the method is determined by the order
of the extrapolation in defining ghost values. To investigate the relationship between the
global accuracy of the proposed scheme and the order of the extrapolation, we consider
constant, linear, quadratic and cubic extrapolations. For instance, to calculate UG

j+1 and

UG
j+2, the following polynomial extrapolant I(x) is employed to define the ghost values,

where Pm(x) represents the space of polynomials of degree m or less.

(a) Constant extrapolation: I(x) = U−.

(b) Linear extrapolation: I(x) ∈ P1(x) such that I(0) = Uj−1 and I((1 + θ)∆x) = U−.

(c) Quadratic extrapolation: I(x) ∈ P2(x) such that I(−∆x) = Uj−2, I(0) = Uj−1,
and I((1 + θ)∆x) = U−. And

(d) Cubic extrapolation: I(x) ∈ P3(x) such that I(−2∆x) = Uj−3, I(−∆x) = Uj−2,
I(0) = Uj−1, and I((1 + θ)∆x) = U−.

Table 1 shows the error analysis, where ‖ E ‖ denotes the relative error in the numerical
solution measured in L∞ norm over all grid points (including the solutions at the interface)
at time t = 10. For all four cases, we set the interface location at xd = 0.5+∆x/2. Also for
this test, the courant number CFL, defined by ∆t/∆x, is chosen very small (CFL=0.05)
so that the error from time integration is negligible. As can be seen, constant, linear,
quadratic and cubic extrapolations are sufficient to guarantee first-, second-, third- and
fourth-order global accuracy of the proposed scheme, respectively.

We next consider the dependence of CFL on the interface location and the dependence
of accuracy on CFL. To this end, we shall test five different cases with the discontinuity xd
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Figure 2: Maximal errors in L∞ norm versus ∆t/∆x for different cell fraction θ. (a) ∆x = 1/200; (b)
∆x = 1/400. The scheme is stable when CFL≤ 0.68 but becomes unstable when CFL≥ 0.69 (not shown).

at 0.5 + ∆x/108, 0.5 + ∆x/4, 0.5 + ∆x/2, 0.5 + 3∆x/4, and 0.5− ∆x/108, corresponding
to five different cell fractions θ = 10−8, 1/4, 1/2, 3/4, and 1 − 10−8, respectively. Fig. 2
displays maximal errors in L∞ norm at the time t = 10 for two different grid sizes when the
CFL numbers range from 0.04 to 0.6. First, we have found that, regardless of the interface
location, the scheme is stable when CFL≤0.68, and unstable when CFL≥0.69, suggesting
that the allowed time step size of the proposed scheme for stability is independent of the
interface location. Second, one can see that for this problem the minimal error for the
proposed scheme appears to occur at around CFL=0.2, which implies the error in the
phase shift being minimal at CFL=0.2. This optimal number might be dependent on
the problem, but its independence from the interface location is a favorable and desired
feature of the scheme. Another point that can be appreciated from Fig. 2(b) is that the
numerical approximations are more accurate when the interface is in the middle of a grid
cell.

We now turn ourselves to the analysis of the convergence rate of the proposed scheme,
including its dependence on the interface location. For this reason, we shall again test the
above five different cases with the cell fraction θ being 10−8, 1/4, 1/2, 3/4, and 1 − 10−8,
respectively. The optimal CFL number (CFL=0.2) is used here, and the relative error
‖ E ‖ shown in Table 2 is measured at the time t = 100 (corresponding to a propagation
over a distance of 1200 wavelengths). First, the fourth-order convergence rate of the
proposed scheme is clearly observed for all five cases. Second, the numerical results appear
to indicate again that, although we obtain the fourth-order convergence rate regardless of
the interface location, the numerical approximations are more accurate when the interface
is in the middle of a grid cell. In addition, Fig. 3 shows the exact and the numerical
solutions at the time t = 100.55 for the case of xd = 0.5 + ∆x/2 with N = 200. As being
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Table 2: Grid refinement analysis for the one-dimensional wave system.

θ = 10−8 θ = 1/4 θ = 1/2 θ = 3/4 θ = 1 − 10−8

N ‖ E ‖ order ‖ E ‖ order ‖ E ‖ order ‖ E ‖ order ‖ E ‖ order

100 2.99E-3 2.99E-3 3.50E-3 4.73E-3 4.10E-3

200 2.70E-4 3.47 2.14E-4 3.81 2.04E-4 4.10 2.74E-4 4.11 2.07E-4 4.31

400 1.90E-5 3.83 1.48E-5 3.85 1.28E-5 3.99 1.69E-5 4.02 1.70E-5 3.61

800 1.25E-6 3.93 9.67E-7 3.94 7.96E-7 4.01 1.04E-6 4.02 1.19E-6 3.83

1600 7.96E-8 3.97 6.16E-8 3.97 4.95E-8 4.01 6.45E-8 4.01 7.85E-8 3.92

3200 5.03E-9 3.98 3.89E-9 3.99 3.09E-9 4.00 4.02E-9 4.01 5.03E-9 3.97

demonstrated, the proposed scheme can correctly capture the interface jump condition.

As pointed out earlier, we employ the classical four-stage Runge-Kutta method as our
time-advancing scheme. In general, fourth-order Runge-Kutta schemes can provide rela-
tively large stability regions. For many applications, however, the stability consideration
alone is not sufficient, since Runge-Kutta schemes retain both dissipation and dispersion
errors. The numerical solutions need to be time accurate to resolve the wave propaga-
tion. To examine the long-time stability of our approach, we record and display in Fig. 4
the corresponding errors of the numerical solution as a function of time for the case of
xd = 0.5 + ∆x/2. Note that there is no noticeable growth of the error after running the
problem for 100 time units, indicating the scheme will remain stable and fourth-order
accurate for long time computations.

4.2 One-dimensional Maxwell’s equations

As stated earlier, the standard second-order Yee scheme [1] has been widely used in com-
putational electromagnetics. To compare the proposed method with the standard Yee
scheme, we shall consider the following one-dimensional Maxwell’s equations

ǫ
∂E

∂t
=

∂H

∂z
,

µ
∂H

∂t
=

∂E

∂z
,

in the domain Ω = [−0.5, 0.5] or Ω = [−0.5, 0.51], where E(z, t) and H(z, t) signify the
mutually perpendicular tangential electric and magnetic field components Ey and Hx,
respectively, and ε and µ represent the material electric permittivity and the material
magnetic permeability, respectively.

We take the simple example of a plane wave normally incident on a planar boundary
(z = 0). On the left of the boundary (z ≤ 0), the medium is vacuum (ǫ1 = 1, µ1 = 1),
but on the right (0 ≤ z), the medium is a dielectric with ǫ2 = 10 and µ2 = 2. When the
incident wave encounters the interface between the vacuum and the dielectric, a reflective
wave and a transmitted wave will be generated, respectively. To solve the wave propagation
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Figure 3: The exact and the numerical solutions of the one-dimensional wave system at the time t = 100.55
for the case of xd = 0.5 + ∆x/2. (a) u1(x, 100.55); (b) u2(x, 100.55).
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Figure 4: The maximal error in L∞ norm in the numerical solution as a function of time for the one-dimensional
wave system over the time period [0, 100] for the case of xd = 0.5+∆x/2. CFL=0.2 is used in this experiment.

problem, the above one-dimensional Maxwell’s equations are employed. In our test, the
incident plane wave takes the form

Einc = ei(ωt+k1z), Hinc =
1

Z1
ei(ωt+k1z),

where k1 = ω
√

ǫ1µ1 and Z1 =
√

µ1/ǫ1 are the propagation constant and the impedance of
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the vacuum, respectively. As demonstrated in [32], this problem has an analytical solution
given as follows

E(z, t) =



















ei(ωt+k1z) +
Z2 − Z1

Z2 + Z1
ei(ωt−k1z), z < 0,

2Z2

Z2 + Z1
ei(ωt+k2z), z > 0,

(4.1)

H(z, t) =



















1

Z1
ei(ωt+k1z) − Z2 − Z1

Z1(Z2 + Z1)
ei(ωt−k1z), z < 0,

2

Z2 + Z1
ei(ωt+k2z), z > 0,

(4.2)

where k2 = ω
√

ǫ2µ2 and Z2 =
√

µ2/ǫ2 are the propagation constant and the impedance
of the dielectric, respectively. Note that for this case, the solution is actually continuous
but not smooth across the interface.

We first solve the above one-dimensional Maxwell’s equations in the domain Ω =
[−0.5, 0.5] by the Yee scheme and the proposed scheme with CFL=0.5. Note that the
computational domain for this case is symmetric about the interface. So for the following
chosen grid sizes, the interface is always on a grid point, i.e., θ = 0 for the proposed
scheme. For the Yee scheme, we thus always place the dielectric interface on a magnetic
node for the chosen grid sizes, and the permeability µ at this magnetic node is simply
taken as the arithmetic average of µ1 and µ2. Table 3 shows the results of grid refinement
analysis for both schemes, where the relative error ‖ E ‖ is measured at the time t = 100,
clearly indicating the expected second-order convergence rate for the Yee scheme and the
expected fourth-order convergence rate for the proposed scheme.

We then solve the above one-dimensional Maxwell’s equations in a slightly different
domain Ω = [−0.5, 0.51] by the Yee scheme and the proposed scheme with the same
number CFL=0.5. Note that the computational domain for this case is not symmetric
about the interface. So for the following chosen grid sizes, the interface is not necessarily
on a grid point, and for the proposed scheme, the cell fraction θ varies between around 0.01
and 0.75. For the Yee scheme, the same code as in the case of Ω = [−0.5, 0.5] is used, but
now we can no longer guarantee the interface to be placed on either a magnetic or electric
node for the chosen grid sizes, but when it happens, the effective dielectric constant at
this node is again simply taken as the arithmetic average of the corresponding dielectric
constants of the two different media. The relative errors ‖ E ‖ measured at the same time
t = 100 are displayed in Table 4.

As shown in Table 4, the numerical solution obtained by the proposed scheme maintains
the fourth-order convergence rate, but that obtained by the standard Yee scheme seems
to be only first-order accurate (the average convergence rate is 1) at best, even though
for this case the solution is continuous across the interface. Furthermore, the convergence
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Table 3: Grid refinement analysis for the one-dimensional Maxwell’s equations with Ω = [−0.5, 0.5].

Yee scheme UEBM
N ‖ E ‖ order ‖ E ‖ order

50 2.49E-1 5.93E-2

100 4.46E-2 2.48 5.89E-3 3.33

200 1.07E-2 2.06 2.92E-4 4.34

400 2.71E-3 1.98 1.56E-5 4.22

800 6.87E-4 1.98 8.96E-7 4.12

1600 1.71E-4 2.01 5.36E-8 4.06

3200 4.28E-5 2.00 3.28E-9 4.03

Table 4: Grid refinement analysis for the one-dimensional Maxwell’s equations with Ω = [−0.5, 0.51].

Yee scheme UEBM
N ‖ E ‖ order ‖ E ‖ order θ

50 1.39E-1 8.24E-2 0.7525

100 1.23E-1 0.17 5.33E-3 3.95 0.5050

200 1.16E-2 3.41 3.86E-4 3.79 0.0099

400 5.62E-3 1.04 1.39E-5 4.80 0.0198

800 2.98E-3 0.92 8.00E-7 4.12 0.0396

1600 2.10E-3 0.51 4.76E-8 4.07 0.0792

3200 1.78E-3 0.24 2.84E-9 4.07 0.1584

rate of the Yee scheme tends to decrease as the grid size increases, which could be partially
understood by the possible localized non-convergent behavior of the scheme, as reported
by many authors [3, 4].

4.3 A two-dimensional wave problem with material interfaces aligning
with coordinate axis

The methodology discussed in Sections 2 and 3 extends naturally to two and three spatial
dimensions. For example, in the case of two spatial dimensions, we solve the following
two-dimensional z-transverse magnetic (TM) set of Maxwell’s equations,

∂u

∂t
+ A

∂u

∂x
+B

∂u

∂y
= 0, (x, y) ∈ Ω = [a, b] × [c, d], (4.3)
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where u = (Hx,Hy, Ez)T , with Ez and H = (Hx,Hy)T representing the scalar electric
field and the vector magnetic field, respectively, and

A =





0 0 0
0 0 −1/µ
0 −1/ε 0



 , B =





0 0 1/µ
0 0 0

1/ε 0 0



 .

In addition, the solution domain Ω is divided by a dielectric interface Γ into two disjoint
pieces, Ω− and Ω+, representing two distinct dielectric materials. Across the material in-
terface, the tangential components of the fields should be continuous, yielding the interface
condition

n × H+ = n× H−, n · µ+H+ = n · µ−H−, Ez,+ = Ez,−, (4.4)

which can be rewritten in a form similar to (3.2), i.e.,

R+u+(Γ, t) − R−u−(Γ, t) = g(Γ, t), (4.5)

with

R± =





−ny nx 0
µ±nx µ±ny 0

0 0 1



 ,

where n = (nx, ny)
T represents a unit vector normal to the interface Γ.

The spatial derivatives ux and uy are approximated as

(ux)i,j ≈
1

12∆x
(Ui−2,j − 8Ui−1,j + 8Ui+1,j − Ui+2,j) , (4.6)

(uy)i,j ≈
1

12∆y
(Ui,j−2 − 8Ui,j−1 + 8Ui,j+1 − Ui,j+2) , (4.7)

and for cells cut by the interface Γ, ghost values are defined by extrapolating the value
of u across the interface as described in Section 2. In principle, the definition of the
ghost values could be performed in a dimension by dimension fashion, and accordingly, the
numerical discretization of ux is independent from that of uy, making the procedure trivial
to extend to two and three spatial dimensions. The practical implementation, however,
becomes more involved for multi-dimensional cases. One major potential problem is that,
for an arbitrary interface and an arbitrary grid, the construction of extrapolants (to define
ghost values and calculate interface solutions) in the dimension by dimension fashion may
not always be possible for some irregular points due to the limited number of neighboring
grid point in a specific direction within the same side of the interface. Generally speaking,
when the interface Γ is flat, there shall be enough grid points for us to construct cubic
extrapolants to define ghost nodes and calculate interface solutions. For most curved
interfaces, however, the dimension by dimension extrapolation may not be applicable.
The issue of constructing extrapolants for multi-dimensional problems will be discussed
in a forthcoming paper.
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Figure 5: The computational domain of the two-dimensional electromagnetic application.

In this example, we shall investigate the performance of the UEBM for two-dimensional
electromagnetic applications where the interfaces are parallel to either the x-axis or the
y-axis. The problem being considered here is taken from [6], in which a lossless dielectric
with a relative permittivity of ǫ2 is enclosed by air in x direction, and the media are
nonmagnetic and homogeneous along y direction, see Fig. 5. The computational domain
Ω = {(x, y)||x| < 1, 0 ≤ y ≤ 1} is enveloped by PEC walls. An analytical solution for
time-varying electromagnetic fields in such a domain is [6]

Hx =

{−
√

ǫ1 + 3ǫ2 cos (2πx/3) sin (ωt) cos(kyy), |x| ≤ 1
2 , 0 ≤ y ≤ 1,

−1

2

√
ǫ1 + 3ǫ2 exp

(

π
√

3/3
)

exp
(

−2π
√

3|x|/3
)

sin(ωt) cos(kyy), |x| ≤ 1
2 , 0 ≤ y ≤ 1,

Hy =















−
√

ǫ2 − ǫ1 sin (2πx/3) sin (ωt) sin(kyy), |x| ≤ 1
2 , 0 ≤ y ≤ 1,

−1

2

√

3(ǫ2 − ǫ1) exp
(

π
√

3/3
)

exp
(

−2π
√

3x/3
)

sin(ωt) sin(kyy), x ≥ 1
2 , 0 ≤ y ≤ 1,

1

2

√

3(ǫ2 − ǫ1) exp
(

π
√

3/3
)

exp
(

2π
√

3x/3
)

sin(ωt) sin(kyy), x ≤ −1
2 , 0 ≤ y ≤ 1,

Ez =

{

2 cos (2πx/3) cos(ωt) sin(kyy), |x| ≤ 1
2 , 0 ≤ y ≤ 1,

exp
(

π
√

3/3
)

exp
(

−2π
√

3|x|/3
)

cos(ωt) sin(kyy), |x| ≤ 1
2 , 0 ≤ y ≤ 1,

where ky = 2π
3

√

ǫ1+3ǫ2
ǫ2−ǫ1

and ω = 4π
3
√

ǫ2−ǫ1
. We will consider the problem herein for ǫ1 = 1

and ǫ2 = 2, 4.
Note that for this problem ghost values are needed only for the numerical discretization

of ux, so the scheme reduces to the one-dimensional approach provided only that the jump
condition is accounted for correctly based on the upwinding principle [11].

To verify the fourth-order convergence rate of the proposed scheme, we run this prob-
lem for ǫ2 = 2 and ǫ2 = 4, respectively, using CFL=0.2 and the mesh size ∆x ranging
from 1/20 to 1/640. Table 5 indicates the expected fourth-order convergence rate of the
proposed scheme on very fine meshes, where the error is measured at the time t = 1.
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Table 5: Grid refinement analysis for the two-dimensional electromagnetic application.

ǫ2 = 2 ǫ2 = 4
Grid ‖ E ‖ order ‖ E ‖ order

40 × 40 2.20E-4 2.38E-4

80 × 80 1.20E-5 4.20 1.45E-5 4.04

160 × 160 6.08E-7 4.30 9.57E-7 3.92

320 × 320 3.26E-8 4.22 6.02E-8 3.99

640 × 640 1.94E-9 4.07 3.74E-9 4.01

1280 × 1280 1.16E-10 4.07 2.34E-10 4.00

Fig. 6 shows the contour and the y = 0.5 cross-section of the computed field component
Hy at the time t = 10 when using a 160×160 mesh for the case of ǫ2 = 4. Please note that
Hy is continuous but its derivative is discontinuous across the material interface. Actually,
in this case, it is clear from the interface condition (4.4) that all three field components
are continuous across the material interface. The derivative of the Ez component is also
continuous across the interface, but the derivatives of the Hx and Hy components are
discontinuous.

In Fig. 7, we draw the error in the numerical solution as a function of time over the
time period [0, 10] for various grid sizes for the case of ǫ2 = 4. As being demonstrated,
there is no noticeable growth of the error in time.

5 Conclusion

In this paper, using the technique of ghost cells, we have proposed a fourth-order up-
winding embedded boundary method for solving one-dimensional time-domain Maxwell’s
equations with discontinuous coefficients. The proposed scheme retains the simplicity of
Cartesian grid based methods while providing the uniformly fourth-order accuracy across
the material interfaces at a time step size allowed on the uniform Cartesian mesh. Nu-
merical tests confirm the stability and the global accuracy and ease of implementation of
the method.
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Figure 6: Electromagnetic field for the two-dimensional electromagnetic application with ε2 = 4 at t = 10. On
the left is the contour of the computed field component Hy when using a 160 × 160 mesh, and on the right is
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